
Interpretability improvement of fuzzy
rule-based classifiers via rule compression

Andri Riid1 Jürgo-Sören Preden2

1 Laboratory for Proactive Technologies, Tallinn University of Technology Ehitajate tee 5, Tallinn 19086,
Estonia, Email: andri.riid@ttu.ee

2 Laboratory for Proactive Technologies, Tallinn University of Technology Ehitajate tee 5, Tallinn 19086,
Estonia, Email: jurgo.preden@ttu.ee

Abstract

Rule-level feature selection, also termed as rule com-
pression, is an important technique for improving
interpretability of fuzzy rule-based classifiers. In
this paper we present three different rule compres-
sion algorithms and analyze their performance and
characteristics on the classifiers identified from well-
known classification benchmarks, namely the Iris,
Wine and two versions of Wisconsin Breast Can-
cer data sets. Our study shows that the classifiers,
in which the overlap between either the rules rep-
resenting different classes or all rules is eliminated,
can be usually compressed at a higher rate and that
the interpretation of such classifiers is more insight-
ful.

Keywords: Rule-based classification, feature selec-
tion, interpretability

1. Introduction

In last two decades, fuzzy rule based classifiers have
earned substantial recognition because of their abil-
ity to explain the reasoning that lies behind assign-
ing an object into any given class. However, in-
tepretability is not a default property of fuzzy sys-
tems and over a decade or so, considerable effort has
been made to find out what comprises interpretabil-
ity of fuzzy systems and how to preserve it [2].

Interpretability of fuzzy systems is divided into
low-level and high-level interpretability [14] Low-
level interpretability can be tracked down to fuzzy
set and partition properties such as normality, con-
tinuity, convexity, coverage, distinguishability, com-
plementarity, partition cardinality, etc. and is usu-
ally achieved by imposing constraints on member-
ship function (MF)/partition parameters. High-
level interpretability, on the other hand, is associ-
ated with rule base properties such as the number
of features, number of rules, number of conditions,
consistency of the rule base, etc. and is generally
obtained by complexity reduction.

Today, the weapon of choice for obtaining inter-
pretable fuzzy systems seems to be multi-objective
evolutionary optimization [2,4,5] where one or sev-
eral interpretability measures plus a measure of ac-
curacy are included in the optimization criterion to

strike a good balance between accuracy and inter-
pretability (not a trivial task because of the well-
known interpretability-accuracy tradeoff).

The described concept of interpretability leads to
a partition-driven interpretation of fuzzy systems -
one can view the partitions of input variables com-
posed of fuzzy sets that are labelled by linguistic
labels setting a global semantics and read the IF-
THEN rules that describe the relationships between
these labels quite like the sentences in everyday hu-
man language.

However, the number of rules in a fuzzy system
grows exponentially as the number of variables in-
creases (curse of dimensionality) and low granular-
ity of input partitions is often a necessity that re-
sults in a limited understanding of the modelled
phenomenon. This particularly concerns classifi-
cation applications where we typically deal with a
large number of features.

On the other hand, it has been shown that when
implemented with the most common single-winner
method, classification rules do not cooperate in pro-
ducing the output for the fuzzy system but compete
with each other [8], which has lead to the suggestion
that low-level interpretability is not so important
for classification systems [9] - this applies most no-
tably for such partition properties as distinguisha-
bility and complementarity. It then allows one to
create the rules directly in product space that helps
to cope with the curse of dimensionality [7] (the
number of rules is relatively low and does not de-
pend on the number of features). This, however,
comes at the cost of loss of global semantics, mak-
ing it impossible to use meaningful linguistic labels
for fuzzy sets and invalidates the partition-driven
interpretation – therefore one has to revert to the
rule-driven interpretation of a fuzzy system [10].

In the context of the latter, interpretability im-
provement is a matter of finding a small number of
concise fuzzy rules (not too spread out in product
space) with a limited number of conditions [9]. The
degree at which the rules in a classifier overlap is
also an important factor that influences how under-
standable the rules of the system can be [10].

