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Abstract

Soft Computing is being widely used in Information
Security applications. Particularly, Neuro-Fuzzy
approach provides a classification with human-
understandable rules, yet the accuracy may not be
sufficiently high. In this paper we seek for an op-
timal fuzzy patch configuration that uses elliptic
fuzzy patches to automatically extract parameters
for the Mamdami-type rules. We proposed a new
method based on χ2 test of data to estimate ro-
tatable patch configuration together with Gaussian
membership function. This method has been tested
on the automated malware analysis with accuracy
up to 92%. Further on, it can find an application in
Digital Forensics.

Keywords: malware detection, neuro-fuzzy, digital
forensics, optimization

1. Introduction

Malware analysis and detection is an important task
in the domain of Digital Forensics that has become
more demanded with the increased number of com-
mitted cybercrimes. Per today this work is done
mainly manually by analyst that requires reverse
engineering and investigation of system artefacts.
Modern Anti-Virus software include composed mal-
ware signatures that need considerable amount of
time to analyse systems and software artefacts if the
malware is sophisticated. At this point there have
been already used Neuro-Fuzzy (NF) as a Soft Com-
puting method in Digital Forensics that provides in-
exact solutions with possible understandable model
to a human expert. Hybrid Intelligence model such
that NF allows automated analysis of the malware
properties that results in a construction of corre-
sponding decision fuzzy rules. A NF can be con-
structed either as a cooperative or a hybrid model.
Second model incorporates automated tuning of the
fuzzy rules that considered to be more appropriate
in unmanned analysis. In [1] Guillaume studied var-
ious hybrid models stating that NF is one of the
most useful data approximation techniques. It was
mentioned that the research of possible ways of op-
timization is required to deal with a great number
of parameters in the model and preserve the inter-
pretability. This papers is about how the construc-
tion of fuzzy rules can be done using more precise
configuration of elliptic fuzzy patches.

The NF can produce either regression Sugeno-
type or classification Mandami-type rules while
learned. In this work we consider methods that fo-
cus on the Mamdami-type since this model gives
understandable class label (for example, "benign"
or "malicious") and possess a good performance in
solving diverse problems [2]. Fuzzy rules are con-
structed on the predefined set of linguistic terms
in each fuzzy variable. Goztepe in [3] described
an expert system that uses predefined set of attack
techniques as input fuzzy set based on triangular
membership function. In the [4] by Zhang et al di-
agonal Mahalanobis distance was used to measure
the degree of truth of manually constructed links of
behavioural characteristics. In the study [5] Shafiq
described how the Mamdani-type rules can be con-
structed manually, yet not in combination with Ar-
tificial Neural Networks (ANN). Instead the AN-
FIS system was given for malware analysis based on
Sugeno-type fuzzy rules, which is out of our scope.
The publication [6] shows a need for more sophisti-
cated mechanisms to extract and define parameters
of fuzzy sets to improve a classification performance.
Drobics in [7] presented an inductive learning for de-
riving rules from Self-Organizing Map (SOM) with
fixed set of equal fuzzy regions in each set. This way
of fuzzy rules extraction makes it mandatory to ask
for manual input from the field expert as well as
linguistic definition of the regions.

Another challenge that exist is a type of a mem-
bership function (MF) to be used in the 2nd of
the NF method. Kosko [8] at first defined Gaus-
sian MF, yet then converted to triangular MF that
complies with a projection of circumscribed rect-
angular around the elliptic fuzzy patch. Chi in [9]
used combined triangular MF from SOM prototypes
without involving a correlated features transforma-
tion. In the research [10] authors stated and proved
that despite the faster approximation by common
triangular MF in Mamdami-type inference system,
the Gaussian-like methods show good fit and more
stable results. In the work by Wang in 1992 [11]
the Gaussian MF function was used to show how
the Gaussian-like regions can be used to approxi-
mate the real-valued continuous function with help
of Stone-Weierstrass theorem. Furthermore, in 1995
Kim [12] introduced extension of the univariate
Gaussian MF into Gaussian sum approximation for
function approximation. Moreover, it was shown
that the such approximation better fits an inter-
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polated function among different radial-basis func-
tions. Therefore, we use modified Gaussian MF in
this work to incorporate mentioned merits.
Properly adjusted parameters of fuzzy sets are

