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Abstract

The analysis of the perceptual properties of texture
plays a fundamental role in tasks like semantic de-
scription of images or content-based image retrieval
using linguistic queries. In this paper, we propose
to model these properties by means of fuzzy sets
defined on the domain of some representative mea-
sures. In our approach, the membership functions
associated to these fuzzy sets are obtained by learn-
ing a functional relationship between the computa-
tional values given by the measures and the human
perception of the properties. The performance of
each fuzzy set is analyzed and tested with human
assessments, allowing us to identify the most suit-
able model to represent each property.

Keywords: Image features, texture modelling,

fuzzy sets, human perception

1. Introduction

The most natural way for humans to describe visual
texture is by using some perceptual properties, like
coarseness, directionalily, contrast, line-likeness or
reqularity [1, 2]. The analysis of these properties
in images can be very useful in fields where some
interaction with subjects is needed. For example,
it plays a fundamental role in tasks like semantic
description of images [3, 4, 5] or in content-based
image retrieval systems using linguistic queries [6,
7, 8], where a perceptual texture characterization is
needed.

There are many measures in the literature that,
given an image, capture the presence of these tex-
ture properties in the sense that the greater the
value given by the measure, the greater (lower) the
presence of the property [9, 10]. However, there is
no perceptual relationship between the value given
by these measures and the degree in which the hu-
mans perceive the texture. For example, given a
certain value calculated by applying a coarseness
measure to an image, there is not an immediate way
to decide whether there is a coarse texture, a fine
texture or something intermediate (i.e. there is not
a textural interpretation).

The imprecision associated to these measures sug-
gests the use of representation models that incor-
porate the uncertainty. Nevertheless, the majority
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of the approaches that can be found in the liter-
ature are crisp proposals [11, 9, 12] which do not
model any kind of imprecision. To face this prob-
lem, some proposals arise from the fuzzy set field,
and more specifically from the content-based im-
age retrieval area [6, 8, 13, 14]. In these proposals,
a mapping from low-level statistical features (the
crisp measures described above) to high level textu-
ral concepts is performed by defining membership
functions for each textural feature.

However, in all these fuzzy approaches the mem-
bership functions are adjusted manually or by using
a fuzzy clustering, but without considering the re-
lationship between the measure values and the hu-
man perception of the property. This implies that
the obtained membership degrees do not necessar-
ily match what a human would expect. In addition,
all these fuzzy approaches do not propose a global
modelling of the textural concept, but a fuzzy par-
tition providing a set of linguistic terms associated
to this concept. This type of solution is unsuitable
for some classical tasks, like pattern recognition, be-
cause a single presence degree of the textural prop-
erty cannot be obtained, but one membership de-
gree for each linguistic term in the partition.

In this paper, we propose a perception-based
fuzzy approach for texture modelling in order to
solve all these problems. In this approach, each
texture property is modelled by means of a unique
fuzzy set defined on the domain of a representative
crisp measure. Thus, the obtained fuzzy set will di-
rectly represent the presence degree of the property,
allowing its use in pattern recognition problems, as
it will be shown in section 5. In order to obtain
the membership function, a functional relationship
between the computational values given by the mea-
sures and the human perception of the correspond-
ing property is learned. This way, the presence de-
gree given by the obtained fuzzy set will match what
a human would expect. According to the psycholog-
ical experiments performed by Tamura et al. in [2],
coarseness, contrast and directionality are consid-
ered the three most important texture properties,
playing a fundamental role in human visual inter-
pretation [8, 15, 16]. In this paper, we will focus
our study on these properties.

The rest of the paper is organized as follows.
In section 2 a general overview introducing our
methodology is presented. After that, some ele-



ments of the model are described in detail in the
following sections; concretely, the way to obtain hu-
man assessments about the perception of the prop-
erties is faced in section 3, while section 4 describes
the method employed to obtain the membership
functions of the proposed fuzzy sets. In section 5
some results obtained by applying the models are
shown, and the main conclusions are summarized
in section 6.