Depending on the type of rule overlap, rule-based
classifiers can be divided into three categories:

1. Classifiers in which the rule overlap is not reg-

16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

© 2015. The authors - Published by Atlantis Press 162

ulated at all (type 0 overlap control);
2. Classifiers in which the overlap between the

rules that represent different classes is not per-
mitted (type 1 overlap control);

3. Classifiers in which no rules overlap (type 2
overlap control).

In general, fuzzy rule-based classification is a prime
example of the first approach. It takes advantage
of the rule overlap that provides oblique decision
boundaries that allows one to get high classification
accuracy even with a small number of rules. The
shape of the boundary mostly depends on the place-
ment of overlapping rules in respect to each other.
The main effort in this line of research therefore
boils down to the optimization of MF parameters
so as to improve classification accuracy.

Perhaps the best known representative of the sec-
ond approach are the fuzzy min-max networks [11]
that allow one to obtain fuzzy classifiers with more
concise, well separated rules that can be more easily
interpreted. However, higher level of granularity is
usually required to achieve the same level of accu-
racy than in decision boundary optimization.

The third approach is represented by (non-fuzzy)
classification trees (C4.5, CART etc.) that can be
presented in rule-based format [3] with even higher
level of granulation.

In this context, we focus on the part of complexity
reduction/interpretability improvement that aims
at reducing the number of conditions in classifica-
tion rules (rule compression) and considers all three
types of classification systems that are obtained by
applying the algorithms described in Sections 2 and
3). The goal of rule compression is to detect the
redundant conditions that can be removed from the
rules without accuracy loss. We have developed
three rule compression algorithms (Section 4) that
exhibit slightly different characteristics, which are
analyzed in more detail in Section 5.

Note that we employ full benchmark data sets
and identify the classifiers that are 100% accurate
before and after compression. This is deliberate for
two reasons. First, we want to compare the consid-
ered compression methods on equal grounds - us-
ing the same and as complete as possible data sets.
Our second goal is to emphasize the ability of com-
pressed classifiers to explain the class distributions
in a comprehensible manner (see Section 5), which,
again, makes more sense on full data sets with no
misclassified samples.

2. Preliminary classifiers

A fuzzy classifier is a fuzzy rule-based system that
utilizes fuzziness only in its reasoning mechanism
and groups the examples presented to it into a small
number of distinct classes that are labelled with dis-
crete values (1, 2, ..., T) where T is the number of
classes. Note that the actual numerical value as-
signed to a class is irrelevant, it just functions as

a label. A fuzzy classifier consists of rules in the
following format

IF x1 is A1r AND x2 is A2r AND ... AND
xN is ANr THEN y belongs to class cr

(1)

where cr is a class assigned to the r-th rule (cr ∈
{1, ..., T}) and Air denote the linguistic labels of
the i-th feature associated with the r-th rule (i =
1, ..., N).

Each Air has its representation in the numerical
domain - a typically normal and convex membership
function µir such as a triangular MF determined by
three parameters air, bir and cir:

µir(xi) =


xi−air

bir−air
, air < xi < bir

cir−xi

cir−bir
, bir ≤ xi < cir

0, otherwise
, (2)

The reasoning mechanism of a fuzzy rule-based
classifier is usually implemented by the single win-
ner approach that selects the class label cr, asso-
ciated with the rule that provides the highest rule
activation degree (τr) for the given set of feature
values xi

y = cr, arg max
1≤r≤R

(τr), (3)

where

τr =
N∩

i=1
µir(xi), (4)

where ∩N
i is the conjunction operator correspond-

ing to the linguistic operator AND (most often a
minimum or product operator) that has a marked
effect on how the decision boundary is drawn be-
tween highly overlapping rules. In present paper
we apply product implication that yields smoother
decision boundaries [9].

The goal in fuzzy rule-based classification is to ob-
tain the maximum possible classification accuracy
with as simple classifier as possible. Classification
accuracy that a data driven fuzzy rule-based classi-
fier is able to achieve first and foremost depends on
the properties of the data set. A class that is sep-
arated from other classes in product space is easy
to classify correctly whereas high overlap of classes
can make it very difficult to obtain a rule placement
that would result in an accurate classifier and typ-
ically, such class distributions need to be modeled
with increased level of granularity. For this purpose
we employ the algorithms of rule granulation and
consolidation [10] to obtain the zero-error classifiers
on which to verify the performance of compression
methods described in Section 4.

