
Robustification of Self-Optimising Systems
via Explicit Treatment of Uncertain Information

Jan H. Schoenke, Werner Brockmann

Department of Computer Science, University of Osnabrück
Email: {jschoenk, Werner.Brockmann}@uni-osnabrueck.de

Abstract

Uncertainty treatment in self-optimising systems
touches two design-issues. Firstly, a valid estima-
tion of uncertainties within the system is impossi-
ble beforehand as the uncertainties as well as the
systems behaviour changes during run-time due to
self-optimisation. Secondly, the design of a self-
optimising system needs to mediate between the of-
ten conflicting goals of optimality and robustness.
Here we present the concept for a lightweight algo-
rithmic add-on for self-optimising function approx-
imators that enables to reflect uncertainties related
to the current state and to flexibly combine opti-
mality and robustness in one design. Illustrating
examples of TS-fuzzy systems highlight the proper-
ties of our approach.

Keywords: Self-Optimising Systems, Uncertain In-
formation, Uncertainty Treatment, Regression

1. Introduction

One of the most important and challenging tasks in
autonomous systems is to deal with uncertain infor-
mation. This is especially true for self-optimising
systems as they introduce dynamics at another
level, which cannot be foreseen at design-time. The
treatment of uncertainties consists of both a rep-
resentation of the degree of uncertainty the system
has to deal with and a strategy to make the sys-
tem robust against this uncertainty, i.e. to reduce
or even to eliminate its impact. Such a ’robustifica-
tion’ poses a severe design challenge.
At first sight, uncertainty arises from the mea-

surements of the sensors and propagates through-
out the modules of a multi-staged systems architec-
ture along the data path. In general, uncertainty
can arise with any signal and information that is
processed within a system and is thus even related
to the result of this processing. This results in a
spread of uncertainty throughout the system. So
each module may has to cope with uncertain inputs
and thus produces an output that to some extent is
uncertain as well.
Here it is important to note that many sources of

uncertainty are not statistical in their nature and
that a non-linear system behaviour leads to a vary-
ing impact of uncertainties and hence complicates
their estimation or even reduction significantly.

The estimation of measurement uncertainty is ad-
dressed by the "Guide to the expression of Uncer-
tainty in Measurement" (ISO/IEC Guide) [1] which
provides a definition of uncertainty, lists possible
sources of uncertainty and gives norms for its esti-
mation for industrial automation systems as well as
for scientific experiments. Basically [1] wants the
designer to specify all relevant and recognised influ-
ences that can effect the uncertainty of a measure-
ment and attribute the output of the measurement
by a scalar value reflecting its degree of uncertainty.
This also holds for the further processing of these
(basic) measurements, e.g. by filters, so that each
processing module has to reflect the uncertainty of
its output by a scalar value attributed to each of its
output values.

For classical, i.e. static systems this is a funda-
mental, yet complex part in the design of robust
systems. But for self-optimising systems it is simply
impossible to do at design-time as the behaviour of a
self-optimising module changes during run-time. So
the influence of an uncertain input on the output is
changing as well and hence unknown at design-time.
So for self-optimising systems an uncertainty esti-
mation that complies with the ISO/IEC Guide [1]
has to be done on-line. Each module itself thus has
to reflect dynamically about the relevance of its in-
puts to determine the degree of uncertainty of its
outputs due to uncertain inputs.

This fact does not release the designer from con-
sidering uncertainties in the design, but instead of
pre-computing the uncertainty estimation and han-
dling at design-time, the designer has to enhance
each module to do this computation itself at run-
time. The additional computational effort to re-
flect about the uncertainty in each module should
be as small as possible in order to keep the overall
complexity of the system and its computational de-
mands low and not to violate real-time constraints
of an application if there are any, e.g. for embedded
systems.

The other design issue is the overall design goal
a self-optimising systems has to achieve, namely to
modify the module’s behaviour in order to perform
optimally on a particular task. Enabling a mod-
ule to deal with uncertainties compels the designer
to make the system robust against uncertainties as
well. But robustness and optimality are conflicting
design goals as a robust behaviour is not optimal in

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 152



the general case. So there is a strong need for an
integral approach that enables the designer to spec-
ify a robust system behaviour for the case of too
strong uncertainties and still allows the system to
be self-optimising, if the uncertainties are tolerable.
This paper presents such an integral approach in

form of a lightweight algorithmic add-on for mod-
ules which act as (self-optimising) function approx-
imators in regression tasks. The rest of the paper
is therefore organised as follows. Section 2 reviews
the state of the art of uncertainty representations
as well as methods and architectures for uncertainty
treatment. In section 3 the proposed approach is in-
troduced and formally described. Properties of the
approach are demonstrated by an illustrating exam-
ple in section 4. The results are discussed in section
5 and section 6 concludes the paper.

2. Related Work

This section reviews different uncertainty represen-
tations and approaches for uncertainty treatment.
The presented methods are discussed concerning
their applicability in the design and operation of
self-optimizing systems.

2.1. Uncertainty representations

The representations that are able to model uncer-
tainties of any information in a gradual way can be
grouped into four categories by their expressiveness.

The first category is the scalar attribution of mea-
surement values as the most simple form of an
uncertainty representation and also the way the
ISO/IEC Guide [1] wants uncertainties to be re-
ported. Examples for this kind of uncertainty rep-
resentation are symmetric error bounds defining in-
tervals of possible alternatives for the measurement
value [2], variance and standard deviation related
values from families of parametrised probability dis-
tribution functions defining how likely a measured
value is [3], scaling parameters of standardised fuzzy
numbers defining in a gradual way how possible a
measured value is [4] and trust signals from the trust
management framework defining in a more general
way how trustworthy a measurement is [5].
As this category of representation has the least

expressiveness along all uncertainty representations,
it likewise has the least computational and design
demands. E.g., the additional effort to make the
designer fit prior knowledge about the uncertainties
into the representation is low and the representa-
tion itself is easy to understand and to compute.
Nevertheless, there are differences concerning com-
putational and design demands between the exam-
ples listed above. E.g., interval arithmetic is easier
to understand than probabilistic theory.