2. Fuzzy modelling of texture properties:
an overview of the proposal

As mentioned in the above section, in this paper
we propose to model texture properties by means
of fuzzy sets. From now on, let P = {fineness,
contrast, directionality} be the set of texture prop-
erties that will be modelled in this paper and let
FP={F{,...,F } be aset of representative com-
putational measures of the property p € P. In our
approach, we propose to model a texture property
p € P as a fuzzy set T} defined on the domain of
a measure F}, where the membership function? of
this fuzzy set will be defined as

(1)

For this modelling, two questions need to be
faced: (i) what reference set should be used for the
fuzzy set, and (ii) how to obtain the related mem-
bership function. Regarding the reference set, we
will define the fuzzy set on the domain of a given
computational measure F} € FP. The measures
analyzed in this paper, corresponding to fineness,
contrast and directionality properties, are listed in
the first column of Table 1. It should be noticed
that most of these measures were developed in the
early nineties. However, they are still considered
the state of the art in the characterization of the
perceptual properties of texture. All of them are
automatically computed from the texture images.

Regarding the membership function, we propose
to obtain it by using a perceptually-based approach
that relates the computational measures with the
human perception of the property. For this pur-
pose, two questions need to be faced: firstly, how
to obtain the data about the “human perception”
of the property and, secondly, how to fit these data
with the measures in order to obtain the member-
ship function. To get information about the human
perception of a texture property p € P, a set of im-
ages covering different presence degrees of this prop-
erty will be gathered. These images will be used
to collect, by means of a poll, human assessments
about the perceived presence of the property. From

7',:):R—>[0,1]

ILet us remark that “coarseness” and “fineness” are op-
posite but related textural concepts. The advantage of mod-
elling the concept of fineness is that the maximum presence
of this property in the image is delimited by the size of pixel.

2To simplify the notation, as it is usual in the scope of
fuzzy sets, we will use the same notation ’Tkp for the fuzzy set
and for the membership function that defines it.
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now on, let 7P = {17, ..., Iﬁ,p} be the set of N, im-
ages representing examples of the property p € P,
and let I? = {v,..., v}, } be the set of values as-
sociated to ZP, with v? being the value representing
the presence degree of the property p € P perceived
by humans in the image I” € ZP. The description
of the texture image set and the way to obtain I'P
are detailed in section 3.

To obtain the membership function 7,” for a given
measure F} € F? of the texture property p € P, a
robust fitting method will be applied in order to
obtain suitable functions relating the values of the
measure calculated for each image with the presence
degree of the property p perceived by humans. This
fitting method is described in section 4.

3. Assessment Collection

In this section, the way to obtain the set of values
e ={,... ,fuﬁ,p}, that represent the presence de-
gree of the property p € P perceived by humans
in the images I’ € 7P, will be described. For this
purpose, firstly the image set ZP will be selected
(section 3.1). After that, a poll for getting assess-
ments about the perception of the property will be
designed (section 3.2). Finally, for a given image,
the assessments of the different subjects will be ag-
gregated (3.3).

3.1. The texture image set

For each property p € P, aset IP = {I7}, ... ,Iﬁ,p} of
N, = 80 images representing examples of this prop-
erty has been selected. Figure 1 shows some im-
ages extracted from the set ZP corresponding to the
properties of fineness (Figure 1(a)), contrast (Figure
1(b)) and directionality (Figure 1(c)). Each set has
been selected satisfying the following conditions:

e It covers the different presence degrees of the
property.

e The number of images for each presence degree
is representative enough.

e Each image shows, as far as possible, just one
presence degree of the property.

Due to the third condition, each image can be
viewed as “homogeneous” respect to the presence
degree of the corresponding property, i.e., if we se-
lect two random windows (with a dimension which
does not “break” the original texture primitives and
structure), the perceived presence of the property
will be the same for each window (and also with re-
spect to the original image). In other words, we can
see each image I” € 7P as a set of lower dimension
images (sub-images) with the same presence degree
of the original one. This will be very useful for the
fitting process, because we can have a larger num-
ber of fitting points without extending the number
of images used in the poll.
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Figure 1: Examples of the texture images used in the poll corresponding to the properties of fineness (a),

contrast (b) and directionality (c).