The classifiers of considered data sets are initial-
ized as minimal rule classifiers (MRC) that specify
only one rule for each class. To obtain these, the
training data set is divided into T subsets so that
each subset Sr contains only the samples belonging
to one of T classes.

Given a subset of data Sr that contains Kr ob-
servations and its mean mr = (m1r, m2r, ..., mNr)

163

that is the geometric centroid of the data points in
Sr

mr =
∑

k∈Sr

xk/Kr, (5)

the MFs µir of form (2) are created in all dimen-
sions i. Given a predefined value of α < 1, the MF
parameters air, bir, cir are obtained as follows. For
each i

air =
min

k∈Sr

(xi(k))−α·mir

1−α ,

bir = mir,

cir =
max
k∈Sr

(xi(k))−α·mir

1−α .

(6)

Following this a rule of format (1) is constructed.
Note that what we described here is a general sub-
set modeled rule generation/modification procedure
used as well at the later stages of the algorithm.

Also note that as the rules of a MRC are usually
overlapping, rule competition steps in and as a re-
sult a number of samples are redistributed among
the rules ending up as misclassified samples. The
number of misclassified samples in a r-th rule is de-
noted by ηr and called local error. The global error
(η) is given by

η =
R∑

r=1
ηr. (7)

Classification error reduction via rule granulation
is carried out by a sequence of rule splits so that
at each iteration a parent rule is selected and split
into two offspring rules. The offspring rules replace
the parent rule, which means that at each iteration
the number of classification rules increases by one.
Usually there is a number of choices on which parent
rule to pick and how to make the split. The first
choice for the parent rule is a rule p with the highest
local error

p = r, arg max
1≤r≤R

(ηr). (8)

If there are several rules with the same local error,
we simply choose the one with the highest Kr of
those.

The rule splitting cut can be made around each
erroneous sample under the parent rule. At given
iteration, a single cut is allowed at one of N coor-
dinates, thus the overall number of potential rule
splits at the iteration equals N × ηp.

A cut divides the Kp samples of the parent rule
into two subsets So and Sq that form the basis of
two offspring rules, Ro and Rq. Note that the er-
roneous sample is always sided with the offspring
rule that contains less samples. Of available cuts
the one that results in the best performing classifier
(yielding the smallest η) is selected. It is possible
that there are several cuts that result in classifiers
with the same number of erroneous samples. In this
case we choose the cut that has the minimal value
of max(ηo, ηq) - generally this leads to faster con-
vergence. If this still leaves us several equally good
candidates, we choose the cut that has the smallest

value of min(Ko, Kq). The granulation continues
until η reaches zero.

This procedure, however, usually creates too
many rules the number of which can be substan-
tially reduced by rule base consolidation [10]. Dur-
ing the consolidation, weaker rules (governing few
samples) are constantly losing their samples to
stronger rules (those governing many samples) and
as a natural result, many of the weaker rules become
obsolete.

The rules are ranked by their strength (the num-
ber of samples they govern) in ascending order
p ∈ {1, ..., R}. The process starts from the lowest
ranked rule (p = 1).

1. pick a rule Rr with the rank p
2. pick k-th sample (k = 1, ..., Kr) from the subset

Sr governed by rule Rr.
3. transfer this sample from Sr to the subset

Sq corresponding to Rq, the next rule in the
ranking that matches the class of the sample
(cq = yk).

4. update the MFs of both Rr and Rq on the basis
of modified subsets Sr and Sq, respectively.

First, prior to accepting the transfer, we need to ver-
ify that there is no accuracy loss. Secondly, depend-
ing on in what form the overlap control is applied,
we need to verify that the consolidated rule (Rq) is
not overlapping with any other non-singleton rules
(type 2 overlap control), just the non-singleton rules
that represent classes other than cr (type 1 overlap
control) or skip this step of verification (type 0 over-
lap control).

There are a number of different scenarios on what
to do next.