The second category of uncertainty representa-
tions uses (crisp) sets to represent the uncertainty
about a measurement. A single measurement value
is replaced by a set of possible alternatives that arise

from the uncertainty that is modelled. This is classi-
cal possibility theory that expands the error bound
related intervals from the first category to general
sets [6]. As the expressiveness of this class of un-
certainty representation increases compared to the
first class, the computational and design demands
increase as well. The computational demands of
propagating sets limit the applicability of this class.
The interval arithmetic [7] is a special case of the
possibility theory that allows an efficient calcula-
tion of the output interval of a module under linear
mappings. Determining the output interval of pos-
sible values under non-linear mappings is not triv-
ial and increases the computational demands dras-
tically. So for modules that only provide a linear
mapping the interval arithmetic is a valuable tool
but its applicability is limited for non-linear map-
pings. And on top of that, at least at a controller
(or decision making) module there is the need to
choose one value out of an interval to be the actual
output of the controller as the actor can only apply
one concrete value to act on the controlled process.
The design demands increase here as well because
the designer has to determine for every alternative
to the actual measured value whether it is possible
or not due to the measurement uncertainty.

The third category of uncertainty representations
is scalar weighting which is an extension of the sec-
ond category. Here again a set of possible alterna-
tives of a measurement is considered and each al-
ternative is weighted by a scalar value ranging from
0 to 1 representing how likely or possible in a grad-
ual way any alternative is. Examples for this kind
of uncertainty representation are the membership
functions of fuzzy set theory [4] which give a scalar
weight to each alternative value and can hence be
interpreted in the sense of possibilistics. Probabil-
ity density functions act similarly in the probability
theory [3] which forces the sum or integral of all
weights of all alternatives to equal one and inter-
prets these weights as likelihood.

Looking at the design demands to specify the in-
formation needed to make use of the expressiveness
of this class of uncertainty representations, the de-
signer not only needs to determine whether a par-
ticular alternative is possible or not as for the sec-
ond class, but he is also asked to give a weight to
each alternative. Since the demand of prior knowl-
edge to determine the weights that accurately rep-
resent the uncertainty is very high and the process-
ing of arbitrary functions describing the weights of
all alternatives under a non-linear mapping is very
complex, this class of uncertainty representation is
only applicable if the characteristic functions de-
scribing the weights of all alternatives are restricted
to parametrised families of functions. This way
the computational and design demands are limited.
But these approaches then tend to fall into the first
class of uncertainty representations as there are only
very few parameters that define the characteristic

153



weight-function and thus the complete uncertainty
representation.
The fourth and last category of uncertainty rep-

resentations contains all higher order weighting ap-
proaches. Higher order weighting here refers to
the weights that are the heart of the third class.
These weights are replaced by distributions of dif-
ferent weights in order to avoid the need to spec-
ify the weights precisely. Examples for this kind
of uncertainty representation are Imprecise Proba-
bilities like the Dempster Shafer Theory [8], that
defines lower and upper bounds for the probabil-
ity distribution of alternative measurements, and
type-2-fuzzy sets that allow to express the ambigu-
ity about the gradual possibility of the alternatives.
While this class of uncertainty representations al-
lows to express nearly any type and aspect of un-
certainties, the computational and design demands
are immense.

2.2. Uncertainty Treatment at
Architectural Level

System architectures have been extended to cope
with uncertainties in recent years. Two categories
can be distinguished here depending on the way un-
certainty treatment influences the system operation.
On the one hand, a detailed assessment and treat-
ment of the uncertainties takes place at the level of
concrete signals and internal parameters, i.e. inte-
gral within signal processing algorithms, henceforth
called fine-grained.
One of the most common approaches is to use

the calculus of probability theory for an explicit
fine-grained representation of uncertainty [9]. This
modelling treats measurements as observations of
random variables, and state transitions depending
on actions are modelled as conditional probabili-
ties. Consequently, assumptions about the distri-
bution of measurements and the conditional proba-
bilities of actions have to be made in advance and
the results typically depend on the chosen frame of
discernment. Besides the complexity of additional
information a design engineer must give, the com-
plexity of calculations increases significantly. And
often only approximate solutions, e.g. by particle
filters [9], are feasible.

On the other hand, uncertainties are treated at
module level by steering the module’s activity as
a whole without affecting its internal operation,
henceforth called coarse-grained. Here the function-
ality of the system is decomposed into several be-
haviours each designed for a specific subtask. These
modules interact with each other by the means of
some meta-signals. This is similar e.g. to the
activation-based behaviour control architecture [10]
which Albiez et al. introduced for autonomous
robots. It works without an explicit representation
of uncertainty but uses meta-signals called activ-
ity and target rating. Each behaviour generates
a target rating, expressing how much the current

state fits the behaviour’s goal. In result modules
are dynamically activated depending on the rating
of a situation and it is possible to implicitly han-
dle critical situations differently within this archi-
tecture without designing counteractions explicitly.
The actions of the robot are hence based on the
normal signal flow from sensors to actuators as well
as on these meta-signals yielding an emergent be-
haviour. Thus, this activation mechanism allows a
robustification to a certain degree by activating only
a defined subset of behaviours, i.e. it deals implic-
itly with uncertainties at a coarse-grained level.

