'Only comparable' \mathcal{T} -transitive property and its closures for $\mathcal{IVFR}s$

Ramón González-del-Campo¹ Luis Garmendia²

¹Complutense University of Madrid, Spain (email: rgonzale@estad.ucm.es).

²Complutense University of Madrid, Spain (email: lgarmend@fdi.ucm.es).

Abstract

In this paper a weaker kind of transitive property for interval-valued fuzzy relations $(\mathcal{IVFR}s)$ is introduced. It is called 'only comparable' T-transitivity because it relaxes the need that all intervals must be comparable, by just the need of having T-transitive cycles only for comparable intervals.

This paper also defines a weak concept of closure, and it is proved that it exists just one \mathcal{T} -transitive and weak \mathcal{T} -transitive closure, it does not exists an 'only comparable' \mathcal{T} -transitive weak closure, but there exist many 'only comparable' \mathcal{T} -transitive weak closures of an \mathcal{IVFR} .

Keywords: Interval-valued Fuzzy Relations, Interval-valued Fuzzy Sets, T-transitivity, T-transitive closure, P weak closures, weak T-transitivity.

1. Introduction

Since Fuzzy sets, $\mathcal{FS}s$, were introduced by Zadeh in 1965 [19] many generalizations of fuzzy sets have been proposed to model the uncertainty and the vagueness in linguistic variables replacing the unit interval by another structure such as posets or lattices [4, 8, 16]. Interval-valued fuzzy sets $(\mathcal{IVFS}s)$ were introduced in the 70s by Grattan-Guinness [12], Jahn [14], Sambuc [17] and Zadeh [20]. They are extensions of classical fuzzy sets where the membership value between 0 and 1 is replaced by an interval in [0,1]. They easily allow to model uncertainty and vagueness because sometimes it is easier for experts to give a "membership interval" than a membership degree to objects on a universe. Interval-valued fuzzy relations ($\mathcal{IVFR}s$) are fuzzy relations which experts express the relation degree between two objects by using interval numbers instead of numeric values. IVFSs are a special case of type-2 fuzzy sets [20, 21, 22] that simplifies the calculations while preserving their richness as well.

Transitivity is a fundamental notion in decision theory. It is universally assumed in disciplines of decision theory and accepted in a principle of rationality for some kind of relations. A first task for decision science is the resolution of intransitivities when the transitive property is violated [15]. The transitive closure is a usual way to generate a transitive relation from an intransitive relation.

The T-transitive closure of fuzzy relations has been studied for $\mathcal{FR}s$ by De Baets and De Meyer [1]. They showed that it always exists and it is unique. Gonzalez-del-Campo and Garmendia proposed an algorithm to compute the transitive closure for an IVFR under a t-norm T [11]. However, the transitive property for interval-valued fuzzy relations [10] is a much stronger condition than for fuzzy relations because it needs that all intervals must be comparable in the inequality that defines \mathcal{T} -transitivity. Due to the fact that the set of intervals in [0,1] is a lattice, it is possible to relax the "classical" transitivity by satisfying the inequality just when the intervals are comparable. This new property will be called 'only comparable' T-transitivity. In [3] it is possible to see some similar ideas about reflexive, symmetric and transitive relations for intuitionistic fuzzy relations. In [18] other weaker transitive property is defined for $\mathcal{IVFR}s$.

In this paper 'only comparable' \mathcal{T} -transitivity is defined and is compared with fuzzy \mathcal{T} -transitivity for $\mathcal{FR}s$ and $\mathcal{IVFR}s$. Sometimes imposing fuzzy \mathcal{T} -transitivity to $\mathcal{FR}s$ or $\mathcal{IVFR}s$ by computing the \mathcal{T} -transitive closure [10] gives in a completely different \mathcal{IVFR} , with much more higher interval degrees. So it is important to look for a weaker condition to impose coherence not in contradiction to \mathcal{T} -transitivity and resulting in a much closer closure to a given \mathcal{IVFR} .

The paper is organized as follow: in Section 3 'only comparable' \mathcal{T} -transitivity of an \mathcal{IVFR} is defined. In Section 4 the weak closure of an \mathcal{IVFR} under property \mathcal{P} is defined. In Section 5 the relation between weak closure and closure of an \mathcal{IVFR} under 'only comparable' \mathcal{T} -transitivity and \mathcal{T} -transitivity is studied. In Section 6 are obtained some particular results for t-representable t-norms. In Section 7 weak closures under 'only comparable' \mathcal{T} -transitivity and the closure under \mathcal{T} -transitivity for an \mathcal{IVFR} are compared. Finally, in Section 8 an application is shown.

2. Preliminaries

Definition 2.1. [5] Let (L, \leq_L) be the lattice of intervals in [0,1] that satisfies:

- 1. $L = \{[x_1, x_2] \in [0, 1]^2 \text{ with } x_1 \leq x_2\}.$
- 2. $[x_1, x_2] \leq_L [y_1, y_2]$ if and only if $x_1 \leq y_1$ and $x_2 \leq y_2$

Also by definition:

$$[x_1, x_2] <_L [y_1, y_2] \Leftrightarrow x_1 < y_1, x_2 \le y_2$$
 or $x_1 \le y_1, x_2 < y_2$ $[x_1, x_2] =_L [y_1, y_2] \Leftrightarrow x_1 = y_1, x_2 = y_2.$

 $0_L=_L[0,0]$ and $1_L=_L[1,1]$ are the smallest and the greatest elements in L respectively.

Definition 2.2. [5] An interval-valued fuzzy set A on a universe X is a mapping $A: X \to L$:

Definition 2.3. [5] Let X be a universe and A and B two interval-valued fuzzy sets. The equality between A and B is defined as: $A =_L B$ if and only if $A(a) =_L B(a) \ \forall a \in X$.

Definition 2.4. [5] Let X be a universe and A and B two interval-valued fuzzy sets. The inclusion of A in to B is defined as: $A \subseteq_L B$ if and only if $A(a) \subseteq_L B(a) \ \forall a \in X$.