• if the transfer is accepted and k < Kr, incre-
ment k (select the next sample from Sr). If
k, however, already equals Kr, delete rule Rr

along with associated MFs, update the ranking,
increment p and go back to step 1.

• if the transfer is rejected, first discard the
changes to the MFs of Rr and Rq, pick the
next matching rule from the ranking and go
back to step 3. If we already have reached the
last matching rule in the ranking, select the
next sample from subset Sr (increment k) and
go to step 2. If k already equals Kr as well,
increment p and return to step 1.

The process comes to a natural end when we have
reached the last rule in the ranking (p = R) and
can then be repeated by returning to the first rule
in the ranking until the consolidation stabilizes (i.e.
there are no more accepted transfers).

Table 1 shows the number of rules after the rule
splits (R0) and after consolidation (R0

c) of zero-error
classifiers of type 0 overlap identified from bench-
mark data sets, the value of parameter α and num-
ber of samples in these data sets (K).

164

data set N T K α R0 R0
c

Iris [6] 4 3 150 0.05 10 7
Wine [1] 13 3 178 0.005 6 4

WDBC [12] 30 2 569 0.005 23 9
WBC [13] 9 2 683 0.05 39 13

Table 1: The data sets (the number of features (N),
classes (T) and samples (K)) and the number of
rules in corresponding classifiers with overlapping
rules before and after consolidation (R0 and R0

c , re-
spectively).

3. Elimination of rule overlap

In general, after error-reducing rule splits we ob-
tain a classifier with overlapping rules. This is true
for all considered classifiers in Table 1 even before
the application of the overlap-ignorant consolida-
tion. To remove the overlap, the procedure intro-
duced in current section is applied.

Note that two rules Rp and Rq are not overlapping
if there exists at least one feature i ∈ {1, ..., N} for
which the corresponding MFs µip and µiq do not
intersect, i.e. either cip < aiq or aip > ciq is true.
To obtain a classifier with non-overlapping rules we
need to identify the existing overlap situations and
eliminate the overlap.

If two rules Rp and Rq overlap in N -dimensional
space, there exist the samples for which both τp > 0
and τq > 0 are true. In order to get rid of the
overlap we need to shrink one or both of the in-
volved rules and release the samples located in the
original overlap area. This can be done iteratively.
The question is, which rule to pick for correction,
in which dimension to shrink it and in what order
to pick the samples to be released.

For this purpose, we identify the subsets of sam-
ples Zip ⊂ Sp and Ziq ⊂ Sq that are located be-
tween the overlap margins xl

i and xr
i for each i

Zip = {xik|k ∈ Sp, xik ≥ xl
i, xik ≤ xr

i }
Ziq = {xik|k ∈ Sq, xik ≥ xl

i, xik ≤ xr
i } (9)

Note that if µip is at the left from µiq then the
margins are xl

i = aiq and xr
i = cip, while in the

opposite case, margins would be xl
i = aip and xr

i =
ciq (for the special occasion where one of MFs is
inside another, the margins are the edge parameters
of the “embedded” MF).

We pick the rule and the dimension/feature ac-
cording to the cardinality of subset Zir

arg min
1≤i≤N,r∈[p,q]

|Zir|. (10)

Having identified the dimension i and the rule (p or
q), the next step is to exclude the sample from the
subset Sr corresponding to the picked rule which
has the minimum value of µir and appoint it to a
newly created singleton rule (Figure 1). This is car-
ried out until the current overlap situation has been

xa

xb

Rp

Rq RsRq
’

Figure 1: Initial rules Rp and Rq (depicted by dot-
ted line) are substantially overlapping. After ap-
pointing the sample at the right to a singleton rule
Rs, Rq is shrunk into R′

q which solves the original
overlap situation.

data set
overlap control type

1 2
R1 R1

c R2 R2
c

Iris 9 7 7 7
Wine 17 10 10 10

WDBC 49 20 43 25
WBC 33 20 27 22

Table 2: The number of rules in classifiers with dif-
ferent kind of overlap removal before and after con-
solidation (R1, R1

c and R2, R2
c , respectively). Note

that for Iris and Wine data sets, the overlap-free
classifiers were obtained after resolving the type 1
overlap situations.

eliminated, after what the next similar situation can
be handled.