A fine-grained robotic approach is the notion of
a pain level which has been introduced by Farrell in
[11] to gradually model sensor failures at runtime.
The fault status of each sensor is estimated gradu-
ally based on the history of its measurements result-
ing in an additional signal attribute, the pain level,
given to an injury agent declaring that the sensor
is working properly or broken somehow. In this ar-
chitecture, each sensor with a pain level above some
defined threshold is discarded from further process-
ing. But it is possible for a sensor to recover and
being reintegrated into processing, thus making the
approach comparable to coarse-grained uncertainty
treatment.

The ORCA-architecture [12] reflects this gradual
nature of an uncertainty measure similar to pain
levels by introducing health signals regarding the
health status not only of the sensors but also of po-
tentially any processing module. Here the normal
signal flow is defined in basic control units (BCUs)
providing the functionality of the system in a fault-
free case. These are accompanied by organic con-
trol units (OCUs) which monitor and react to the
health signals for supervising the BCUs and chang-
ing parameters within a BCU module as well as
their interplay in case of anomalies, thus perform-
ing a coarse-grained handling of uncertainties. This
influence is gradual and allows for a graceful degra-
dation while maintaining the safety of the system.

In the ORCA-architecture the system is fully
functional without the OCUs. In order to get a
greater flexibility and to improve expressiveness and
performance, the biological motivation of health sig-
nals is abandoned with the introduction of the Trust
Management (TM) framework [13, 5]. Its key fea-
tures are to represent the trustworthiness of sig-
nals or parameters by attributes, called trust sig-
nals, and to integrate them directly into the sig-
nal processing algorithm in a fine-grained manner.
Hence, the uncertainty treatment becomes an inte-
gral part of the functional units, i.e. the BCUs. In
the TM framework an information attributed with
a trust signal ϑ = 1 has to be processed normally,
i.e. as if there was no TM or uncertainty, respec-
tively, at all. Whereas for a trust signal ϑ = 0
the corresponding information must not be used for
processing anyhow. Due to a more general appli-
cability of this underlying principle, Trust Man-

154



agement yields a generic uncertainty representa-
tion and treatment throughout the whole systems
architecture. It thus has not to introduce addi-
tional (OCU) modules into existing architectures
and therefore allows for a seamless migration from
existing conventional and coarse-grained architec-
tures to an integral fine-grained processing of uncer-
tain information with a low additional complexity
for uncertainty handling.

2.3. Uncertainty Treatment at Processing
Module Level

The fine-grained treatment of uncertain information
or even missing or faulty inputs in single modules
within an architecture is an unavoidable and well
established part of many real-world applications.
A general overview of the most common methods
within this field is given in [14, 15]. The field can
be roughly divided into three areas.
First, with imputation a measured value of an

uncertain input is replaced by a more certain one,
thus reducing the uncertainty. The source to get the
more certain value from depends on the imputation
method. Several imputation methods are reviewed
in [16]. Basic imputation methods use filter, regres-
sion or nearest neighbour techniques to estimate an
imputation value. Advanced imputation methods
restrict the imputation values to comply to a given
distribution. The module consuming the inputs is
unaffected by this kind of uncertainty treatment and
thus the complexity overhead is low at system level.
But the uncertainty about the inputs is not reflected
at the output of such a module which is thus treated
as completely reliable.
Multiple imputation methods generate a discrete

set of imputation values resulting in a set of out-
put values. Mean and variance of this set define
the most likely output value and its quality. But
the complexity overhead gets large due to multiple
evaluations of the module.
The second category uses ensemble techniques

[17] to overcome the need for imputation. A sin-
gle module performing one task is replaced by an
ensemble of modules all performing the same task,
but each using a different subset of the complete set
of inputs. To avoid propagating values of uncertain
inputs, only the performing unit which does not use
any of the uncertain inputs but uses all of the cer-
tain inputs is evaluated. For this kind of approach
the number of modules increases exponentially with
the number of uncertain inputs, and hence the en-
gineering and computation efforts as well.
The third way to treat input uncertainty is to

model the uncertainty directly. Therefore each in-
put is extended by a measure of its degree of uncer-
tainty according to one of the methods of chapter
2.1 and the module has to be able to handle these
extended inputs in a fine-grained manner. The main
advantage of modelling uncertainties directly is the
low computational complexity compared to ensem-

ble methods in the cases of multiple uncertain in-
puts. The main disadvantage is the need to cor-
rectly model and process the uncertainties to get
reliable results. For several uncertainty representa-
tions special solutions have been developed. The
interval representation of uncertainties is used in
[18, 19], the fuzzy representation in [20] and (impre-
cise) probabilities in [21, 22]. These approaches are
fine-grained extensions to a conventional architec-
ture, which inherit the calculation and design issues
from their respective uncertainty representation.

In general, there are many approaches to un-
certainty treatment at architectural and module
level, but not all of them are feasible for self-
optimising system modules. An appealing feature
of approaches at coarse-grained architectural level is
that they allow the designer to easily blend between
a self-optimising and a fixed robust behaviour. But
this way the designer can only specify a behaviour
of the system in the presence of uncertainties, rather
than a strategy which may incorporate the self-
optimised behaviour to treat and to reduce the un-
certainties at hand. So it is important to give the
designer the opportunity to specify how to make the
self-optimised behaviour robust in addition to the
specification of a special fall-back behaviour. This
can only be achieved by a fine-grained uncertainty
treatment at module level. And from the class of
fine-grained uncertainty treatment the direct mod-
elling is the only approach that does not hide the un-
certainty, but shows it to the module. So the direct
modelling of uncertainties enables a self-optimising
module to reflect about its uncertainties at hand
according to its own behaviour. And in addition to
that, it allows the module to estimate the uncer-
tainty of its output efficiently.