Definition 2.5. [5] A t-norm \mathcal{T} on L is a monotone increasing, symmetric and associative operator, $\mathcal{T}: L^2 \to L$, that satisfies: $\mathcal{T}(1_L, [x_1, x_2]) =_L [x_1, x_2]$ for all $[x_1, x_2]$ in L.

Definition 2.6. [5] A t-norm \mathcal{T} on L is t-representable in L if there exist two t-norms: T_1 and T_2 $(T_1, T_2, in ([0,1], \leq))$ that satisfy:

$$\mathcal{T}([x_1, x_2], [y_1, y_2]) =_L [T_1(x_1, y_1), T_2(x_2, y_2)]$$
where $T_1(v, w) \le T_2(v, w) \ \forall v, w \in [0, 1].$

Let $x =_L [x_1, x_2]$ and $y =_L [y_1, y_2]$ be two intervals on L:

Example 2.1. $\mathcal{T}([x_1, x_2], [y_1, y_2]) =_L [\min(x_1, y_1), \min(x_2, y_2)]$ is t-representable in $([0, 1], \leq)$. Note that min is the highest t-norm.

Example 2.2. The following product t-norm \mathcal{T} on L is t-representable:

$$\mathcal{T}([x_1, x_2], [y_1, y_2]) =_L [x_1 * y_1, x_2 * y_2]$$

Example 2.3. Two generalizations of the Lukasiewicz t-norm [6] are the following:

- $T_w([x_1, x_2], [y_1, y_2]) =_L$ $[\max(0, x_1 + y_1 - 1), \max(0, x_2 + y_2 - 1)]$
- $T_W([x_1, x_2], [y_1, y_2]) =_L$ $[\max(0, x_1 + y_1 - 1), \max(0, x_1 + y_2 - 1, x_2 + y_1 - 1)]$

Note that T_w is t-representable but T_W is not t-representable.

Definition 2.7. [7] A t-norm operator \mathcal{T} on L is pseudo-t-representable if there exists a t-norm T in $([0,1],\leq)$ that satisfies:

$$\mathcal{T}([x_1, x_2], [y_1, y_2]) =_L [T(x_1, y_1), \max\{T(x_1, y_2), T(x_2, y_1)\}]$$

The t-norm T is called the representant of \mathcal{T} .

Example 2.4. Some examples of pseudo-trepresentable t-norms on L are shown:

T	\mathcal{T}
	[-:-()]
$\min(x, y)$	$[\min(x_1, y_1), \max(\min(x_1, y_2), \min(x_2, y_1))]$
x * y	$[x_1 * y_1, \max(x_1 * y_2, x_2 * y_1)]$
$\max(0, x + y - 1)$	$[\max(0, x_1 + y_1 - 1), \max(0, x_1 + y_2 - 1, x_2 + y_1 - 1)]$

Definition 2.8. [2] Let X_1 and X_2 be two universes of discourse. An interval-valued fuzzy relation $R: X_1 \times X_2 \to L$ is a mapping:

$$R = \{((a,b), [x,y]) \mid a \in X_1, b \in X_2, [x,y] \in L\}$$

In the rest of the paper $X_1 = X_2$. Let X be the universe $X = \{e_1, \dots, e_n\}$.

Definition 2.9. [10] Let \mathcal{T} be a t-norm on L and let R interval-valued fuzzy relation on X. Then, R is \mathcal{T} -transitive if:

$$\mathcal{T}(R(a,b),R(b,c)) \leq_L R(a,c) \ \forall a,b,c \in X$$

Definition 2.10. [9] An interval-valued fuzzy relation $R: X^2 \to L$ is a generalized \mathcal{T} -indistinguishability if it is reflexive, symmetric and \mathcal{T} -transitive.

Definition 2.11. [9] Let P be a property of $\mathcal{IVFR}s$. Let $R: X^2 \to L$ be an interval-valued fuzzy relation on a finite universe X. The P closure of R is an \mathcal{IVFR} $R^{\mathcal{P}}: X^2 \to L$ that satisfies:

- 1. $R^{\mathcal{P}}$ satisfies P.
- 2. $R \subseteq_L R^{\mathcal{P}}$.
- 3. If $R \subseteq_L R'$ and R' satisfies P then $R^{\mathcal{P}} \subseteq_L R'$

Lemma 2.1. [9] Let R be an interval-valued fuzzy relation on a universe X and let \mathcal{T} be an arbitrary t-norm on L. Then the \mathcal{T} -transitive closure of R always exists and it is unique.

Let R be an interval-valued fuzzy relation on $X = \{e_1, \ldots, e_n\}$. For convenience, $R(e_i, e_j)$ can be written $[\underline{R}(e_i, e_j), \overline{R}(e_i, e_j)]$ or $[\underline{R}, \overline{R}]$.

Proposition 2.1. [9] If \mathcal{T} is t-representable with T_1 and T_2 ($\mathcal{T} = [T_1, T_2]$) then an interval-valued relation $R: X^2 \to L$ is \mathcal{T} -transitive if and only if \underline{R} is T_1 -transitive and \overline{R} is T_2 -transitive.

Theorem 2.1. [9] Let \mathcal{T} be a t-representable tnorm ($\mathcal{T} = [T_1, T_2]$) and let $R = [\underline{R}, \overline{R}]$ be a interval-valued relation. Then, the \mathcal{T} -transitive closure interval-valued of R, $R^{\mathcal{T}}$, satisfies:

$$R^{\mathcal{T}} = [\underline{R}^{T_1}, \overline{R}^{T_2}]$$

Definition 2.12. [13] Let A_X the set of intervalvalued fuzzy sets on $X = \{e_1, \ldots, e_n\}$. The Hamming distance d between M and N $(M, N \in A_X)$ is defined by:

$$d(M,N) = \sum |\overline{M}(e_i) - \overline{N}(e_i)| + |\underline{M}(e_i) - \underline{N}(e_i)|$$

for all e_i in X.

3. Only comparable \mathcal{T} -transitivity for interval-valued fuzzy relations

In this section the 'only comparable' \mathcal{T} -transitive property is defined. The relation between the 'only comparable' \mathcal{T} -transitivity and the \mathcal{T} -transitivity property for $\mathcal{FR}s$ and $\mathcal{IVFR}s$ is shown.