important for maintaining both accuracy and un-
derstandability classification rules. However, it is
not a trivial task to place these parameters espe-
cially when dealing with Big Data analytics. There-
fore, in studied literature, the manual analysis is
initially required to define each particular fuzzy set
and then learning is used to tune the classification
model. Though the Kosko established a theoreti-
cal foundation for the fuzzy sets allocation [13], it
is still not used due to multiple assumptions when
dealing with real-world data. So, such procedure
has not been used for malware detection so far due
to a challenging estimation of the rules parameters.

In this paper we consider one of the problems in
Digital Forensics that is malware detection based
on the similarities in software properties. Despite
the fact that static signature-based malware detec-
tion is widely used it requires a precise definition
of the malware properties. So, the challenge is to
define similarities by means of specially constructed
rules automatically without a help of analyst. Our
method is based on the method defined by Dick-
erson and Kosko in 1996 [8] while improvement is
done to establish more generalized parameters of
the fuzzy rules based on the probabilistic modelling.
Basically, we proposed a method that makes an
optimal configuration of the elliptic regions of the
fuzzy rules based on the probabilistic χ2 test. More-
over, corresponding MF is constructed to incorpo-
rate information from hyperellipsoid.
The reminder of this paper is organized as fol-

lowing. The Section 2 gives an insight into NF
method and fuzzy patches allocation using SOM.
In this Section we will present Kosko work and the
way how elliptic regions are constructed. Addition-
ally, challenges with Kosko method are pointed out.
Then, in the Section 3 the new way of getting pa-
rameters of elliptic regions is detailed. Addition-
ally, the rotatable Gaussian MF is introduced re-
placing the projection-base triangular MF used by
Kosko [13]. The experimental design and datasets,
including characteristics, are described in the Sec-
tion 4. Further, the Section 5 provides overview
performance of the new proposed method with re-
spect to simple rectangular and Kosko patches. At
last, the discussions, conclusions and propositions
for future work are given in the Section 6.

2. Unsupervised estimation of fuzzy patches
by Kosko

In this Section we will concentrate our attention
on the Kosko method for the fuzzy patches con-
struction. Though the most simple method of fuzzy
patches construction is rectangular patches, where
the regions are defined according to the clusters ex-

tracted from SOM. In this case the patch configu-
ration is defined by 1st and nth order statistics in a
cluster and then simple triangular MF is used. From
the other side, Kosko method includes two stages.
Initially, the parameters of the ellipsoid fuzzy rules
are estimated by means of unsupervised SOM pro-
cedure. Then, supervised learning is done using a
ANN model to tune the parameters of the classifi-
cation model. Further on, we will concentrate our
attention on improvement of the effectiveness of the
rough placements of the fuzzy patches.

1. Unsupervised data fitting into elliptic regions
As is it mentioned in the Kosko method the fuzzy
rule patch Πi, which corresponds to the space of
input-output vector products Xi × Yi, can be con-
sidered as an elliptic region rather than rectangular
to fit the input real data and reduce error [14].
Definition 1: The input data sample Xi = {A ∈
RM}, which is a collection of the features a =
{x0, . . . , aM} can be characterized as a point in M -
dimensional space. The whole set of N data sam-
ples is therefore contains in an M -dimensional el-
lipsoid (hyperelipsoid) with a radius α of general
form

∑M−1
n=0 x2

i = α2. It expanded as a following
generalized equation of hyperellipsoid due to non-
uniformity of features and shifted center of origin
in the centroids of the features ci (non-zero mean):

α2 = (x− c)T (x− c) (1)

where α defines a pseudo-radius of the fuzzy patch
for orthogonal uncorrelated features.