So our aim is to find a fine-grained approach
that enables the designer to specify a strategy for
the treatment of uncertain inputs by enabling each
module to react on and reflect about and finally
to reduce the uncertainties at hand, even when the
modules behaviour changes at run-time due to self-
optimisation.

3. A unifying approach for uncertainty
treatment in self-optimising modules

Our approach for uncertainty treatment in self-
optimising modules is presented in this section.
Firstly, the general concept of our approach is de-
scribed and formalised. Subsequently, a special case
is derived from the general formal description in or-
der to illustrate the design properties this approach
provides and how it behaves formally.

3.1. General Concept

The duality of the design goals robustness and op-
timality is the major concern of the presented ap-
proach. Therefore a fine-grained algorithmic add-on
to (existing) self-optimising modules is presented.

155



It is an integral solution that gives room to both
of the design goals depending on the uncertainty at
hand. This add-on models uncertainties by trust
signals and enhances each module in two comple-
mentary ways that even allow for a system wide
uncertainty treatment similar to coarse grained un-
certainty treatment. Firstly, the module is enabled
to blend dynamically between its self-optimising be-
haviour and a robust behaviour depending on the
uncertainty of the inputs. Secondly, the module can
reflect its own output uncertainty depending on the
uncertainty of the input and its own functional be-
haviour.
As the behaviour of the self-optimising module

changes during run-time, the uncertainty treatment
of the proposed algorithmic add-on must be fully
transparent to the basic self-optimising module and
thus only concerns the evaluation of the module to
form its output. This way the uncertainty treat-
ment of the add-on is completely independent of
the self-optimising property of the module at an al-
gorithmic level.

If an input to a module is uncertain, it is ambigu-
ous at which point in the input space the module
has to be evaluated, i.e. what the (true) actual in-
put is. Making a module robust against uncertain
inputs means to make the output of the module un-
affected by these uncertainties. Our approach here
to ensure such a robust module behaviour is to limit
the influence of an uncertain input on the output
depending dynamically on the actual degree of un-
certainty, thus following the basic principles of the
TM framework. The aim is to allow the module to
perform its regular self-optimising behaviour as long
as the uncertainties at the input are tolerable and
to gradually reduce the influence of uncertain inputs
by an Uncertainty Treatment Strategy (UTS). This
UTS allows the designer to specify how the mod-
ule reacts on too large uncertainties in order to still
ensure a robust system behaviour.

To enable the module to reflect about the actual
degree of uncertainty of its output, we follow the
spirit of error propagation. But instead of using all
partial derivatives at the actual evaluation point,
we rather use the variance of the output along an
uncertain input only, since an uncertain input does
not allow to exactly determine the point in the re-
spective dimension of the input space where the par-
tial derivatives should be calculated. This integral
scheme provides properties similar to the differen-
tial one, but as the integral takes a global look at
the behaviour of the module it is more robust con-
cerning the uncertainty of an input. If the variance
along an uncertain input vanishes, the input is ir-
relevant for the calculation of the output and its
uncertainty can be ignored as well, i.e. the uncer-
tainty vanishes. If the variance along an uncertain
input is high, the input has a strong influence on
the output and thus the uncertainty of the output
has to be increased according to the variance of the

output along the uncertain input dimension. The
same is true for multiple uncertain inputs. For mul-
tiple outputs, this approach has to be calculated for
each output of the module separately.

This general concept is applicable to different
kinds of modules that perform tasks like process
modelling, classification, control or other whether
they are self-optimising (at run-time) or not. As
the great variety of these tasks cannot be captured
in one paper, we focus here on the class of contin-
uous mappings between real vector spaces as they
are basic to nearly any real-world application, e.g.
modelling and control.

3.2. Formal Description of the Approach

Let f : Rn → Rm be the continuous mapping of
a self-optimising module that maps an input vec-
tor ~x ∈ Rn to an output vector ~y = f(~x) ∈ Rm.
The mapping f may be non-linear and, of course,
time variant due to the self-optimisation property
of the module. But for any single evaluation of the
module, it is sufficient to treat its processing as be-
ing static. Let further be ~ϑx ∈ [0, 1]n the uncer-
tainty representation of the input ~x, that leads to
an extended input format (~x, ~ϑx), and ~ϑy ∈ [0, 1]m
the uncertainty representation of the output ~y that
leads to an extended output format (~y, ~ϑy). The
proposed add-on extends the mapping f to a map-
ping f∗ : Rn × [0, 1]n → Rm and measures the un-
certainty ~ϑy at the output ~y of f∗ by the variance
σ2 (defined in equation (2)).
Formalising our general concept for the fine-

grained robustification then results in a system of
partial differential equations presented in (1) which
f∗ has to comply with.

∂f∗j (x, ϑx)
∂xi

= Vi(ϑx)∂fj(x)
∂xi

∀i, j (1)

The basic idea is to limit the influence of an un-
certain input xi by bounding its respective partial
derivative in f∗ at the current working point. The
vector valued blending function V : [0, 1]n → Rn

uniquely defines how the behaviour of the module
blends from the regular (ϑx = 1) to the robust case
(ϑx = 0). The boundary conditions related to a
solution of (1) thus uniquely define the actual be-
haviour of f∗ in the certain as well as in the robust
case.

Since equation (1) is not constructive nor allows
for a direct deduction of a solution for f∗, the sec-
tion 3.3 will show a practical choice for V and derive
a solution for the large class of Linear In the Pa-
rameters (LIP) approximators with separating base
functions. LIP-approximators are also widely used
for non-linear mappings in self-optimising systems
as they allow for a convex optimisation problem for-
mulation. The class contains polynomials as well as
many types of fuzzy systems and radial basis func-
tion networks which can for example serve as a con-
troller, as a process model or as filters and the like.