Definition 3.1. Let $[x_1, x_2]$ and $[y_1, y_2]$ be two intervals in (L, \leq_L) . Then $[x_1, x_2]$ is not greater than $[y_1, y_2]$ (denoted by $[x_1, x_2] \not>_L [y_1, y_2]$) if it is satisfied: $x_1 \leq y_1$ or $x_2 \leq y_2$.

Lemma 3.1. Let $[x_1, x_2]$ and $[y_1, y_2]$ be two intervals in (L, \leq_L) such that $[x_1, x_2] \leq_L [y_1, y_2]$. Then $[x_1, x_2] \not>_L [y_1, y_2]$.

 $\begin{array}{ll} \textit{Remark.} & [x_1, x_2] \not >_L & [y_1, y_2] \text{ does not imply} \\ [x_1, x_2] \le_L & [y_1, y_2]. & \text{Let us see an example.} & \text{If} \\ [x_1, x_2] = [0.3, 0.4] \text{ and } [y_1, y_2] = [0.2, 0.5] \text{ it is verified that } [0.3, 0.4] \not >_L [0.2, 0.5] \text{ but it is not verified that } [0.3, 0.4] \le_L [0.2, 0.5]. \end{array}$

Definition 3.2. Let \mathcal{T} be a t-norm on L and let R be an interval-valued fuzzy relation on X. R is 'only comparable' \mathcal{T} -transitive if:

$$\mathcal{T}(R(a,b),R(b,c)) \not>_L R(a,c)$$
 for all a,b,c in X

In a similar way an 'only comparable' T-transitive property can be defined for $\mathcal{FR}s$ but in this case all relation degrees are comparable, so it is equivalent to T-transitivity property.

Definition 3.3. Let T be a t-norm on L and let R be a fuzzy relation on X. R is 'only comparable' T-transitive if:

$$T(R(a,b),R(b,c)) \geqslant R(a,c)$$
 for all a,b,c in X

Lemma 3.2. Let $R: X^2 \to [0,1]$ be a fuzzy relation. Then R is T-transitive if and only if R is 'only comparable' T-transitive.

Proof. Trivial due to the fact that $([0,1], \leq)$ is a totally ordered set, so in $([0,1], \leq)$ the boolean operator $\not>$ is equivalent to \leq

Lemma 3.3. Let R be an $\mathcal{IVFR}s$. If R is \mathcal{T} -transitive then R is 'only comparable' \mathcal{T} -transitive.

Proof. If R is \mathcal{T} -transitive then $\mathcal{T}(R(a,b),R(b,c)) \leq_L R(a,c)$ for all a,b,c in X, then by Lemma 3.1 $\mathcal{T}(R(a,b),R(b,c)) \not>_L R(a,c)$ for all a,b,c in X, so R is 'only comparable' \mathcal{T} -transitive

Lemma 3.4. Let R be an $\mathcal{IVFR}s$. If R is 'only comparable' \mathcal{T} -transitive then R may not be \mathcal{T} -transitive.

Proof. Let $X = \{a_1, a_2, a_3\}$ be the universe. Let $R: X^2 \to L$ be the next relation:

$$R = \begin{pmatrix} [1,1] & [0.4,0.6] & [0.4,0.6] \\ [0.4,0.6] & [1,1] & [0.5,0.5] \\ [0.4,0.6] & [0.5,0.5] & [1,1] \end{pmatrix}$$

If $\mathcal{T} = (min, min)$ then R is not (min, min)-transitive because:

$$(min, min)(R(a_2, a_1), R(a_1, a_3)) = [0.4, 0.6] \nleq_L R(a_2, a_3) = [0.5, 0.5]$$

but R is 'only comparable' (min, min)-transitive because:

$$(min, min)(R(a_i, a_k), R(a_k, a_j)) \not>_L R(a_i, a_j)$$

for all $a_i, a_j, a_k \in X$

Theorem 3.1. Let $\mathcal{IVFR}s^T$ be the set of \mathcal{T} -transitive $\mathcal{IVFR}s$. Let $\mathcal{IVFR}s^{only\ comparable-T}$ be the set of 'only comparable' \mathcal{T} -transitive $\mathcal{IVFR}s$.

Then:

$$\mathcal{IVFR}s^T \subseteq \mathcal{IVFR}s^{only\ comparable-T}$$

Proof. Trivial due to Lemmas 3.3,3.4

4. Weak closures of any property P for interval-valued fuzzy relations

Definition 4.1. Let A and B be two interval-valued fuzzy sets. A is included in B $(A \subseteq_L B)$ if and only if $A(e_i) \leq_L B(e_i)$ for all e_i in $X = \{e_1, \ldots, e_n\}$.

In order be able to compare closures and weak closures for interval-valued fuzzy relations under a property \mathcal{P} the inclusion between interval-valued fuzzy relations is defined.

Definition 4.2. Let R and S be two intervalvalued fuzzy relations on X. R is included in S $R \subseteq_L S$ if $R(e_i, e_j) \leq_L S(e_i, e_j)$ for all e_i, e_j in $X = \{e_1, \ldots, e_n\}$.

Corollary 4.1. Let R and S be two interval-valued fuzzy relations on X. R is not included in S $(R \not\subseteq_L S)$ if there exist two elements e_p, e_q in $X = \{e_1, \ldots, e_n\}$ such that $R(e_p, e_q) \not\leq_L S(e_p, e_q)$.

A weaker definition of P closure of a $\mathcal{IVFR}s$ is now defined relaxing the Axiom 3 of the Definition 2.11.

Definition 4.3. Let P be a property of $\mathcal{IVFR}s$. Let $R: X^2 \to L$ be an interval-valued fuzzy relation on a finite universe X. The P weak closure of R is a fuzzy relation $R^{\sim P}: X^2 \to L$ that satisfies:

- 1. $R^{\sim P}$ satisfies P.
- 2. $R \subseteq_L R^{\sim \mathring{\mathcal{P}}}$.
- 3. It does not exist any R' satisfying P such that $R \subseteq_L R' \subset_L R^{\sim P}$.

Note that if R satisfies P, then: $R =_L R^{\sim P} =_L R^{P}$.