2. Ellipsoid rotation caused by features correlation
Since the features do not always possess the same
statistical properties it will cause the hyperellipsoid
to be rotated and strained with respect to features
axes.
Definition 2: To incorporate the correlation be-
tween the features we include it in a decomposed
way:

(x− c)T P Λ PT (x− c) = α2 (2)

where Σ−1 = P Λ PT is positive definite symmet-
ric inverted covariance matrix, then factorized by
means of eigendecomposition into the diagonal ma-
trix of eigenvalues Λ = (λ1, . . . , λM ) and orthog-
onal matrix of eigenvectors P = (e1, . . . , eM ) that
rotates the ellipsoid. It should be noted that accord-
ing to the Eigen decomposition theorem [15] the co-
variance matrix is transformed into decomposition
Σ−1 = P Λ PT since eigenvectors are orthogonal.
This is the initial step of the Principle Component
Analysis (PCA) [16], where eigenvectors defines the
direction of the distribution and eigenvalues - the
degree of variance (stretch) along the correspond-
ing direction. Furthermore, the radius of each cor-
responding ellipsoid axis is equal to α/

√
λi due to

λi · (xi − ci)2 = α2 [13] since for orthogonal matrix
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PT = P−1, which will eliminate the eigenvectors
values in the Equation 2.

3. Triangular MF in elliptic input-output space
In [8] Dickerson and Kosko used simplification of
the hyperellipsoid by inscripting it into a rectangu-
lar region, which is projected on the axes to form
parameters for triangular MF.
Definition 3: Triangular MF function is based on
the projection of the hyperrectangular in which the
hyperellipsoid is circumscribed.

µj(X) =

1− |xj − cj |
pj

, |x− cj | ≤
pj
2

0, otherwise

(3)

where the µj defines the MF of j feature and the
projection of circumscribed rectangular on i axis is

pi = 2 · α ·
∑ |cosγij |√

λi
(4)

where angle between the i axis and j eigenvector e:

γij = arccos(ej(i)) (5)

Since the unit eigenvector represents the vector of
direction cosines between the principle axis of ro-
tation and original features axis as it is eliminated
from the characteristic polynomial Ae− λe = 0. In
Euclidean space the features vectors are mutually
orthogonal as well as corresponding set of eigenvec-
tors. Therefore, it feasible to use a set of eigenvec-
tors as rotation matrix in eigendecomposition of the
inversed covariance matrix Σ−1.

So, this is the method developed by Dickerson an
Kosko [8] for unsupervised estimation of hyperel-
lipsoid parameters and fuzzy patches placement is
presented. It can be seen that the definition of α2

in the Equation 2 determines the efficiency of the
method. So far this parameter have been defined
empirically from data. Another complication in the
Equation 3 is a triangular MF, which is used in fuzzy
sets. The projection on the of the hyperrectangle
circumscribed around the target hyperellipsoid are
the parameters of this MF. We can see that such
projection does not fit the data properly since the
data might contain outliers. In the mentioned above
researches the authors stated that such way of MF
composition does not use the orientation of the el-
lipsoid and this might be improved by utilization
of the ellipsoid patch itself in MF. The following
Section gives a view on the probabilistic modelling
in definition of parameter α2. Moreover, this MF
function is presented based on the multivariate dis-
tribution.
As was mentioned before the most common ways

of definition of fuzzy patches is manual one. Usu-
ally, it was used defined set of fuzzy terms that spits

interval in a number of equal intervals corresponds
to each of the fuzzy term. This method model will
produce KM rules for K terms in each of M input
features that makes it hardly possible to use all rules
that require multiple evaluation against questioned
application. However, this approach is not efficient
and not scalable in case when the exact fuzzy terms
are not known or can not be defined manually.

3. Optimization of elliptic fuzzy patches
allocation

In this Section we will present an improvement of
the Kosko method that was proposed in [8]. In par-
ticular we will focus on automated estimation of the
elliptic fuzzy patches parameters and MF.

3.1. Construction of elliptic fuzzy patches
based on multivariate distribution test

Since there are no exact information about the hy-
perellipsoid, it has to be determined from data dis-
tribution.
Proposition 1: The problem of estimation of

the elliptic fuzzy patch Πi parameters for real-data
clusters can be reformulated as a parametric distri-
bution test of fitting data into a distribution model.