156



To quantify the trust level ϑy of an output y, the
dependency between an uncertain input xi and the
output y, i.e. the variance σ2

i along the uncertain in-
put dimension ([xi, xi]) is mapped to the trust level
ϑy. If the variance σ2

i along the uncertain input
dimension xi is zero, the output is independent of
the uncertain input xi. In this case the trust level
ϑy of the output should hence be independent of
ϑxi and should not be decreased by the uncertainty
of the input xi, i.e. the respective module can re-
cover from uncertainty. With an increasing variance
σ2

i along an uncertain input dimension xi, the out-
put dependency increases too and the trust level ϑy

of the output must decrease accordingly. This ap-
proach to one uncertain input xi can be applied to
multiple uncertain inputs x by weighting the dif-
ferent variances along different inputs xi with their
trust levels ϑxi

or e.g. by a t-norm operation.
The calculation of the variance of f has to be

done according to the trust levels ϑx. This requires
a ϑx-weighted variance σ2 of the function f which
is defined in equation (2).

σ2 = V ar(f(x), ϑx) = (2)

∑
A∈P ({1,...,n})

∏
a∈A

ϑxa

∏
b∈A

(1− ϑxb
)V ar(f(u)|uA=xA

)

The term V ar(f(u)|uA=xA
) in the variance calcu-

lation in (2) refers to calculating the variance of f
along the respective input dimensions that are in A
which are assumed to be uncertain and setting the
values of the input dimensions that are in A to the
corresponding values in x, which are assumed to be
certain.
In general, the ϑx-weighted variance calculation

in equation (2) has a computational complexity of
O(2n) as there is a sum over all elements of the
power set P ({1, ..., n}) of the indices {1, ..., n}. This
computational effort equals the demands of an en-
semble approach and is thus rarely applicable. But
there is a computationally cheap variant of equa-
tion (2) for separating functions, e.g. the aforemen-
tioned LIP-approximators that will be shown in the
next section.

3.3. Linear Blending for LIP-Approximators

Restricting equation (1) to the special case of a lin-
ear trust-related blending between a regular and a
robust case leads to the system of partial differential
equations defined in equation (3).

∂f∗(x, ϑx)
∂xi

= ϑxi

∂f(x)
∂xi

∀i (3)

In this linear approach the function V is simply the
identity and thus the influence of each input xi onto
the output y is linearly limited by its corresponding
trust signal ϑxi

. The linear blending approach is
now worked out for the class of LIP-approximators

which can be evaluated via an inner product on vec-
tor spaces between a parameter vector α ∈ Rk and
vector of base functions φ : Rn → Rk as shown in
equation (4).

y = αTφ(x) =
k∑

i=1
αiφi(x) (4)

While the mapping of the base functions φ may be
non-linear, the effect of the parameters α onto the
output y is strictly linear. Hence, there is an elegant
solution to equation (3) as long as the base functions
φi are separable, i.e. φi(x) =

∏n
j=1 φi,j(xj). Solv-

ing (3) by assuming separability and (4) leads to
equation (5) with integration constants c̃i,j .

f∗(x, ϑx) =
k∑

i=1
αi

n∏
j=1

(
ϑxj

φi,j(xj) + c̃i,j

)
(5)

While each c̃i,j needs to be constant in xj , they
are allowed to be varied in ϑxj

. Choosing the inte-
gration constants according to c̃i,j = (1 − ϑxj )ci,j

provides a new set of design parameters ci,j that
uniquely define the behaviour of the function f∗

in the robust case, but do not affect the evalua-
tion of f∗ in the regular case, yielding f∗(x, 1) =
f(x). And as the blending to the design parame-
ters ci,j only affects the φi,j , the UTS does not af-
fect the self-optimisation process and can still incor-
porate the knowledge of the (self-optimising) LIP-
approximator represented by the parameter vector
α but without an impact of xj . The calculation of
the output trust level ϑy of equation (2) can then be
simplified for LIP-approximators as shown in equa-
tion (6).

σ2 = Var(f(x), ϑx) = (6)
k∑

i,j=1
αiαj

(
n∏

a=1
(ϑx

aCi,j,a(x) + (1− ϑxa
)Vi,j,a)

−
n∏

a=1
(ϑx

aCi,j,a(x) + (1− ϑx
a)Qi,j,a)

)

with

Ci,j,a(x) = φi,a(xa)φj,a(xa) (7)

Vi,j,a =

∫ xa

xa
φi,a(x)φj,a(x)dx
xa − xa

(8)

Qi,j,a =

∫ xa

xa
φi,a(x)dx
xa − xa

·

∫ xa

xa
φj,a(x)dx
xa − xa

(9)

The complexity of the variance calculation (6) is
in O(n2), which is a comparatively small effort
for an exact solution. And since all φi,j are fixed
for a particular LIP-approximator, the correspond-
ing integrals are constants for that approximator
as well and can hence be pre-computed at design
time. Thus no integration has to be performed
on-line. A simple way to finally map the variance

157



σ2 to an output trust level in [0, 1] is for example
ϑy = max(0, 1 − c ·

√
σ2), where c > 0 defines the

sensitivity of the output trust level ϑy to the vari-
ance measure σ2.