Lemma 4.1. Let $R: X^2 \to L$ be an interval-valued fuzzy relation on a finite universe X. If $R^{\mathcal{P}}$ exists then $R^{\sim P}$ exists.

Proof. Axiom 3 in Definition 2.11 implies Axiom 3 in the Definition 4.3

Lemma 4.2. Let $R: X^2 \to L$ be an interval-valued fuzzy relation on a finite universe X. If $R^{\mathcal{P}}$ exists, then $R^{\sim P}$ exists, it is unique and it is verified that:

$$R^{\sim \mathcal{P}} =_L R^{\mathcal{P}}$$

Proof. It is followed from Definition 2.11 and 4.3:

- By Axiom 3 of Definition 2.11: $R^{\mathcal{P}} \subseteq_L R^{\sim \mathcal{P}}$
- By Axiom 3 of Definition 4.3: $R^{\mathcal{P}} \not\subset_L R^{\sim \mathcal{P}}$

Hence
$$R^{\mathcal{P}} =_L R^{\sim \mathcal{P}}$$

5. Closures and weak closures of \mathcal{T} -transitivity and 'only comparable' \mathcal{T} -transitivity for $\mathcal{IVFR}s$

The following sections study the closures and weak closures of the \mathcal{T} -transitive and 'only comparable' \mathcal{T} -transitive relations of $\mathcal{IVFR}s$.

5.1. \mathcal{T} -transitive closures of $\mathcal{IVFR}s$

As well as the T-transitive closure of a \mathcal{FR} exists [1], and it is unique, also the \mathcal{T} -transitive closures of IVFR always exists and it is unique. The Ttransitive closure of \mathcal{FR} have been widely studied. There exist many optimal algorithms to compute it in the literature, specially for the minimum t-norm.

Lemma 5.1. [10] Let R be an interval-valued fuzzy relation on a universe X and let \mathcal{T} be an arbitrary t-norm on L. Then the \mathcal{T} -transitive closure of R, $R^{\mathcal{T}}$ always exists.

Theorem 5.1. [10] Let \mathcal{T} be a t-representable t-norm $(\mathcal{T} = [T_1, T_2])$ and let $R = [\underline{R}, \overline{R}]$ be an interval-valued fuzzy relation. Then $R^{\mathcal{T}} = [\underline{R}^{T_1}, \overline{R}^{T_2}]$ where \underline{R}^{T_1} is the T_1 -transitive closure of \underline{R} and \overline{R}^{T_2} is the T_2 -transitive closure of \overline{R} .

5.2. \mathcal{T} -transitive weak closures of $\mathcal{IVFR}s$

As well as for the \mathcal{T} -transitive closure of \mathcal{IVFR} , the \mathcal{T} -transitive weak closure of \mathcal{IVFR} also exists, it is unique, and it is equal to the \mathcal{T} -transitive closure of an IVFR.

Lemma 5.2. Let $R: X^2 \rightarrow L$ be an intervalvalued fuzzy relation on a finite universe X. The \mathcal{T} -transitive weak closure of R exists, it is unique and $R^{\sim \mathcal{T}} = R^{\mathcal{T}}$.

Proof. Trivial by Lemma 5.1 and Lemma 4.2

 \mathcal{T} -An 'only comparable' transitive weak closure of R is denoted by $R^{\sim only\ comparable-\mathcal{T}}$

5.3. 'Only comparable' \mathcal{T} -transitive closures of IVFRs

Lemma 5.3. The 'only comparable' \mathcal{T} -transitive closure of R may not exist.

Proof. Let R be an \mathcal{IVFR} . It is necessary to find two non comparable 'only comparable' \mathcal{T} -transitive $\mathcal{IVFRs}\ S_1,\ S_2$ such that:

- $R \subseteq_L S_1$,
- $R \subseteq_L S_2$ and
- There does not exist any \mathcal{IVFR} S such that $R \subseteq_L S \subseteq_L S_1$ and $R \subseteq_L S \subseteq_L S_2$

Let $\mathcal{T} = [T_1, T_2]$ be a t-norm on L and let R be an \mathcal{IVFR} such that $\underline{R}^{T_1} \subseteq \overline{R}$. If $S_1 = [\underline{R}^{T_1}, \overline{R}]$ and $S_2 = [R, \overline{R}^{T_2}], \text{ then:}$

- \bullet S_1 and S_2 are not comparable because $[\underline{R}^{T_1}, \overline{R}] \nsubseteq_L [\underline{R}, \overline{R}^{T_2}]$ and $[\underline{R}, \overline{R}^{T_2}] \nsubseteq_L [\underline{R}^{T_1}, \overline{R}]$ • S_1 and S_2 are 'only comparable' \mathcal{T} -transitive
- from Lemma 5.4 and 5.5
- There does not exist any IVFR S such that $R \subseteq_L S \subseteq_L S_1$ and $R \subseteq_L S \subseteq_L S_2$ from Lemma 5.4 and 5.5

Lemma 5.4. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' T-transitive interval-valued fuzzy relation on a finite universe X. There does not exist any 'only comparable' \mathcal{T} -transitive relation S such that $S \subseteq_L [\underline{R}^{T_1}, \overline{R}] \text{ if } \underline{R}^{T_1} \subseteq \overline{R}.$

Proof. Suppose that there is an 'only comparable' \mathcal{T} -transitive relation S such that $[\underline{R}, \overline{R}] \subseteq_L$ $[\underline{S}, \overline{S}] \subset_L [\underline{R}^{T_1}, \overline{R}]$ but then $\overline{R} \subseteq S \subset \overline{R}$ which is not possible

Lemma 5.5. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' T-transitive interval-valued fuzzy relation on a finite universe X. There does not exist any 'only comparable' \mathcal{T} -transitive relation S such that $S \subseteq_L [\underline{R}, \overline{R}^{T_2}].$

Proof. Suppose that there exists an 'only comparable' \mathcal{T} -transitive relation S such that $[\underline{R}, \overline{R}] \subseteq_L$ $[\underline{S}, \overline{S}] \subset_L [\underline{R}, \overline{R}^{T_2}]$ but then $\underline{R} \subseteq S \subset \underline{R}$ which is not possible

5.4. 'Only comparable' \mathcal{T} -transitive weak closures of IVFRs

Nevertheless, there may exist several 'only comparable' \mathcal{T} -transitive weak closures of $\mathcal{IVFR}s$.