At this point we make an assumption that the
data can be described by means of normal distribu-
tion we can state that the cluster derived from SOM
should fit elliptic Gaussian multivariate distribution
according to Kosko method [13]. The data used fur-
ther in the experiments complies with this assump-
tion, however, for other data this assumption has to
be proven. It means that by performing a χ2 test
the test of statement above is performed. This test
is designed to measure how well the distribute data
fits Gaussian distribution. Since this test is origi-
nally designed for the categorical data, we have to
use χ2 test for the variance as described in the chap-
ter 12 of the [17] for df = M − 1 transforms to an
equation for the M random variables:

χ2 = (M − 1)S2

σ2 =
M−1∑
i=0

(xi − x̄i
σi

)2
(6)

By considering the sample variance S2 as vari-
ance of all elements in the particular data cluster
and standard deviation σ2 as a theoretical devia-
tion in this cluster we can state that χ2 ≈ α2 with
some degree of confidence interval β. This challenge
is related to a chance of outlier rather than fuzzi-
ness that was explained by Ross in the [18]. So, by
introducing β we are able to control chance of the
data to be in distribution to avoid possible outliers.
Proof: By considering the non-transformed un-

folded equation of hyperellipsoid we will get:

(x0 − c0)2

σ2
0

+ . . . + (xM−1 − cM−1)2

σ2
M−1

= α2 (7)
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Figure 1: Examples of patches configuration in sim-
ple rectangular, Kosko and proposed methods

which is the same as following considering one
feature as a fixed variable:

M−1∑
i=0

(xi − ci)2

σ2
i

= α2 (8)

The χ2 test in the Equation 9 makes it clear that
the parameter α2 in the Equation 2 can be esti-
mated from contingency table and equal to the value
of χ2 for a particular β for a defined number of df :

M−1∑
i=0

(xi − ci
σi

)2
= α2 = χ2|β (9)

This definition of elliptic region complies with the
goodness of fit of data within an elliptic region that
may illuminate outliers or error values. In case of
significant number of rules, this should reduce it to
get more specific fuzzy regions and reduce uncer-
tainty by overlapping regions. Comparison between
the simple rectangular, Kosko and proposed way of
fuzzy patches contraction is given in the Figure 1.

To summarize, we use χ2 test to find value of
the parameter α2 from the Kosko method. As was
proved before, we come to a conclusion that χ2 = α2

in a defined β with specified df for the statistical
model of the data. This gives an adoptable model
that adjusts configuration of elliptic patches accord-
ing to specified qualities of data that influence se-
lection of β.

3.2. Modified Gaussian MF for correlated
data

The triangular MF used in a simple rectangular and
Kosko methods are not appropriate for this purpose
since it does not incorporate all available informa-
tion from constructed elliptic fuzzy patch. More-
over, the function should count on rotation of the
patch and distance from the center.
Proposition 2: A radial basis Gaussian MF can

be used instead of the triangular projection-based
MF to provide a better fit to the data in elliptic
fuzzy patch when rules combination is calculated.
Proof: The minimum principle used to define a

rule’s MF [8] is a combination of the following form
of Cartesian product:

µR = µ0(X) ∧ µ1(X) · · · ∧ µM−1(X) (10)

where each MF function µi of each feature is de-
fined as a triangular one 3. At this point, we replace
the triangular MF by means of Gaussian function
for the feature i:

µai = sie
− 1

2

(
xi−ci
σi

)2

(11)

where si ∈ (0; 1] is a scaling constant and other
parameters are the corresponding statistical prop-
ertied of ellipsoid projection on each feature space.
Furthermore, the this is used in the rule’s MF in
the Equation 10 to for the overall MF in the Equa-
tion 12. In the [19] and [20] the overall membership
grade is described in such way considering collec-
tion of different image bands. The authors propose
to useM -th root to derive the overall MF. However,
this will give a significant overlap between the rules
that cause overfitting of the classification model.