3.2. The poll

Given the image set ZP, the next step is to obtain
assessments about the perception of the correspond-
ing property p € P from a set of subjects. From now
on, we shall note as ©P" = [o}"",...,0}"] the vec-
tor of assessments obtained from L subjects for the
image I”. We considered three alternatives to get
or':

e To ask subjects about a presence degree be-
tween 0 and 1 for each image in the set.

e To ask subjects to describe the image property
using linguistic labels in a pre-defined term set
(e.g., very low, medium, high, etc.), so that
each label has associated a presence degree.

e To ask subjects to describe the image property
using linguistic labels, where each label has as-
sociated a visual example that represents the
corresponding presence degree.

The first choice allows subjects to have more free-
dom to assess the presence degree of the property.
However, according to our own experience, it is very
difficult for a subject to provide a value between 0
and 1 that represents the presence degree of a cer-
tain texture concept (except in the case of both ex-
tremes: fulfillment of the concept -degree of 1- and
unfulfillment of the concept -degree of 0). Thus,
this alternative was discarded.

204

The above problem is solved by the second choice.
The subject does not assess a value about the pres-
ence degree of the texture property, but gives his
opinion using a set of linguistic labels related to the
corresponding property. FEach linguistic term has an
associated presence degree (distributed gradually in
[0,1]), so the requested assessments can be directly
obtained. Note that this solution is equivalent to
assign images to classes, where each class has asso-
ciated a linguistic term (and therefore, a presence
degree). The main drawback of this approach is
that only a few linguistic labels can be considered
for each property, as it is very dificult for humans
to discriminate between more classes without using
visual examples associated to them.

This problem is solved by the third choice. This
solution is an extension of the previous one, in which
each linguistic label has an associated visual exam-
ple that represent the corresponding presence de-
gree. Thus, humans are able to discriminate be-
tween more different classes. From now on, let RP
be the number of classes that have been considered
in the poll for the property p € P. One of the classes
represents the presence degree of 1 of this prop-
erty. In our proposal, traditional examples used in
the literature to define very fine, high contrasted
and very directional textures has been considered
for this class [17]. An example that represents this
presence degree for each property is shown in the
first image of figures 1(a), 1(b) and 1(c), respec-



tively. Another of the classes considered in the poll
represents the presence degree of 0 of the property.
In this case, again, traditional examples used in the
literature to define very coarse, very low contrasted
and very non-directional textures has been consid-
ered for this class. The last image of figures 1(a)
and 1(b) shows an example of this presence degree
for fineness and contrast properties, respectively. In
the case of directionality, the presence degree of 0 is
associated to texture primitives that do not have a
dominant dimension or their arrangement does not
have a dominant orientation, as it is shown in the
last two images of Figure 1(c).

The rest of classes represent presence degrees of
the property between 0 and 1. In the case of fine-
ness, nine classes have been regarded, considering
gradual variations in the size of texture primitives,
as it is shown in the sample images of Figure 1(a). It
should be noticed that these images are in decreas-
ing order according to the presence degree of the
fineness concept. In the case of contrast, five classes
have been considered, taking into account gray level
differences in texel edges in order to scale their con-
trast between the classes corresponding to degrees
1 and 0. The five representative images used in the
poll are shown in Figure 1(b). In the case of direc-
tionality, six classes have been regarded, consider-
ing gradual variations in texels orientation or/and
shape, as it is shown in the second and third images
of Figure 1(c).

In our approach, 20 subjects have participated in
the poll. As result, a vector of 20 assessments ori =
[, ..., 05y] is obtained for each image I/ € ZP.
The degree oj’i € [0,1] associated to the assessment
given by the subject S; to the image I is computed
as oé-”i = (RP—k)/(RP—1), where k € {1,..., RP} is
the index of the class to which the image is assigned
by the subject.