Lemma 5.6. Let R be an interval-valued fuzzy relation on a universe X and let \mathcal{T} be an arbitrary generalized t-norm. Then, they may exist several 'only comparable' \mathcal{T} -transitive weak closures of R.

Proof. Let $\mathcal{T} = [T_1, T_2]$ be a t-norm on L. Let R be an \mathcal{IVFR} such that $\underline{R}^{T_1} \subseteq \overline{R}$. Then $[\underline{R}^{T_1}, \overline{R}]$ and $[\underline{R}, \overline{R}^{T_2}]$ are 'only comparable' \mathcal{T} -transitive weak closures of R according to Lemmas 5.4 and 5.5 \square

An algorithm to compute the \mathcal{T} -transitive closure of any \mathcal{IVFR} for any t-norm \mathcal{T} on L is given in [10].

Example 5.1. Let $X = \{a_1, a_2, a_3\}$ be a universe and $R: X^2 \to L$ an interval-valued fuzzy relation:

$$R = \begin{pmatrix} [1,1] & [1,1] & [0,0.9] \\ [1,1] & [1,1] & [0.4,0.6] \\ [0,0.9] & [0.4,0.6] & [0,0] \end{pmatrix}$$

Let \mathcal{T} be the following t-norm on L:

$$\mathcal{T}([x_1, x_2], [y_1, y_2]) = [min(x_1, y_1), min(x_2, y_2)]$$

R is not 'only comparable' \mathcal{T} -transitive $\mathcal{T}(R(a_3,a_2),R(a_2,a_3))=[0.4,0.6]>_L R(a_3,a_3)=[0,0].$

Note that there exist several not comparable 'only comparable' \mathcal{T} -transitive approximations containing R, for instance:

$$R_1^{\sim only\ comparable-\mathcal{T}} = \begin{pmatrix} [1,1] & [1,1] & [0,0.9] \\ [1,1] & [1,1] & [0.4,0.6] \\ [0,0.9] & [0.4,0.6] & [0,0.9] \end{pmatrix}$$

$$R_2^{\sim only\; comparable-\mathcal{T}} = \begin{pmatrix} [1,1] & [1,1] & [0,0.9] \\ [1,1] & [1,1] & [0.4,0.6] \\ [0,0.9] & [0.4,0.6] & [0.4,0.6] \end{pmatrix}$$

In fact, there exist infinite 'only comparable' \mathcal{T} -transitive upper approximations. Let $\{S_k : X^2 \to L\}$ be the set of interval-valued fuzzy relations defined as follows:

$$S_k(a_i, a_j) = \begin{cases} [z_{k_1}, z_{k_2}], & \text{if } a_i = a_3 \land a_j = a_3; \\ R(a_i, a_j), & \text{otherwise.} \end{cases}$$

where $[z_{k_1}, z_{k_2}]$ is incomparable with [0,0.9] and [0.4,0.6], i.e. it is false that $[z_{k_1}, z_{k_2}] >_L [0,0.9]$ or $[z_{k_1}, z_{k_2}] <_L [0,0.9]$ (and similar for [0.4,0.6]). Then, it is easy to prove that S_k is 'only comparable' \mathcal{T} -transitive for all k. Moreover, there does not exist any 'only comparable' \mathcal{T} -transitive intervalvalued fuzzy relation S_{min} such that $S_{min} \subseteq_L S_k$ for all k.

Note that all the shown 'only comparable' \mathcal{T} -transitive upper approximations are contained in the the \mathcal{T} -transitive closure [10] of R:

$$R^{\mathcal{T}} = \begin{pmatrix} [1,1] & [1,1] & [0,0.9] \\ [1,1] & [1,1] & [0.4,0.9] \\ [0,0.9] & [0.4,0.9] & [0.4,0.9] \end{pmatrix}$$

Weak T-transitive weak closure for t-representable t-norms

Lemma 6.1. Let \mathcal{T} be a t-representable t-norm on L such that $\mathcal{T} = [T_1, T_2]$. Let $R: X^2 \to L$ be an interval-valued fuzzy relation on a finite universe X. If \underline{R} is T_1 -transitive or \overline{R} is T_2 -transitive then R is 'only comparable' \mathcal{T} -transitive.

Proof. If R is T_1 -transitive it is verified:

$$T_1(R(a_i, a_k), R(a_k, a_j)) \le R(a_i, a_j)$$

for all i, j, k.

By Definition 3.1:

$$T_1(\underline{R(a_i, a_k)}, \underline{R(a_k, a_j)}) \le \underline{R(a_i, a_j)} \text{ or } T_2(\overline{R(a_i, a_k)}, \overline{R(a_k, a_j)}) \le \underline{R(a_i, a_j)}$$

is equivalent to

$$\mathcal{T}(R(a_i, a_k), R(a_k, a_j)) \not>_L R(a_k, a_j)$$

In a similar way it is possible to show that R is 'only comparable' \mathcal{T} -transitive if \overline{R} is T_2 -transitive

Theorem 6.1. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' \mathcal{T} -transitive interval-valued fuzzy relation on a finite universe X. Let $R_{down}^{\mathcal{T}}$ be defined as $[\underline{R}^{T_1}, \overline{R}]$. If $\underline{R}^{T_1} \subseteq \overline{R}$ then $R_{down}^{\mathcal{T}}$ is a $R^{\sim only\ comparable - \mathcal{T}}$.

Proof. Axioms of weak closure under 'only comparable' \mathcal{T} -transitivity are satisfied:

• Axiom 1: $R_{down}^{\mathcal{T}} = [\underline{R}^{T_1}, \overline{R}]$ is 'only comparable' \mathcal{T} -transitive:

Trivial because \underline{R}^{T_1} is T_1 -transitive by Lemma 6.1.

• Axiom 2: $R \subseteq_L R_{down}^T$: Trivial due to $[\underline{R}, \overline{R}] \subseteq_L [\underline{R}^{T_1}, \overline{R}]$.