Overlap elimination usually creates a number of
singleton rules, most of which, however, can be
consolidated with existing stronger rules with the
consolidation algorithm. Table 2 shows the over-
lap elimination and subsequent consolidation results
in terms of number of rules for benchmark data
sets. Note that overlap control of type 1 means
that only the overlap situations involving different
class rules were resolved, whereas overlap control of
type 2 means that all rules in these classifiers are
ultimately separated from each other.

4. Rule compression

Rule compression can be considered a special
method of feature selection that is implemented as
an iterative procedure based on trial and error in
which we remove the features/conditions from the
rules that do not affect accuracy of the classifier
and overlap of the rules (actual features that can
be removed vary from rule to rule). This can be ac-

165

complished in several ways and we have developed
three such algorithms (of which first two ignore the
aspect of overlap) presented in the following subsec-
tions.

4.1. Naive compression algorithm

This algorithm is based on simple trial and error
and is described as follows:

1. pick the rule Rr (r = 1, ..., R)
2. rank the antecedents i = 1, ..., N by MF spread

(cir −air), in descending order (by this the fea-
tures in which the subset of samples governed
by r-th rule is less compact, are removed first)

3. discard the conditions applied to the an-
tecedents one by one, in the order of ranking,
cancelling those removals on the run that would
result in loss of accuracy.

4.2. Template based compression

The template based compression, although also
based on trial and error, is more sophisticated and
can discard several features simultaneously whereas
compressions at higher rates are prioritized higher.

1. pick the number of features in the template M
(M = 1, ..., N − 1)

2. pick rule Rr (r = 1, ..., R)
• make a list all possible unique combina-

tions of M variables (the total number of
these amounts to Nc = N !/(M !(N−M)!))
that serve as compression templates, so to
speak

Next we cycle through these Nc items in the list
starting from the first one. At each iteration:

• compress Rr according to the picked compres-
sion template

• compute the classification error of the resulting
classifier

– if there is no accuracy loss - increment r
and go back to step 2 which means that
the compression is accepted.

– if accuracy loss is detected and we have
not yet reached the end of the template
list - restore original Rr and pick the next
compression template from the list.

– if accuracy loss is detected and and we
have reached the end of the list - restore
original Rr, increment r and return to step
2.

Following this, increment M (meaning that all
subsequent compressions will be done at lower com-
pression rate) and start from step 1 again (for
already compressed rules further compression, of
course, is no longer applied). The process ends when
we have managed to compress all rules.

R1 R2 R3 R6
R1 ∅ {3,4} {1,3,4} {3,4}
R2 {3,4} ∅ {3} {4}
R3 {1,3,4} {3} ∅ {4}
R6 {3,4} {4} {4} ∅

Table 3: The rule compression look-up table for Iris
classifier

The main shortcoming of the method is its com-
putational cost because the list of possible combi-
nations grows exponentially as the number of fea-
tures increases (e.g. for a 20-feature classification
problem there would be 184756 different 10-feature
templates alone) and is a practical approach only if
the compressions are made in the very beginning of
the process (at high compression rates).

4.3. Analytical compression algorithm

This algorithm is applicable only to the classifiers to
which overlap control of type 1 or type 2 has been
applied.

In first stage of the algorithm non-singleton rules
are compressed. For this purpose a look-up table
is constructed in which each entry in the given row
contains the set of features in which the MFs of
the given rule do not intersect with MFs of the rule
determined by the column. The entries in the main
diagonal are always empty sets and are ignored.

The compression is based on the analysis of the
table. When attempting to compress a rule cor-
responding to a given row, a feature that is most
frequently represented in the entries of the row is
picked first and all the entries it was found at are
excluded from the further analysis of the rule. Next
we pick the feature that is most frequently repre-
sented in the remaining entries and exclude corre-
sponding entries. In the end of processing this row
there are no more entries left and the rule can be
compressed into the picked features.