µR = s0e
− 1

2

(
x0−c0
σ0

)2

· · · ∧ sM−1e
− 1

2

(
xM−1−cM−1

σM−1

)2

=
M−1∏
i=0

sie
− 1

2

(
xi−ci
σi

)2

=
M−1∏
i=0

si · e−
1
2 (x−c)T (x−c)

(12)

using the matrix form of hyperellipsoid in the
Equation 2. The scaling factors si are not known
and have to be defined empirically. However, we
consider the product of Guassian MF functions in
the Equation 10 as the multivariate distribution.
From the other side Kim in 1995 [12] introduced a
Gaussian sum approximation as a product of sin-
gular Gaussian MF. As result, we make the scaling
factors si equal to 1.0 because the rule’s MF should
not be restricted to a magnitude of 1√

(2π)M |Σ|
in

multivariate probability density function [21] as it
is used in the [12]. Piegat in the book [22] men-
tioned that the angle between the axes of hyperel-
lipsoid and features can be a possible solution to
increase the precision of the MF. Gaussian MF was
also employed for Mamdami-type model by Soto et
al in [23] to achieve the lowest error for time se-
ries prediction. This book presented an example of
2-D Gaussian MF that incorporates also an angle
α. Author mentioned that such model is going to
have 5 degrees of freedom (x1, x2, c1, c2, α) for two
features model in comparison to non-rotatable func-
tion and therefore it might be an obstacle to use it.
Yet the set of angles from the Equation 5 is already
known, which does not require additional compu-
tation steps. So, the generalized equation of the
hyperellipsoid is used then in the derived Gaussian
MF sum approximation that incorporates all avail-
able information from the elliptic region by means
of covariance matrix:

µR = e−
1
2 (x−c)T P Λ PT (x−c) (13)

Comparison between the MF functions for all
three methods is given in the Figure 2. Though
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Figure 2: Comparison of MF in simple rectangular,
Kosko and proposed methods

the proposed method also incorporates rotation an-
gle and lengthiness of the ellipsoid. This can not be
included in the triangular MF used for rectangular
patches and Kosko patches.
So, we have presented how the triangular MF in

the Equation 3 is replaced by modified Gaussian
function to form a rule MF. This will provide a bet-
ter fit into the data when the features are correlated
and triangular MF based on the hyperellipsoid pro-
jections can not cover the model properly.

3.3. Proposed algorithm for malware
detection

Based on the studied literature and problems with
predefined set of fuzzy terms we propose following
Hybrid NF methods based on the SOM. It ensem-
bles unsupervised clustering of the similar applica-
tions and tuning of extracted fuzzy rules.
1. Rules discovery procedure based on elliptic

fuzzy patches
(a) Clustering based on the features similarities.

SOM is trained to convert M -dimensional fea-
ture vector into 2D-lattice that consists of
H × W nodes. After training each node Si,j
includes cluster of similar data samples.

(b) Construction of elliptic regions. We make a hy-
pothesis that the multivariate distribution de-
fines the model [21] for the data clustered in
the node Si,j in SOM (referring to the Figure
of histograms from different features from the
malware dataset):

g(x) = 1√
(2 · π)M |Σ|

· e− 1
2 (x−x̄)TΣ−1(x−x̄)

(14)
Based on the this assumption and the proper-
ties of Gaussian multivariate distribution there
have to be defined corresponding parameters
{c̄′ , σ̄′ ,

∑
} for the given data. The distribution

model represents an n-dimensional elliptic re-
gion or fuzzy patch for the cluster in Euclidean
geometry.
We have assumed based on the data sample set
that the features distribution is a Gaussian one.
To test this we employ generalized Pearson χ2

test for multidimensional data, where the χ2

will reflect the probabilistic radius of the hy-
perellipsoid or Mahalanobis distance from the

centroid of cluster to any point in the distribu-
tion:

χ2 =
M−1∑
n=0

(xi(an)− E[an])2

E[an] (15)

where the E(an) represents a theoretical ex-
pectation of the particular feature ai and equal
to sample’s mean ci. By means of ranging of
the continuous variables the χ2 statistics can
be calculated based on the number of df , which
corresponds to a number of dimensions M .
So, in this statistical model we define goodness
of fit [17] of the data samples in the hyperel-
liptical region by means of χ2 distribution test.
It describes how well the distributed data sam-
ples fit defined multivariate distribution. The
χ2 chi distribution roughly is a sum of squared
difference between all points in a given set. To
determine the value of the χ2 based on the β
and df we use contingency table. Further, the
squared radius of the hyperellipsoid is equal to
the χ2 considering the Equation 15.