• Axiom 3: Trivial by Lemma 5.4

Corollary 6.1. Let $R_{down}^{\mathcal{T}}$ be defined as $[\underline{R}^{T_1}, \overline{R}]$. If $\underline{R}^{T_1} \subseteq \overline{R}$ then $R_{down}^{\mathcal{T}} \subseteq_L R^{\mathcal{T}}$

Proof. Trivial from Theorem 2.1 \square

Theorem 6.2. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' \mathcal{T} -transitive relation on a finite universe X. Let $R_{up}^{\mathcal{T}}$ be the interval-valued fuzzy relation defined as $[\underline{R}, \overline{R}^{T_2}]$. Then $R_{up}^{\mathcal{T}}$ is a $R^{\sim only\ comparable - \mathcal{T}}$.

Proof. Axioms of weak closure under 'only comparable' \mathcal{T} -transitivity are satisfied:

• Axiom 1: $R_{up}^{\mathcal{T}} = [\underline{R}, \overline{R}^{T_2}]$ is 'only comparable' \mathcal{T} -transitive:

Trivial due to the fact \overline{R}^{T_2} is T_2 -transitive and Lemma 6.1.

- Axiom 2: $R \subseteq_L R_{up}^{\mathcal{T}}$: Trivial due to $[\underline{R}, \overline{R}] \subseteq_L [R, \overline{R}^{T_2}]$.
- Axiom 3: Trivial by Lemma 5.5

Corollary 6.2. Let $R_{up}^{\mathcal{T}}$ be defined as $[\underline{R}, \overline{R}^{T_2}]$. Then $R_{up}^{\mathcal{T}} \subseteq_L R^{\mathcal{T}}$ *Proof.* Trivial from Theorem 2.1

The next section includes some Theorems and can be usefull to generate some 'only comparable' \mathcal{T} -transitive weak closures.

7. Comparing \mathcal{T} -transitive closures and 'only comparable' \mathcal{T} -transitive weak closures of $\mathcal{IVFR}s$

Theorem 7.1. Let $R: X^2 \to L$ be an intervalvalued fuzzy relation on a finite universe X. Then

$$R^{\sim only\ comparable-\mathcal{T}} \not\supset_{I} R^{\mathcal{T}}$$

Proof. If $R^{\mathcal{T}}$ is \mathcal{T} -transitive then $R^{\mathcal{T}}$ is an 'only comparable' \mathcal{T} -transitive relation. It is not possible that $R^{\sim only\ comparable-\mathcal{T}} \supset_L R^{\mathcal{T}}$ due to the Axiom 3 of definition of 'only comparable' \mathcal{T} -transitive weak closure of R in Definition 4.3

Lemma 7.1. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' \mathcal{T} -transitive interval-valued fuzzy relation on a finite universe X. If $R_{down}^{\mathcal{T}}$ exists then it is satisfied:

$$R_{down}^{\mathcal{T}} \subseteq_L R^{\mathcal{T}}$$

Proof.

$$R_{down}^{\mathcal{T}} =_{L} [\underline{R}^{T_1}, \overline{R}] \subseteq_{L} [\underline{R}^{T_1}, \overline{R}^{T_2}] =_{L} R^{\mathcal{T}}$$

Lemma 7.2. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm on L. Let $R: X^2 \to L$ be a non 'only comparable' \mathcal{T} -transitive interval-valued fuzzy relation on a finite universe X. Then, it is satisfied:

$$R_{un}^{\mathcal{T}} \subseteq_L R^{\mathcal{T}}$$

Proof.

$$R_{up}^{\mathcal{T}} =_L [\underline{R}, \overline{R}^{T_2}] \subseteq_L [\underline{R}^{T_1}, \overline{R}^{T_2}] =_L R^{\mathcal{T}}$$

Lemma 7.3. Let R be an \mathcal{IVFR} . Let S be an \mathcal{IVFR} defined as $S(a_i, a_j) = [R(a_i, a_j), R'(a_i, a_j)]$ such that $R(a_i, a_j) \leq R'(a_i, a_j)$. If S is 'only comparable' \mathcal{T} -transitive, then S is an 'only comparable' \mathcal{T} -transitive weak closure of R.

Proof. S is an 'only comparable' \mathcal{T} -transitive weak closure of R because S is 'only comparable' \mathcal{T} -transitive and there does not exist any \mathcal{IVFR} contained in S

Lemma 7.4. Let R be an \mathcal{IVFR} . There may exist an 'only comparable' \mathcal{T} -transitive weak closure of R that is not contained in the \mathcal{T} -transitive weak closure of R.

Proof. A counterexample is provided.

Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm. Let S be an \mathcal{IVFR} defined as $S = [\underline{R}, \overline{R}^{T_2}]$. Let i_0, j_0 be two integers such that $1 \leq i_0, j_0 \leq n$. Let ϵ be an arbitrary small real number. Let Q be an \mathcal{IVFR} defined as follows:

$$Q(a_i, a_j) = \begin{cases} \overline{R}^{T_2}(a_i, a_j) + \epsilon, & i = i_0, j = j_0; \\ \overline{R}^{T_2}(a_i, a_j), & otherwise. \end{cases}$$

Q is a T_2 -transitive relation. By Lemma 7.3 it is proved that $S' = [\underline{R}, Q]$ is an 'only comparable' \mathcal{T} -transitive weak closure of R. However, S' and $R^{\mathcal{T}}$ are not comparable

According to the Theorem 7.1 the 'only comparable' \mathcal{T} -transitive weak closure of an interval-valued fuzzy relation can not be greater than its \mathcal{T} -transitive closure. Moreover, in many cases the 'only comparable' \mathcal{T} -transitive weak closure of an interval-valued fuzzy relation is contained in its \mathcal{T} -transitive closure but Lemma 7.4 shows that is not always true.

In order to compute the distance between interval-valued fuzzy relations a measure of distance based on the Hamming distance is defined.

Definition 7.1. Let R_X the set of interval-valued fuzzy relations on $X = \{e_1, \ldots, e_n\}$. The distance d between R and S $(R, S \in R_X)$ is defined by:

$$\begin{split} d(R,S) &= \sum_{\forall i,j} \mid \overline{R}(e_i,e_j) - \overline{S}(e_i,e_j) \mid \\ &+ \sum_{\forall i,j} \mid \underline{R}(e_i,e_j) - \underline{S}(e_i,e_j) \mid \end{split}$$

Proposition 7.1. The distance defined in Definition 7.1 is a classical measure of distance.