Consider, for example, the look-up table con-
structed for the four non-singleton rules of the Iris
data classifier (Table 3). It appears from the table
that R1 can be compressed into feature 3 (or 4) be-
cause those are represented in all entries of first row;
R2 can be compressed into features 3 and 4 because
either 3 or 4 is always present in row 2 entries. R3
will be compressed into features 3 and 4 and R6 into
feature 4 for now obvious reasons (Figure 2). Fea-
tures 3 and 4 (petal width and length) are indeed
relevant because Iris classes are poorly separated in
features 1 and 2.

In the case where overlap of same class rules is
permitted, the entries in the table corresponding to
same-class overlap are neglected from the analysis
just like the entries in the main diagonal. In cur-
rent example, R3 and R6 both represent class 3 and
if their separation is not necessary, the last entry in
the 3rd row of Table 3 is not taken into account,

166

2 4 6

R1:

0.5 1 1.5 2 2.5

class 1
50 samples
0 errors

2 4 6

R2:

0.5 1 1.5 2 2.5

class 2
47 samples
0 errors

2 4 6

R3:

0.5 1 1.5 2 2.5

class 3
4 samples
0 errors

2 4 6
feature 3

R6:

0.5 1 1.5 2 2.5
feature 4

class 3
46 samples
0 errors

Figure 2: Compressed non-singleton rules of Iris
data classifier. The compressed features in rules 1
and 6 are drawn in grey color.

which permits us to compress R3 into a single fea-
ture (feature 3). The third entry in the last row is
simlarly ignored.

The compression of singleton rules is done sep-
arately and is (similarly to the naive compression
method) based on pure trial and error

1. pick a singleton rule Rp

2. determine the subset of samples Sp governed by
the p-th rule (Sp, of course, consists of a single
sample)

3. remove the antecedents one by one, cancelling
those removals on the run that would increase
the number of samples in the subset Sp.

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

feature no. 3

fe
at

ur
e

no
. 4

R1

R2

R6

R3

Figure 3: The scatterplot of Iris classifier rules. The
three Iris classes are: + - Iris setosa, • - Iris versi-
color, x - Iris virginica

In Figure 3 that depicts all rules of the classifier in
the most relevant features we can spot three major
rules describing majority of samples belonging to
each of three classes. In addition, there is one minor
rule (R3) that describes four class 3 samples that

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

feature no. 3

fe
at

ur
e

no
. 4

R1

R2

R3

R6

Figure 4: Compression with type 1 overlap control
has introduced the overlap between the same class
rules (R3 and R6).

are not compatible with the major rule of the same
class (R6) and three singleton rules R5, R7 (located
inside R6) and R4 (located inside R3) representing
evident outliers.

In Figure 4 that depicts the classifier that has
been compressed with type 1 overlap control, the
only difference in comparison with the classifier in
Figure 3 is the removal of the MF in feature 4 from
R3, which leads to its overlap with R6 and sample
redistribution among these rules (R3 acquires 12 ad-
ditional samples from R6). The high overlap of R3
and R6 makes them virtually indistinguishable from
each other in rule view, which is unfortunate from
the interpretational aspect.

5. Results and discussion

The compression results are given in Table 4, where
classification by a tree (CART) is added for com-
parison (the number of rules in a classifier converted
from a tree is equal to the number of leaf nodes of
the latter, whereas the number of conditions in a
rule is usually smaller than the number of internal
nodes met on the path from the root node to the
leaf node because in a rule, the conditions concern-
ing the same variable can be combined into the very
same condition). The following observations can be
made:

• Template based compression that obtains 12,
13 and 54 conditions for Iris, Wine and WBC
data set classifiers, respectively, has only a
slight advantage over the naive algorithm (re-
spective measures are 14, 16 and 56, see Table
4). It is unable to complete the compression
of the WDBC data classifier in reasonable time
because of the high number of original features.

• The classifiers, in which the overlap control of
either type 1 or type 2 is applied, are com-

167

pressed at a higher rate than classifiers in which
the overlap control is not enforced. This is
clearly evidenced in Table 4 when dividing the
number of conditions with the number of rules.
Moreover, the conditions in those classifiers are
much more evenly distributed over the rules
(some, usually the major rules, are compressed
at a very low compression rate in classifiers in
which the overlap control is not enforced).