3.3. Assessment aggregation

Our aim at this point is to obtain, for each image
in the set Z?, one assessment v! that summarizes
the assessments ©P+* given by the different subjects
about the presence degree of the property p € P.
To aggregate opinions we have used an OWA op-
erator guided by a quantifier [18]. Concretely, the
quantifier “the most” has been employed, which al-
lows to represent the opinion of the majority of the
subjects. This quantifier is defined as

0 if r <a,
Q(r) = i ifa<r <o, (2)
1 ifr >0

with » € [0,1], @ = 0.3 and b = 0.8. Once the
quantifier ) has been chosen, the weighting vector
of the OWA operator can be obtained following [18]
asw; =QU/L)—-Q((j—1)/L),j=1,2,...,L. Ac-
cording to this, for each image I € 7P, the vector
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Table 1: Fitting errors and test errors related to
each measure for the properties of fineness (a), con-
trast (b) and directionality (c).

Fineness Fitting Test

measure error error
Amadasun [10] 0.1333 | 0.1695
Correlation [9] 0.1401 | 0.1747
Abbadeni [19] 0.1639 | 0.1947
FD [20] 0.1776 | 0.2084
Tamura [2] 0.1913 | 0.2070
ED [21] 0.2009 | 0.2168
DGD [22] 0.2031 | 0.2339
LH [9] 0.2150 | 0.2336
Weszka [23] 0.2157 | 0.2411
Contrast [9] 0.2161 | 0.2475
SNE [24] 0.2267 0.2418
SRE [25] 0.2296 | 0.2455

(a)

Contrast Fitting Test

measure error error
Tamura [2] 0.0340 | 0.0649
Amadasun [10] 0.0780 | 0.1108
Abbadeni [19] 0.1003 0.1393
Haralick [9] 0.1157 | 0.1416

(b)

Directionality Fitting Test

measure error error

Tamura [2] 0.0687 | 0.1064
Abbadeni [19] 0.0788 | 0.1324
Fourier [23, 26] | 0.1073 | 0.1406

(c)

©P% obtained from L subjects will be aggregated
into one assessment v! as follows:

p _ AD,T AD,T AD,T
v, = w10y + w205 + ... +wpoy (3)
AD, b AD,

where [67"",...,07"] is a vector obtained by ranking
in nonincreasing order the values of the vector ©P".

4. Fitting the membership function

At this point, the aim is to obtain, for a given mea-
sure F}' € F? of a property p € P, the correspond-
ing membership function 7. In this paper, we pro-
pose to find a function that associates the measure
values of the property with the corresponding hu-
man assessments about it. As it was pointed out
in section 3.1, thanks to the “homogeneity” in the
presence degree of the property, each image I? € P
can be seen as a set of sub-images with the same
presence degree v! of the original one. From now
on, we will note as Zj), = {I},,i = 1,..., Npw =
1,..., W} the set of sub-images extracted from ZP,



where I7 is the w-th sub-image of I and W is the
number of sub-images considered for each image;
on the other hand we will note as mf”ﬁ the result
of applying the measure F} to the sub-image I7,,.
According to this notation, let Zj,, ., C Zj,, and
Ly test = T\ Tyy jir be two complementary sub-
sets of Z},,, that will be used for fitting the mem-
bership function and testing the obtained model,
respectively.

Thus, in order to estimate the membership func-
tion that associates the measure values (mﬁ l]f}) and
the human assessments (v?), we propose to fit a
suitable curve to the subset of points:

wh €Thy 1ir} (4)

In this paper, for each image I’ € 7P, W = 200
sub-images of size 32 x 32 have been considered, so
73}, is formed by 16000 sub-images for each property
p € P. We propose to randomly select 75% of them
for the fitting, so 12000 points are contained within
wh

The measure values can be affected by some fac-
tors, like brightness, contrast or noise, which typi-
cally causes outliers in the fitting points. For this
reason, in our approach the membership function is
calculated by means of a Robust Fitting of the set
\I”;Z’; In this modelling, the robust fitting based on
M-estimators (a generalization of the least squares
fitting) is used [27]. In addition, to define T}, the

following considerations are taken into account:

k
= {(mi’w? vf); Ién,w

° 7',3’ should be a monotonic function.
e The values T'(z) = 0 and 77 (xz) = 1 should
be achieved from a certain value.