3.4. Design Pattern: Mean Value

The design parameters ci,j allow the designer to
specify the UTS of the module in the robust case,
i.e. for ϑxi

= 0. In order to keep the overall de-
sign effort low, these parameters can be chosen ac-
cording to a global design pattern. A simple, yet
powerful pattern is the mean value strategy and it
is illustrated exemplarily here and in the following
example.
The basic idea of this pattern is to guide the out-

put of the module to the mean value along the un-
certain input dimensions for the robust case. Equa-
tion (10) then uniquely defines all ci,j to achieve
this guidance. Thus, there is no extra effort for the
designer to manually specify the systems behaviour.

ci,j =

∫ xj

xj
φi,j(u) du

xj − xj
(10)

Applying this design pattern to the linear blend-
ing strategy enables a self-optimising module to
smoothly blend between its current self-optimising
behaviour and the mean of its output along uncer-
tain input dimensions for the robust case. And as
the presented algorithmic add-on only affects the
evaluation, the mean value that is used to gain a
dynamically robust behaviour independent of un-
certain input always relies on the actual knowledge
of the module gathered by self-optimisation in its
parameter vector α.

4. Illustrating Examples

The examples presented in the following accompany
the formal description of the linear blending strat-
egy from above in order to give first insights into
the basic properties of our approach at signal level.
Since the proposed add-on consists of both an un-
certainty treatment and an output uncertainty esti-
mation, two different examples are presented here to
highlight the properties of these two parts. The first
example displays the effect of the trust levels ϑx on
the output, i.e. the evaluation of an enhanced mod-
ule, and the corresponding output uncertainty esti-
mation. The second example illustrates the impact
of the robustification on the operation of a module
in an artificial test environment.

4.1. Output Uncertainty Estimation

This example shows the shaping of the enhanced
output f∗ and the corresponding output trust level
ϑy of a module with two inputs for varying in-
put trust levels ϑx. The module used here is
a zero-order Takagi-Sugeno-Fuzzy-System (TSFS)

−1
0

1

−1
0

1
−1

0

1

x
2

Output Value

x
1

a)

−1
0

1

−1
0

1
0

1

x
2

x
1

Trust Value

−1
0

1

−1
0

1
−1

0

1

x
2

x
1

b)

−1
0

1

−1
0

1
0

1

x
2

x
1

−1
0

1

−1
0

1
−1

0

1

x
2

x
1

c)

−1
0

1

−1
0

1
0

1

x
2

x
1

−1
0

1

−1
0

1
−1

0

1

x
2

x
1

d)

−1
0

1

−1
0

1
0

1

x
2

x
1

Figure 1: Functional behaviour (left) of an extended
module with two inputs (x1, x2) for different values
of the trust signal ϑx2 = {1, 2/3, 1/3, 0} (for a), b),
c) and d)) of the second input x2 and the corre-
sponding output trust ϑy (right).

with sum-prod inference and triangular membership
functions. As this TSFS is LIP with separable base
functions, we can apply the linear blending strategy
with the mean value design pattern and analyse its
behaviour.

The TSFS consists of a 11 × 11 grid of equally
spaced membership functions over the square
[−1, 1]2 and its conclusions are set according to the
nonlinear function

f(x1, x2) = sin(π/2x1) exp(−πx2
2). (11)

For clarity reasons, only the trustworthiness of
input x2 is varied, i.e. the trust-signal ϑx2 , for oth-
erwise fixed parameters.

4.1.1. Experimental Results

Fig. 1 shows the shape of the enhanced output f∗
(left) and its respective output trust level ϑy (right)
for different degrees of uncertainty of input x2, i.e.
for different values of the input trust level ϑx2 . From

158



top to bottom the trust level ϑx2 drops from one to
zero in steps of thirds. The sequence in the left col-
umn shows that the output f∗ gets flattened along
the input x2 for a decreasing trust level ϑx2 . Thus
the output f∗ depends the less on the input x2 the
less the trust level ϑx2 gets and becomes completely
independent of the input x2 in the extreme case of
a vanishing trust level ϑx2 . So even for garbage on
this input, the output is well defined by changing
the functional behaviour, see Fig. 1 d) (left).
The corresponding sequence of the output trust

levels ϑy in the right column shows a remarkable
behaviour depending on the input trust level ϑx2 .
The output trust level ϑy only shapes along the in-
put dimension x1 and is flat, i.e. constant, along the
input dimension x2. Thus, it is sufficient to focus
on the behaviour of the output trust level ϑy along
the input x1. In normal operation, i.e. ϑx2 = 1,
the output is always certain (Fig. 1 top). At an in-
put value of x1 = 0 the output trust level ϑy equals
one independently of the input trust level ϑx2 . For
any other input value of x1 the output trust level
ϑy gets the lower the lower the input trust level ϑx2

becomes. At the boundary, i.e. for input values
x1 = −1 or x1 = 1, the output trust level even
drops to a value of ϑy = 0 for a vanishing input
trust level ϑx2 .
This behaviour of the output trust level ϑy di-

rectly reflects the behaviour of the enhanced output
f∗ as it measures the impact of the flattening in f∗
due to uncertain inputs. The more the output of
the underlying function f is structured along an un-
certain input dimension, the more uncertain is the
output in such a case and the greater is the impact
of the flattening along this input dimension. On the
other hand, if the flattening in some case does not
change the shape of the output at all, there is no
reason to decrease the output trust level ϑy as the
output is independent of the uncertain input.

4.2. Robustification by Uncertainty
Treatment

This second example illustrates the robustification
of a processing module due to explicit uncertainty
treatment in an artificial test environment by com-
paring the performance of an enhanced module and
a non-enhanced module. As a source of input un-
certainty two different error models are evaluated
separately, a local one and a global one.
The Local Error Model (LEM) refers to effects

like noise. It forms the disturbed input xLEM by
adding bounded white noise to the true input point
x, i.e.

xLEM ∼ x+ U(−η, η). (12)

The Global Error Model (GEM) refers to effects
like outliers. The disturbed input xGEM is formed
by randomly replacing the true input point x by a
point draw according to a equally distributed ran-

dom variable over the domain of x, i.e.

xGEM ∼ (1− r) · x+ r · U(−1, 1), (13)

with r ∼ B(1, ρ). In order to be able to gradually
steer the impact of these error models the bounds
η ∈ [0, 2] of the additive noise and the fraction of
replacements ρ ∈ [0, 1] are varied for the local and
the global error model, respectively.