• The classifiers with type 1 or type 2 overlap
control have usually considerably more rules
than those classifiers in which overlap control
has not been enforced. The classifiers with type
1 overlap control, however, do not have consid-
erably more rules than the classifiers with type
2 overlap control.

• Compression of overlapping rules generally re-
distributes the samples among the rules.

• The classifiers with type 1 or type 2 overlap
control usually contain a healthy dose of single-
ton rules. These singleton rules may represent
noise or measuring errors and can be conve-
niently isolated from the rest of data this way.

• The classification tree results should be directly
compared the classifiers with type 2 overlap
control. It can be seen that the proposed al-
gorithms yield much more compact classifiers.

10 20 30

R3:

20 30 40 0 0.1 0.2

class 2
301 samples
0 errors

10 20 30

R2:

20 30 40 0 0.1 0.2

class 1
178 samples
0 errors

10 20 30

R8:

20 30 40 0 0.1 0.2

class 2
16 samples
0 errors

10 20 30

R10:

20 30 40 0 0.1 0.2

class 2
16 samples
0 errors

10 20 30
feature 21

R11:

20 30 40
feature 22

0 0.1 0.2
feature 28

class 1
9 samples
0 errors

Figure 6: Five strongest rules of the WDBC data
classifier that cover over 91% of samples.

Let us have a closer look at Wine and WDBC
type 2 overlap classifiers. From Figure 5 it is clear
that class 1 and class 3 wines (in R1 and R4, respec-
tively) can be distinguished from each other by the
value of flavanoids (feature 7). Class 2 wines (R2),
however, have mixed values of flavanoids and there-
fore, to separate class 2 wines from class 3 wines
we need to look at their color intensity (feature 10)
and from class 1 wines at proline values (feature
13). Three minor rules describe the small groups
of wines that do not fit this pattern. For example,
six samples in R3 have too high values of proline
to be distinguished from R1 and use the value of
color intensity instead, whereas in R7 the value of

data set overlap control CART0 1 2
Iris 7/14 7/11 7/12 9/21

Wine 4/16 10/16 10/20 12/43
WDBC 9/93 19/41 22/52 22/103
WBC 13/56 20/44 22/55 32/139

Table 4: Summary of compression results. Each
table entry consists of two numbers separated by
a slash, which stand for the number of rules and
number of conditions in compressed classifiers, re-
spectively.

the latter is too high and feature 3 (ash) is used. In
R8, the color intensity is too low to provide separa-
tion from class 2 wines and the value of flavanoids
is used instead. In addition, there are four single
specimens that do not fit the above reasoning and
are defined using singleton rules.

The WDBC data classifier has even more single-
ton rules (10 of 22). Due to space limitations we
only look at a selection of stronger classifier rules
(Figure 6). First of all, the compression algorithm
has decided that the most relevant features are the
extreme values of cell radius (feature 21), texture
(feature 22) and concave points (feature 28). This
harmonizes well with the claim “the extreme values
are the most intuitively useful for the problem at
hand since only a few malignant cells may occur in
a given sample” [12].

As a rule, the healthy patients are separated from
sick ones by lower values in feature 21. However,
there exist healthy persons that have high values
of that feature (R8 and R10) that are distinguished
from sick persons in features 22 and 28, respectively.
And there are sick persons that have deceptively low
high value of feature 22 but distinguish from healthy
persons by feature 28 (R11).

As those two examples demonstrate, interpreta-
tion of classification rules in which there is no over-
lap, is very intuitive.

6. Conclusions

The interest in interpretable fuzzy classifiers can be
largely credited to our increasing need to under-
stand and reason about data. Present study of rule
compression methods clearly demonstrates that rule
compression can improve interpretability of fuzzy
classifiers to a great extent by bringing our attention
to the features that are crucial in assigning the sam-
ples of the data set to the proper classes. It is partic-
ularly helpful when the number of available features
is high. The study also suggests that the most eas-
ily interpretable fuzzy classifiers are such in which
the overlap between the rules is eliminated. This,
however, is a somewhat inconvenient conclusion be-
cause essentially, such classifiers are no longer fuzzy
classifiers.