(c) Extracting the parameters of the fuzzy patches.
At this point we apply the first stages of Princi-
ple Component Analysis (PCA) to extract the
set of eigenvalues λ̄ and set of eigenvectors ¯̄v
[16]. With help of PCA we rotate the orig-
inal multidimensional distribution to remove
the correlation. This is done since the distribu-
tion might have unequal deviations and direc-
tions different from the main axes.
Then, mentioned set of parameters has to be
defined as a complete characteristics of the
fuzzy patch. Therefore we can define each fea-
ture region as Πi that defines fuzzy patch. This
is done since at the current step it is hard to
understand the heuristics behind this region,
yet possible to understand similarities by such
fuzzy patch definition.

(d) Construction of membership function. Each
fuzzy patch is characterized by the MF that
binds an input with an output. To increase
precision of the fuzzy patches coverage and re-
place general rectangular patches the following
MF is defined for the elliptic region and based
on the two dimensional example [22]:

µR = e−
1
2 (x−c)T P Λ PT (x−c) (16)

2. Tuning of the rule-based classification model
After discovery all fuzzy patches, the Hybrid
NF model is composed considering rules that
were discovered. Further one the model fitting
by Delta Learning rule in order to reduce er-
ror between the labelled data samples and pre-
dicted by the rule. Output of the ANN contains
two nodes for the malicious and benign classes.
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4. Experimental Design

In this Section we proposed the following experi-
ments to show the answer on the question men-
tioned in the introduction. So, we performed the
following experiments: (1) Estimation of the errors
in training on the 2nd step of the NF, (2) Compari-
son with other rules-based methods and (3) Perfor-
mance estimation. On the 1st stage of the NF, the
number of the training iterations for SOM is equal
to the size of the dataset, when the data are ran-
domly selected for SOM training. Preliminary trials
were performed on different sizes of SOM (3x3, 5x5,
10x10) to estimate the effect on the accuracy for dif-
ferent datasets. The smallest size 3x3 provided the
best accuracy.
Finally, for the Kosko method we used fixed value

of α for all experiments, while confidence interval
β = 95% was used to illuminate outliers in proposed
method. Number of df is chosen to be 3 ∗M − 1
since for each of the dimension the statistical model
will include mean, angle and spread around mean.
During the 2nd step, max of 100 iterations of

the ANN and fixed learning rate 0.1 were chosen
since showed good accuracy. The performance eval-
uation includes two domains: (1) regression-based
accuracy of the model with Mean Absolute Error
MAE = 1

N

∑N
i=1 |yi − di| , Mean Absolute Percent

ErrorMAPE = 1
N

∑N
i=1 |

yi−di
di
|·100% and Relative

Absolute Error RAE =
∑N

i=1
|yi−di|∑N

i=1
|di−d̄|

, where yi is an
actual output of ANN and di - is a data sample class;
(2) classification % of the data using min-max prin-
ciple and derived rules samples in cross-validation.
Data sets. In order to prove the proposed meth-

ods we selected several datasets and implemented
both stages of the NF with rectangular, Kosko
and proposed configuration of the fuzzy patches.
There have been selected several versatile dataset
to demonstrate the proof of concept. At this point
the bootstrap aggregation is used since SOM is a
variant of ANN, which is unstable and produces the
different clustering results during the each run. We
randomly generated 10 samples Bi from the train-
ing set and the select the sample that possess the
best classification accuracy on the cross-validation.
After this, the sample Bi is going to be used in later
experiments to show the results consistency.
The applicability of the methods is shown on

the datasets that contains binary classified datasets
from UCI Machine Learning Repository 1 that are
described in the Table 1. There included dataset
of manually constructed features derived from the
static and dynamic analysis of malicious and benign
applications.