For both error models the experiments are de-
signed to also cover the extreme cases of maximal
uncertainty about the input in order to test the
limits of the proposed approach. Although these
extreme cases are of little practical relevance, they
essentially show the inherent properties of the pro-
posed approach. The robustification against these
uncertainties is founded on models that use only
general prior knowlegde about the design parame-
ters η and ρ to determine the trust levels for the lo-
cal error model ϑx,LEM = 1−0.25η2 and the global
error model ϑx,GEM = 1− ρ.

The performance is measured by the Root Mean
Squared Error (RMSE) between the evaluations
of the undisturbed input and disturbed input, see
equation (14).

RMSE =
√∑

x∈X

(f(x)− f(xLEM,GEM ))2 (14)

The set of test inputs X for the RMSE calculation
contains 1000 samples that are drawn according to
a uniform distribution over the domain of x. Due to
the stochastic nature of the underlying data for the
RMSE calculation, these calculations are repeated
1000 times and are reported via the minimal, mean
and maximal value of these 1000 repetitions.

As the robustification via the linear blending
strategy treats each input dimension separately, it
is sufficient to look at a 1-dimensional example to
highlight the properties of the proposed approach
as the effect of the enhancement works equally and
independently for every input dimension. The in-
sights of the 1-dimensional case can directly be
adopted to the multi-dimensional case of arbitrary
combinations of uncertain inputs. Thus, the tested
module is realized using a TSFS with N = 11
equally space membership functions on the domain
of x, i.e. [−1, 1] and its conclusions are set up ac-
cording to the nonlinear test function

y(x) = sin (0.5πx− 0.25π) . (15)

4.2.1. Experimental Results

The results of this experiment are shown in Fig.
2 for different impact parameters η and ρ, respec-
tively. For both error models the RMSE gets the
higher the higher the impact of the error model
gets despite the enhancement, but the RMSE with
enhancement grows more slowly. At small impact
parameters (η < 0.5, ρ < 0.25) no or only little per-
formance gain is achieved due to enhancement. A

159



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

η

R
M

S
E

 L
E

M

 

 

non−enhanced
enhanced

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

R
M

S
E

 G
E

M

 

 

non−enhanced
enhanced

Figure 2: Performance evaluation results of a mod-
ule for an uncertain input that is disturbed by a lo-
cal error model (top) and global error model (bot-
tom). For comparison the RMSE is plotted with
(solid line) and without (dashed line) uncertainty
treatment. The error bars indicate the spread of
the performance by showing the minimal and max-
imal performance values.

remarkable difference in the performance shows up
only at high impact parameters (η > 1, ρ > 0.5).
Here the RMSE without enhancement grows nearly
linearly with an increasing impact factor. With en-
hancement the performance loss is much lower and
the RMSE of the global error model even clearly
saturates to a worst case performance. The RMSE
of this worst case performance is identical for both
error models as both trust levels drop to zero in the
extreme case of maximum uncertainty.
As the trust signals modeling the uncertainty here

only apply coarse general prior knowledge about the
strength of the uncertainty, the performance may be
increased by further fine-tuning. Nevertheless, the
worst case performance of the enhanced module is
not worse than the performance for ϑx = 0, whereas
it may get totally random in the non-enhanced case
in the sense of garbage in - garbage out.

5. Discussion

These first illustrative investigations on dealing
with the input uncertainty show that the proposed
robustification technique is able to increase the av-
erage performance of the module by using quali-
tative general prior knowledge only. So the mod-
ule itself becomes more robust in its behaviour by
modelling the uncertainty by trust signals depend-
ing on the data at hand, but also depending on the

functional behaviour at the current working point
as well. The latter point is especially important for
self-optimizing systems in that it leads to the best
possible performance at any time.

The linear blending strategy investigated here
allows for a very efficient fine-grained imple-
mentation concerning the robustification for LIP-
approximators. Along with the output uncertainty
estimation it also produces only a moderate com-
putational effort for separable LIP-approximators.
Both is important for self-optimizing systems as
the functional behaviour is dynamically changing at
run-time. For other classes of approximators, espe-
cially if they are not separable, the computational
demands may be higher.

The great merit of the output uncertainty esti-
mation is the involvement of the actual behaviour
of each model. Thus, every model can always reli-
ably reflect whether an uncertain input is relevant
or irrelevant for the calculation of the output and
whether there is a spread of uncertainty or a re-
duction of uncertainty. This is especially impor-
tant for self-optimising modules that change their
behaviour over time, as the relevance of different
inputs for the output changes dynamically. So the
output uncertainty estimation really enables a re-
liable and system wide dynamic uncertainty treat-
ment when uncertainty measures are propagated.
In this way, the system may even recover dynam-
ically from a low trust level in an early process-
ing stage to a higher trust level in later processing
stages as the attributed signal gets (dynamically)
less relevant. This allows the subsequent modules
to go for their optimal behaviour. Nevertheless, a
robust system behaviour is still always ensured by
the UTS that is smoothly blended to by decreasing
trust levels.

Another key feature of the presented add-on is its
statelessness, i.e. the absence of internal memory.
Thus, only the current input values and trust sig-
nals are processed to form the output of the module
and to calculate the corresponding uncertainty es-
timate of the output. This is very powerful since
any signal can instantaneously be discarded from
processing or recovered to in a gradual way without
much computational and design efforts.