168

2 3

R1:

2 4 2 4 6 8 1012 500 10001500

class 1
58 samples
0 errors

2 3

R2:

2 4 2 4 6 8 1012 500 10001500

class 2
62 samples
0 errors

2 3

R3:

2 4 2 4 6 8 1012 500 10001500

class 2
6 samples
0 errors

2 3

R4:

2 4 2 4 6 8 1012 500 10001500

class 3
42 samples
0 errors

2 3

R7:

2 4 2 4 6 8 1012 500 10001500

class 2
2 samples
0 errors

2 3
feature 3

R8:

2 4
feature 7

2 4 6 8 1012
feature 10

500 10001500
feature 13

class 3
4 samples
0 errors

Figure 5: Compressed non-singleton rules of wine data classifier.

References

[1] S. Aeberhard, D. Coomans, and O. de Vel.
Comparative analysis of statistical pattern
recognition methods in high dimensional set-
tings. Pattern Recognition, 27(8):1065–1077,
1994.

[2] J. M. Alonso, C. Castiello, and C. Mencar.
Interpretability of fuzzy systems: Current re-
search trends and prospects. In J. Kacprzyk
and W. Pedrycz, editors, Springer Handbook
of Computational Intelligence, pages 181–199.
Springer-Verlag, Berlin Heidelberg, 2015.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and regression trees.
Wadsworth & Brooks/Cole Advanced Books &
Software, Monterey, 1984.

[4] E. H. Cardenas and H. A. Camargo. Multi-
objective genetic generation of fuzzy classifiers
using the iterative rule learning. In Proceedings
of the IEEE International Conference on Fuzzy
Systems, pages 1–8, Brisbane, Australia, 2012.

[5] M. Fazzolari, R. Alcala, Y. Nojima,
H. Ishibuchi, and F. Herrera. A review
of the application of multiobjective evolu-
tionary fuzzy systems: Current status and
further directions. IEEE Transactions on
Fuzzy Systems, 21(1):45–65, 2013.

[6] R. A. Fisher. The use of multiple measure-
ments in taxonomic problems. Annals of Eu-
genics, 7(2):179–188, 1936.

[7] J. Hühn and E. Hüllermeier. Furia: an algo-
rithm for unordered fuzzy rule induction. Data
Mining and Knowledge Discovery, 19(3):293–
319, 2009.

[8] A. Riid and E. Rüstern. An integrated ap-
proach for the identification of compact, in-
terpretable and accurate fuzzy rule-based clas-

sifiers from data. In Proceedings of the 15th
International Conference on Intelligent Engi-
neering Systems, pages 101–107, Poprad, Slo-
vakia, 2011.

[9] A. Riid and E. Rüstern. Adaptability, inter-
pretability and rule weights in fuzzy rule-based
systems. Information Sciences, 257:301–312,
2014.

[10] A. Riid and M. Sarv. Determination of regional
variants in the versification of Estonian folk-
songs using an interpretable fuzzy rule-based
classifier. In Proceedings of the 8th Confer-
ence of the European Society for Fuzzy Logic
and Technology (EUSFLAT 2013), pages 61–
66, Milan, Italy, 2013.

[11] P. K. Simpson. Fuzzy min-max neural
networks–part 1: Classification. IEEE Trans-
actions on Neural Networks, 3(5):776–786,
1992.

[12] W. N. Street, W. H. Wolberg, and O. L.
Mangasarian. Nuclear feature extraction for
breast tumor diagnosis. In Proceedings of the
IS&T 1993 International Symposium on Elec-
tronic Imaging: Science and Technology, vol-
ume 1905, pages 861–870, San Jose, CA, 1993.

[13] W. H Wolberg and O. L. Mangasarian. Multi-
surface method of pattern separation for med-
ical diagnosis applied to breast cytology. Pro-
ceedings of the National Academy of Sciences,
87:9193–9196, 1990.

[14] S. Zhou and J. Gan. Low-level interpretability
and high-level interpretability: a unified view
of data-driven interpretable fuzzy system mod-
elling. Fuzzy Sets and Systems, 159(23):3091–
3131, 2008.

169