1https://archive.ics.uci.edu/ml/datasets/

Table 1: The properties of the datasets used in the
experiments

№ Dataset Feat. Samples Norm.

1 Climate simul. 18 540 Yes
2 Fertility 9 100 Yes
3 Banknote auth. 4 1372 No
4 Mobile malware 36 596 No

Table 2: Performance comparison of the methods.
"R" refers to number of extracted rules and "M" -
method ("S" - simple rectangular, "K" - Kosko, "P"
- proposed). №defines a corresponding dataset

№ R M Performance
MAE MAPE,% RAE Acc, %

1 15
S. 0.71 37.04 4.48 23.33
K. 0.91 45.64 5.74 91.48
P. 0.03 3.15 0.19 97.03

2 9
S. 0.18 13.03 0.88 88.00
K. 0.12 6.00 0.56 88.00
P.. 0.07 4.32 0.36 88.00

3 17
S. 0.10 5.65 0.20 96.13
K. 0.44 22.36 0.90 92.63
P. 0.06 6.28 0.12 100.00

4 18
S. 0.57 37.61 1.17 41.34
K. 0.40 40.70 0.83 58.48
P. 0.07 4.97 0.14 91.76

5. Results & Analysis

This Section devoted to an explanation of the per-
formed tests and the comprehensive results to eval-
uate the proposed method from different points of
view. The results of the methods are given in the
Table 2 using clusters derived from 3x3 SOM.

The proposed configuration of the fuzzy patches
fits well the data. The percentage of error shows
only 3-5% error for the proposed method based
on the datasets, while classification accuracy using
min-max principle is always above Kosko method.
Using the χ2 for building fuzzy patches provides
better way to fit data. So, we can summarize that
both original models do not possess the same accu-
racy as the proposed one neither on the regression
performance nor on the classification based on the
fuzzy rules model. Moreover, the proposed method
performs well on such datasets with considerable
amount of features keeping the classification accu-
racy of around 90%. To see how well the patches de-
scribe the data, the MAE was observed during the
learning on the 2nd step of NF form mobile mal-
ware dataset. The results are 0.618945, 0.392991,
0.094395 for simple rectangular, Kosko and pro-
posed methods respectively. The Kosko method re-
quires more iteration to tune the model, while new
proposed method gives the best results and simple
rectangular is not affected mostly by tuning. There-
fore, we can state that proposed patches fit the data
with the lowest possible error.
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Table 3: Performance comparison of the new pro-
posed method with existing numerical decision tree-
and rule-based methods implemented in Weka.
The regression metrics are "MAE" and "RAE, %".
№defines a corresponding dataset

№ Proposed J48 JRip

MAE RAE MAE RAE MAE RAE
1 0.03 19.82 0.08 51.749 0.10 65.05
2 0.07 36.25 0.22 102.97 0.21 98.41
3 0.06 12.81 0.01 3.67 0.02 4.29
4 0.07 12.49 0.07 16.121 0.1 20.80

5.1. Evaluation with respect to other
rule-based classification methods

Since the proposed method is rule-based classifier
we decided to compare the accuracy with some tree-
based and rule-based classifiers with a good perfor-
mance. We consider decision trees since this model
can be linearised into decision rules. At this point
we tested four data in the Table 3 sets with the
methods J48 (implementation of statistical classifier
C4.5 ) and JRip (implementation of rule learner Re-
peated Incremental Pruning to Produce Error Re-
duction - RIPPER) that can be found in Weka.
The results are consistent considering that pro-

posed method is based on the intermediate fuzzy
components and C4.5 and RIPPER are based on
the numerical values, which have to be more accu-
rate.