Proof. Let $R,\!S$ and Q be interval-valued fuzzy relations. Then:

- d(R,R) = 0: trivial.
- d(R, S) = d(S, R): trivial.
- $d(R, S) \le d(R, Q) + d(Q, S)$:

We denote $R(e_i, e_j)$ by $R_{i,j}$ (and for the rest of interval-valued fuzzy relations) for convenience. Then for all i, j it is satisfied:

$$\mid \overline{R}_{i,j} - \overline{S}_{i,j} \mid \leq \mid \overline{R}_{i,j} - \overline{Q}_{i,j} \mid + \mid \overline{Q}_{i,j} - \overline{S}_{i,j} \mid$$

and

$$\mid \underline{R}_{i,j} - \underline{S}_{i,j} \mid \leq \mid \underline{R}_{i,j} - \underline{Q}_{i,j} \mid + \mid \underline{Q}_{i,j} - \underline{S}_{i,j} \mid$$

due to the triangle inequality. Thus $d(R, S) \leq d(R, Q) + d(Q, S)$

Lemma 7.5. Let $\mathcal{T} = [T_1, T_2]$ be a t-representable t-norm. For an interval-valued fuzzy relation R the distance between R and $R^{\mathcal{T}}$ is:

$$d(R, R^{\mathcal{T}}) = \sum_{\forall i, j} | \overline{R}^{T_2}(e_i, e_j) - \overline{R}(e_i, e_j) |$$
$$+ \sum_{\forall i, j} | \underline{R}^{T_1}(e_i, e_j) - \underline{R}(e_i, e_j) |$$

Lemma 7.6. Let $R_{down}^{\mathcal{T}}$ be the 'only comparable' \mathcal{T} transitive weak closure of R given in Theorem 6.1. The distance between R and $R_{down}^{\mathcal{T}}$ is:

$$d(R, R_{down}^{\mathcal{T}}) = \sum_{\forall i, j} | \underline{R}^{T_1}(e_i, e_j) - \underline{R}(e_i, e_j) |$$

Proof. Trivial

Lemma 7.7. Let $R_{down}^{\mathcal{T}}$ be the 'only comparable' \mathcal{T} -transitive weak closure of R given in Theorem 6.1.

$$d(R, R_{down}^{\mathcal{T}}) \le d(R, R^{\mathcal{T}})$$

Proof. Trivial from Lemmas 7.5 and 7.6

Lemma 7.8. Let $R_{up}^{\mathcal{T}}$ be the 'only comparable' \mathcal{T} -transitive weak closure of R given in Theorem 6.2. The distance between R and $R_{up}^{\mathcal{T}}$ is:

$$d(R, R_{up}^{\mathcal{T}}) = \sum_{\forall i, j} | \overline{R}^{T_2}(e_i, e_j) - \overline{R}(e_i, e_j) |$$

Proof. Trivial

Lemma 7.9. Let $R_{up}^{\mathcal{T}}$ be the 'only comparable' \mathcal{T} transitive weak closure of R given in Theorem 6.2.

$$d(R, R_{up}^{\mathcal{T}}) \le d(R, R^{\mathcal{T}})$$

Proof. Trivial from Lemmas 7.5 and 7.8

8. Example

A decision maker (for example: a potential buyer) intends to buy a car. He has four alternatives (cars in this case) to choose $X = \{c_1, c_2, c_3, c_4\}$. Due to the features of this kind of decision the decision maker chooses the \mathcal{T} -norm $\mathcal{T} = [prod, min]$. Taking into consideration various factors (car features in this case) the decision maker constructs the next interval-valued fuzzy relation:

$$R = \begin{pmatrix} [1,1] & [0.4,0.9] & [0.3,0.6] & [0.2,0.5] \\ [0.1,0.6] & [1,1] & [0.2,0.8] & [0.5,0.9] \\ [0.4,0.7] & [0.2,0.8] & [1,1] & [0.2,0.6] \\ [0.5,0.8] & [0.1,0.5] & [0.4,0.8] & [1,1] \end{pmatrix}$$

where $R[1,2] =_L [0.4,0.9]$ means he prefers the cars number 1 over the car number 2 in a degree between 0.4 and 0.9.

This relation is no transitive under \mathcal{T} = [prod, min]. For example: $\mathcal{T}(R[1,2], R[2,3]) =_L$ $[0.08, 0.8] \nleq_L R[1, 3] =_L [0.3, 0.6].$

Probably, the decision maker thinks a non \mathcal{T} transitive relation of preference is not rational. However, he can accept some small changes in order to compute it in a \mathcal{T} -transitive relation. Then he has two options. First, he can compute the \mathcal{T} transitive closure of R. And second, he can compute the 'only comparable' \mathcal{T} -transitive weak closure of

Applying the algorithm given by Gonzalez-del-Campo and Garmendia [11] it is obtained the next relation $R^{\mathcal{T}}$:

$$R^{\mathcal{T}} = \begin{pmatrix} [1,1] & [0.4,0.9] & [0.4,0.8] & [0.4,0.9] \\ [0.5,0.8] & [1,1] & [0.4,0.8] & [0.5,0.9] \\ [0.4,0.8] & [0.4,0.8] & [1,1] & [0.4,0.8] \\ [0.5,0.8] & [0.4,0.8] & [0.4,0.8] & [1,1] \end{pmatrix}$$

For the second option he can compute the 'only comparable' \mathcal{T} -transitive weak closure of R using Theorems 6.1 and 7.2 with $\mathcal{T} = [T_1, T_2] =$ [prod, min]:

$$\begin{array}{cccccc} R_{down}^{\mathcal{T}} = \\ \begin{pmatrix} [1,1] & [0.4,0.9] & [0.4,0.6] & [0.4,0.5] \\ [0.5,0.6] & [1,1] & [0.4,0.8] & [0.5,0.9] \\ [0.4,0.7] & [0.4,0.8] & [1,1] & [0.4,0.6] \\ [0.5,0.8] & [0.4,0.5] & [0.4,0.8] & [1,1] \end{pmatrix} \end{array}$$

$$R_{up}^{\mathcal{T}} = \begin{pmatrix} [1,1] & [0.4,0.9] & [0.3,0.8] & [0.2,0.9] \\ [0.1,0.8] & [1,1] & [0.2,0.8] & [0.5,0.9] \\ [0.4,0.8] & [0.2,0.8] & [1,1] & [0.2,0.8] \\ [0.5,0.8] & [0.1,0.8] & [0.4,0.8] & [1,1] \end{pmatrix}$$