Regarding the above properties, we propose to
define 7',30 as a function of the form?

1 T < q,
7;?(55;(1”...(10,0[,6) = pOIy(x;an~-~aO) OCSCESB,
0 x> p

(5)

ap) being a polynomial function

(6)

In our proposal, the parameters a,, ...aq, a and
(3 of the function 7;” are calculated by carrying out

with poly(x; ay, . . .

poly(x; ay ... ag) = apx™ + ...+ ax’ + ag

a robust fitting on W% Z’Z For the polynomial func-
tion, the cases of n = 1,2,3 (i.e. linear, quadratic
and cubic functions) have been considered, with the
constraint to obtain a strictly monotonic function
between « and 3.

The second column of tables 1(a), 1(b), and 1(c)
show the least fitting error related to each measure

3Note that this function is defined for measures that de-
crease according to the perception of fineness. For those that
increase, the function needs to be changed appropriately, i.e.
it takes the value 0 for z < f3, it takes the value 1 for z > «,
and the polynomial function is computed for 5 < z < a.
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T poly(x) = —6.6128 x> 4+ 9.4901 x? i

1 — 6.4835 x + 1.8707 1
091

0.8+

07} .
06 E
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05 l];madasun

04} 8

Fineness degree

03t b
021 b
0.1r b

0

03 04 05
Amadasun measure

a = 0.1727

110 | poly(x) = 1.6877 x3 — 3.9536 x2
1t +3.8763 x — 0.5728

09r b
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0.7 B

Tcontrast 4
tamura
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06r

0.4r b
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03} B
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0.1} ]
0 / ]

0.8
B = 0.9620

04 0.6

a = 01775 Tamura measure

0
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1l +1657.35 x — 511.969

08r k
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0.7t B

061 Tdirectianality
14

o5t amura i

0.4r b

Directionality degree

0.3} B
0.2} E
0.1} B
0 / 4

0.8 09 0.95
a = 0.8594 B = 0.9865
Tamura measure

Figure 2: Proposed membership function 7" cor-
responding to fineness, contrast and directionality
properties.
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Figure 3: Result for a collection of texture images
(a), showing the human assessments about the pres-
ence degree of fineness (b), and the membership de-
grees obtained by applying the fineness model (c).

F{ e FP for the properties of fineness, contrast and
directionality, respectively. Note that this value can
be viewed as the goodness of each measure to repre-
sent the perception of the corresponding property.
These tables have been sorted in increasing order of
the fitting errors.

In addition, the test error for each measure has
been calculated by using the subset of points \I/félzt
and it is shown in the third column of these tables.
In our approach, this error is calculated as the mean
absolute difference between the values v! and the
degrees obtained by applying the function 7} to the

. 2L cats (P F P D,k
values m;", , for all the points (m}",,v}) € Wiy, i.e.
) ﬂ(mp,k) _ P
Etest (mP'h o) ewy, |k W ¢ (7)

k
Card(\l/fest)

with card(U%F,) being the cardinality of WP, .

In our experiments, the membership functions
with the lowest error are obtained by using the mea-
sure of Amadasun in the case of fineness and the
measures of Tamura in the case of contrast and di-
rectionality. Figure 2 shows the parameters and the
graphical representation of these membership func-
tions.

5. Results

In this section, the fuzzy models proposed for fine-
ness, contrast and directionality properties will be
applied to several examples in order to analyze its
performance. In particular, the membership func-
tions 7,7 with least fitting error and least test error
(shown in Figure 2) will be used.