5.2. Complexity

It can be noted from the Section 3 that new method
requires more resources to learn from data and form
a fuzzy logic model. In this Section we perform ex-
pensive analysis of the time required for learning
and space to be occupied. The first aspect is given
with respect to single- and multi-threaded applica-
tions that are used in modern computational sys-
tems. The estimation of the computational com-
plexity is an important issues that to be considered
in critical applications of real-time systems and Big
Data analysis. In the Table 4 we present the time
required to learn and to make a decision for Kosko,
rectangular and proposed methods. The time mea-
surements are given for a single-threaded and a
multi-threaded learning from data. For the test-
ing purpose we took mobile malware dataset and
15 rules derived from 3x3 SOM and results are pre-
sented in the Table 4. It has been measure execution
of the implemented version in two modes.

When parallel optimization is used the required
time of the proposed method is considerably less
than others. The time complexity is an important
issues that affects decision whether to use particular
methods while dealing with Big Data since the data
complexity will affect the execution time. To sum-
marize, the proposed methods requires more time

Table 4: Time required to learn models and infer-
ence new data for different amount of fuzzy rules,
Seconds. "M" refers to used method

M Learning Inference ,10−6

Sequent. Parallel Sequent. Parallel
Rect. 0.43 0.57 10.37 1.57
Kosko 0.87 0.65 15.91 2.49
Prop. 0.42 0.21 353.11 47.62

Table 5: Size required to stored the rules for the
banknote authentication dataset, Bytes. The mea-
surements are: "Structure" - size of empty rule
structure, "1 Rule "- size required to store a sin-
gle rule using for mentioned earlier dataset with 4
features, "Model" - total size required to store all
the classification rules

Arch. Models Structure 1 Rule Model

32bit Kosko 28 104 3224
Proposed 24 232 7192

64bit Kosko 56 200 6400
Proposed 48 456 14592

then Kosko and a simple rectangular, yet the accu-
racy is much better.

The proposed structure of radial-basis rules need
to store M2 elements of the inversed covariance
matrix + N centroids, while triangular MF-based
model needs only 2 ·N centroids. It means that the
size of the rules in Big Data analysis will converge to
a number of samples, which means that ifM << N
then size of the Kosko and Rectangular models will
exceed the size of the proposed model making them
more demanding in storage complexity.

Otherwise, the proposed rules will occupy more
space on the small sample as pointed in the Table
5. The complete model of 31 rules with 4 features
can be stored using 6 KBytes for triangular MF
rules and 15 KBytes for the proposed MF. The size
looks reasonable considering the capacities of mod-
ern computers. It makes possible to apply the rules
on the embedded devices with significant resources
limitation since the vectors stored in contingency
memory and does not require multiple random ac-
cess for inference. The implementation was done us-
ing C++ 11 with Boost, STL, Eigen and OpenMP.
The test machine included 8-cores Intel i7-3632QM
- 2.20GHz with 8GB DDR3.

6. Discussion & Conclusions

In this paper we investigated two ways of fuzzy
patches construction: simple rectangular and
Kosko. It was shown that these methods are
good for simple datasets with uncorrelated features.
However, due to the existence of the outliers and
errors the classification accuracy drops consistently.
We have proposed a new method for fuzzy patches
construction in the NF method using χ2 tests that
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provides up to 92% against 58% for Kosko on the
mobile malware dataset. It was proposed a new
method based on the statistical properties of the
distributions to construct the elliptic fuzzy patches.
Furthermore, we use Gaussian elliptic MF to be
more precise in defining the degree of truth of each
fuzzy rule. It was noticed that the proposed method
of elliptic regions construction requires less opti-
mization and tuning on the 2nd step, which brings
regression error down to 3-5%. We can make a con-
clusion that the proposed method posses better per-
formance and the tuning on the 2nd step provides
only little improvement of the model in compari-
son to the rectangular and Kosko methods. More-
over, this proposed is suitable for Big Data analy-
sis when the amount of data instance is incredibly
large and there are some complex relationships be-
tween features. The complexity tests show a trade-
off in space and speed with respect to considerable
improvement in the accuracy. As a future work
we see application of non-parametric distribution
rather than Gaussian parametric to be more effi-
cient and fit the data.
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