Using Lemmas 7.5, 7.6 and 7.8 it is possible to compute the distances between R and $R^{\mathcal{T}}$, $R_{down}^{\mathcal{T}}$ and $R_{up}^{\mathcal{T}}$:

- $\begin{array}{l} \bullet \ d(R,R^T) = 3 \\ \bullet \ d(R,R^T_{down}) = 1.6 \\ \bullet \ d(R,R^T_{up}) = 1.4 \end{array}$

We can see that $R_{down}^{\mathcal{T}}$ and $R_{up}^{\mathcal{T}}$ are closer to Rthan $R^{\mathcal{T}}$.

9. Conclusions

Transitive property is a fundamental notion in decision theory. It is universally assumed in disciplines of decision theory and accepted in a principle of rationality in some relations. However, the transitive property for interval-valued fuzzy relations is a much stronger condition than for fuzzy relations because it needs that all intervals must be comparable in the inequality that defines \mathcal{T} -transitivity.

In this paper, it is defined the 'only comparable' \mathcal{T} -transitivity property of $\mathcal{IVFR}s$ relaxing the \mathcal{T} transitivity for $\mathcal{FR}s$ by satisfying the inequality just when the intervals are comparable. It is also defined the weak closure for a interval-valued fuzzy relation under a property \mathcal{P} . In particular, it is studied the weak closure for a interval-valued fuzzy relation under the 'only comparable' \mathcal{T} -transitive property. It is proved that the closure for a interval-valued fuzzy relation under 'only comparable' \mathcal{T} -transitivity does not exist and there may exist several weak closure for a interval-valued fuzzy relation under 'only comparable' \mathcal{T} -transitivity.

Finally, it is proposed the weak closure for a interval-valued fuzzy relation under 'only comparable' \mathcal{T} -transitivity as a method to compute an approximation of a non \mathcal{T} -transitive fuzzy relations and it is shown that it is closer than the \mathcal{T} -transitive closure for a interval-valued fuzzy relation. Some examples are provided.

Acknowledgment

This research is partially supported by the Spanish Ministry of Science and Technology, grant number TIN2009-07901, the Research Group CAM GR35/10-A at Complutense University of Madrid.

References

- [1] B. De Baets and H. De Meyer. On the existence and construction of t-transitive closures. *Information Sciences*, 152(1):167–179, 2003.
- [2] H. Bustince and P. Burillo. Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning. *Fuzzy Sets Syst.*, 113(2):205–219, 2000.
- [3] H. Bustince and P. Burillo. Perturbation of intuitionistic fuzzy relations. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 9(1):81–104, 2001.
- [4] H. Bustince, F. Herrera, and J. Montero. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, volume 220 of Studies in Fuzziness and Soft Computing. Hardcover, 2008
- [5] C. Cornelis, G. Deschrijver, and E. Kerre. Implication in intuitionistic fuzzy and intervalvalued fuzzy set theory: construction, classification, application. *International Journal of Approximate Reasoning*, 35(1):55–95, 2004.
- [6] C. Cornelis, G. Deschrijver, and E. Kerre. Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets and Systems, 157(5):622–627, 2006.
- [7] G. Deschrijver. Arithmetic operators in interval-valued fuzzy set theory. *Information Sciences*, 177(14):2906–2924, 2007.
- [8] J. Goguen. L-fuzzy sets. Journal Of Mathematical Analysis And Applications, 18:145–174, 1967.
- [9] R. González del Campo, L. Garmendia, and B. De Baets. Transitive closure of l-fuzzy relations and interval-valued fuzzy relations. In WCCI 2010 IEEE World Congress on Computational Intelligence, pages 3141–3148, 2010.
- [10] R. González del Campo, L. Garmendia, and J. Recasens. Transitive closure of interval-

- valued relations. In *Proceedings IFSA-EUSFLAT'09*, pages 837–842, 2009.
- [11] R. González del Campo, L. Garmendia, and J. Recasens. Transitive closure of intervalvalued fuzzy relations. *International Journal of Computational Intelligence Systems*, 6(4):648– 657, 2013.
- [12] I. Grattan-Guinness. Fuzzy membership mapped onto intervals and many-valued quantities. *Mathematical Logic Quarterly*, 22(1):149–160, 1976.
- [13] P. Grzegorzewski. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the hausdorff metric. Fuzzy Sets and Systems, 148(2):319 328, 2004.
- [14] K. Jahn. Intervall-wertige Mengen. *Mathematische Nachrichten.*, 68:115–132, 1975.
- [15] A. Maas, T. Bezembinder, and P. Wakker. On solving intransitivities in repeated pairwise choices. *Mathematical Social Sciences*, 29(2):83–101, 1995.
- [16] J. Montero, D. Gomez, and H. Bustince. On the relevance of some families of fuzzy sets. Fuzzy Sets And Systems, 158:2429-2442, 2007.
- [17] E. Sanchez and R. Sambuc. Fuzzy relationships. phi-fuzzy functions. application to diagnostic aid in thyroid pathology. Proceedings of an International Symposium on Medical Data Processing, pages 513–524, 1976.
- [18] Y. Xu, H. Wang, and D. Yu. Weak transitivity of interval-valued fuzzy relations. *Knowledge-Based Systems*, 63(0):24 32, 2014.
- [19] L.A. Zadeh. Fuzzy sets. Information And Control, 8:338–353, 1965.
- [20] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning I. *Information Sciences*, 8:199–249, 1975.
- [21] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning II. *Information Sciences*, 8:301–357, 1975.
- [22] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning III. *Information Sciences*, 9:43–80, 1975.