6. Conclusion

This paper focused on an integral, lightweight so-
lution for the conflicting design goals of a robust
treatment of uncertain inputs versus optimal and
dynamic behaviour of self-optimizing systems. It
presented a general framework for algorithmic add-
ons to function approximators to make them ro-
bust against uncertain inputs by limiting the in-
fluence of uncertainties onto the output. It also
allows to dynamically estimate the uncertainty of
the outcome. By a proper selection of the blending
function, different strategies to deal with and to re-

160



duce the impact of uncertainties can be established.
In this paper the design pattern of linear blending
to the mean value was introduced and its proper-
ties were investigated exemplarily for a TS-fuzzy
system as a widely used representant for the class
of LIP-approximators. The investigations showed
that trust signals as a scalar attribute are sufficient
to represent and tackle uncertainties. Furthermore,
the robustification by our proposed strategy is able
to ensure a robust module performance for differ-
ent sources and degrees of uncertainties by applying
only very general prior knowledge about the uncer-
tainties at design-time. Even for a totally uncertain
input, a clearly determined behaviour is achieved
which adapts optimally to the current working point
at run-time.
For LIP-approximators, the presented approach

keeps the computational complexity in O(n2) both
for incorporating input uncertainties as well as for
the output uncertainty estimation. The overall
additional computational demand for this add-on
is thus comparatively low. It is also independent
of the actual strategy the designer chooses for the
uncertainty treatment strategy. This strategy is
established solely by setting the parameters ci,j

according to a global design pattern and keeps
also the specific design effort low. Future work
hence will address further design patterns for other
uncertainty treatment strategies.

References

[1] Iso/iec guide 98-3:2008, uncertainty of mea-
surement – part 3: Guide to the expression of
uncertainty in measurement (gum:1995).

[2] Michael Grabe. Generalized Gaussian Error
Calculus. Springer, 2010.

[3] Rick Durrett. Probability: theory and exam-
ples. Cambridge university press, 2010.

[4] George Klir and Bo Yuan. Fuzzy sets and fuzzy
logic, volume 4. Prentice Hall New Jersey, 1995.

[5] W. Brockmann, A. Buschermöhle, J. Hüls-
mann, and N. Rosemann. Trust management
— handling uncertainties in embedded sys-
tems. In Ch. Müller-Schloer, H. Schmeck,
T. Ungerer (eds.): Organic Computing - A
Paradigm Shift for Complex Systems, vol-
ume 1, pages 589–591. Springer, 2011.

[6] Kenneth Kunen. Set theory. College Publ.,
2011.

[7] Ramon E Moore and RE Moore. Methods
and applications of interval analysis, volume 2.
SIAM, 1979.

[8] A. Dempster and G. Shafer. A Mathemati-
cal Theory of Evidence. Princeton University
Press, NJ, 1976.

[9] S. Thrun, W. Burgard, and D. Fox. Proba-
bilistic Robotics (Intelligent Robotics and Au-

tonomous Agents). The MIT Press, September
2005.

[10] J. Albiez, T. Luksch, K. Berns, and R. Dill-
mann. An activation-based behavior control
architecture for walking machines. The Int.
Journal of Robotics Research, 22(3-4):203–211,
2003.

[11] C. Ferrell. Failure recognition and fault toler-
ance of an autonomous robot. Adaptive Behav-
ior, 2(4):375–398, 1994.

[12] W. Brockmann, E. Maehle, K. Grosspietsch,
N. Rosemann, and B. Jakimovski. ORCA: An
Organic Robot Control Architecture, volume 1,
pages 385–398. Springer, 2011.

[13] W. Brockmann, A. Buschermöhle, and J. Hüls-
mann. A generic concept to increase the ro-
bustness of embedded systems by trust man-
agement. In Proc. IEEE Int. Conf. on Systems
Man and Cybernetics (SMC), pages 2037–2044.
IEEE Press, 2010.

[14] P. Liu, E. El-Darzi, L. Lei, C. Vasilakis,
P. Chountas, and W. Huang. An analysis of
missing data treatment methods and their ap-
plication to health care dataset. In Advanced
Data Mining and Applications, pages 583–590.
Springer, 2005.

[15] P. J García-Laencina, J.-L. Sancho-Gómez,
and A.R. Figueiras-Vidal. Pattern classifica-
tion with missing data: A review. Neural Com-
puting and Applications, 19(2):263–282, 2010.

[16] X. Yan, H. Xie, and T. Wang. Using mvpca:
An uncertain sensor data estimation method.
Journal of Computational Information Sys-
tems, 8(10):4185–4192, 2012.

[17] H. Mohammed, N. Stepenosky, and R. Polikar.
An ensemble technique to handle missing data
from sensors. In IEEE Sens Appl Symp, Hous-
ton, Texas, USA, pages 101–105, 2006.

[18] Zian Wang and Fernando L Alvarado. Interval
arithmetic in power flow analysis. IEEE Trans.
Power Systems, 7(3):1341–1349, 1992.

[19] S. K. Michael Wong, LS Wang, and YY Yao.
Interval structure: A framework for represent-
ing uncertain information. In Proc. 8th Int.
Conf. on Uncertainty in Artificial Intelligence,
pages 336–343. Morgan Kaufmann Publishers
Inc., 1992.

[20] Ivan Hlaváček. Uncertain input data problems
and the worst scenario method. Applications
of Mathematics, 52(3):187–196, 2007.

[21] Y.-M. Wang, J.-B. Yang, D.-L. Xu, and K.-S.
Chin. On the combination and normalization of
interval-valued belief structures. Information
Sciences, 177(5):1230–1247, 2007.

[22] G. Nassreddine, F. Abdallah, and T. Denoux.
State estimation using interval analysis and
belief-function theory: Application to dynamic
vehicle localization. IEEE Trans. Systems,
Man, and Cybernetics, Part B: Cybernetics,
40(5):1205–1218, 2010.

161