For the first experiment, we have considered the
collection of texture images shown in Figure 3(a),
each one with a different increasing perception de-
gree of fineness. These images are part of the set
Zlineness ysed in the poll, so human assessments
about fineness presence are available in order to
compare with the obtained results.
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Figure 4: Result for a collection of texture images
(a), showing the human assessments about the pres-
ence degree of contrast (b), and the membership de-
grees obtained by applying the contrast model (c).

(c)

Figure 5: Result for a collection of texture images
(a), showing the human assessments about the pres-
ence degree of directionality (b), and the member-
ship degrees obtained by applying the directionality
model (c).

Figure 3(b) shows an ideal mapping from the orig-
inal texture images to their fineness values, where
all pixels corresponding to the same texture image
have been mapped using the human assessment as-
sociated to that image. These assessments (between
0 and 1) have been mapped into a gray level from
0 to 255, so that a white pixel in the mapping indi-
cates maximum perception of fineness, while a black
one indicates no perception of fineness (maximum
perception of coarseness).

Figure 3(c) shows a mapping from the original
texture images to their fineness values obtained by
applying the proposed model. For each pixel in the
original images, a centered window of size 32 x 32
has been analyzed and its fineness membership de-
gree has been calculated. This degree has been
mapped into a gray level from 0 to 255. It can
be noticed that our model captures the evolution of
the perception degrees of fineness, and the obtained
mapping, that represents the estimated presence de-
gree of this property, can be directly interpreted by
humans.
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Figure 6: Result for a natural image. (a) Origi-
nal image. (b) Mapping from the original image
to its fineness values using the proposed model. (c)
Graphical representation of the proposed model and
calculation detail for the three windows shown in
the original image.

Two similar experiments, shown in figures 4 and
5, have been performed for the properties of contrast
and directionality. It can be noticed that the results
obtained with our models (figures 4(c) and 5(c))
match what a human would expect, capturing the
evolution of the perception degrees of contrast and
directionality, respectively.

For the next experiment, let’s consider Figure
6(a), corresponding to a natural image where sev-
eral textures with different perception degrees of
fineness are shown. Figure 6(b) shows a mapping
from the original image to its fineness values using
the proposed model. It can be noticed that three
different degrees of fineness are shown: a coarse
texture (pixels in black) corresponding to the big
stones, a fine texture (pixels in white) correspond-
ing to the grass, and an intermediate coarseness tex-
ture (pixels with an intermediate gray level) corre-
sponding to gravel. As example, Figure 6(c) shows
a graphical representation of the mapping process
for three different windows of the original image
(marked as 1, 2 and 3 in Figure 6(a)). As in the
previous experiments, it can be noticed that the
proposed model captures the evolution of the per-
ception degrees of fineness, obtaining results that
match what a human would expect. Two similar
experiments, shown in figures 7 and 8, have been
performed for the properties of contrast and direc-
tionality, obtaining mappings that can be directly
interpretable by humans.
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(b)

Figure 7: Result for a natural image. (a) Original
image. (b) Mapping from the original image to its
contrast values using the proposed model.

(b)

Figure 8: Result for a natural image. (a) Original
image. (b) Mapping from the original image to its
directionality values using the proposed model.

6. Conclusions

In this paper, a perception-based fuzzy approach for
texture modelling has been proposed. In this ap-
proach, texture properties have been modelled by
means of fuzzy sets defined on the domain of com-
putational measures of the corresponding property.
In order to define these models, parametric func-
tions have been employed, where the corresponding
parameters have been calculated by taking into ac-
count the relationship between the computational
measures and the human perception of the property.
This way, the shape of the membership function has
been adjusted to represent this relationship, and the
obtained membership degrees match what a human
would expect. We have concluded that the mod-
els obtained by using the measure of Amadasun in
the case of fineness, and the measures of Tamura
for contrast and directionality, have the best abil-
ity to represent the perception of the corresponding
property. Moreover, the use of a unique fuzzy set to
model the texture contrast as a whole has allowed
its application to pattern recognition problems (e.g.
the examples shown in the previous section).
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