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Abstract

Modus Ponens is a key property for fuzzy im-
plication functions that are going to be used in
fuzzy inference processes. In this paper it is in-
vestigated when fuzzy implication functions derived
from uninorms via residuation, usually called RU -
implications, satisfy the modus ponens with respect
to a continuous t-norm T , or equivalently, when
they are T -conditionals. For RU -implications it is
proved that T -conditionality only depends on the
underlying t-norm TU of the uninorm U used to de-
rive the residual implication and this fact leads to
a lot of new solutions of the Modus Ponens prop-
erty. Along the paper the particular cases when the
uninorm lies in any of the most usual classes of uni-
norms are considered.

Keywords: Fuzzy implication function, residual
implication, Modus Ponens, uninorm

1. Introduction

Fuzzy implication functions play a fundamental role
in fuzzy logic and approximate reasoning. This kind
of logical operations are essential in modelling all
fuzzy conditionals and also in the inference pro-
cess. Moreover, they are also useful in many appli-
cation fields not only derived from the proper ap-
proximate reasoning, but also in other aspects as
fuzzy subset-hood measures, fuzzy relational equa-
tions, fuzzy mathematical morphology, and comput-
ing with words among others. For this reason, inves-
tigations on fuzzy implication functions have been
extensively developed in last decades even from the
pure theoretical point of view, as it can be seen in
the survey [18] and in the books [3, 4], entirely de-
voted to this kind of logical operations.
One of the main topics in this theoretical study

consists on the investigation of additional proper-
ties of implication functions, properties that usually
come from the concrete applications where implica-
tions functions are going to be applied. The study of
each one of these additional properties usually leads
to solve a functional equation (or inequality) in-
volving fuzzy implication functions (see for instance
Chapter 7 in [4] and the references therein).

One of these additional properties, that in this
case comes from approximate reasoning, is known
as the (generalized) Modus Ponens. In fact, for-
ward inference schemes in approximate reasoning
are usually based on the Modus Ponens that is car-
ried out through the well known Compositional Rule
of Inference (CRI) of Zadeh, based on the sup−T
composition, where T is a t-norm (see for instance,
Section 8.3 in [4]). Thus, if I is a fuzzy implication
function and T is a t-norm, the Modus Ponens prop-
erty for I with respect to T becomes the functional
inequality:

T (x,I(x,y))≤ y for all x,y ∈ [0,1],

property that is also known as T -conditionality.
The Modus Ponens has been extensively studied

in the literature by some authors (namely [2, 4, 16,
24, 25, 26, 27]). However, all these studies involve
only the main classes of implication functions:

1. R-implications derived from (left-continuous)
t-norms, IT (x,y) =

sup{z ∈ [0,1] | T (x,z)≤ y, x,y ∈ [0,1]},

2. (S,N)-implications derived from a t-conorm S
and a fuzzy negation N ,

IS,N (x,y) = S(N(x),y), x,y ∈ [0,1],

3. QL-implications derived from a t-norm T , a t-
conorm S and a fuzzy negation N ,

IS,N,T (x,y) = S(N(x),T (x,y)), x,y ∈ [0,1].

On the other hand, note that there exist other
kinds of implication functions like D-implications
and Yager’s implications. Moreover, some general-
izations ofR,(S,N), andQL-implications have been
introduced, by substituting the t-norm and the t-
conorm by more general aggregation functions (for
more details see [4] and also [19] with the references
therein). One of these generalizations is based on
uninorms obtaining the so-called RU -implications
([7]), (U,N)-implications ([5]), and even QL and D-
implications derived from conjunctive and disjunc-
tive uninorms ([15]).
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For these kinds of implications the Modus Ponens
has not been studied yet and this is the idea of the
present paper. In particular we want to deal with
the case of RU -implications, leaving the other cases
for a future work. Specifically, we want to study
the T -conditionality with respect to any continuous
t-norm T for the case of RU -implications. We will
prove that there are a lot of them that satisfy the
Modus Ponens with respect to any t-norm T , and we
will characterize the special case when the t-norm
T and the underlying operations of the uninorm are
continuous.

2. Preliminaries

We will suppose the reader to be familiar with the
theory of t-norms, t-conorms and fuzzy negations
(all necessary results and notations can be found
in [11]). We also suppose that some basic facts on
uninorms are known (see for instance [9]) as well as
their most usual classes, that is, uninorms in Umin
and Umax ([9]), representable uninorms ([9]), idem-
potent uninorms ([6, 14, 23]) and uninorms contin-
uous in the open unit square ([10]).

We recall here only some facts on implications
and uninorms in order to stablish the necessary no-
tation that we will use along the paper.

Definition 1 A binary operator I : [0,1]× [0,1]→
[0,1] is said to be a fuzzy implication function, or
an implication, if it satisfies:

(I1) I(x,z)≥ I(y,z) when x≤ y, for all z ∈ [0,1].

(I2) I(x,y)≤ I(x,z) when y ≤ z, for all x ∈ [0,1].

(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.

Note that, from the definition, it follows that
I(0,x) = 1 and I(x,1) = 1 for all x ∈ [0,1] whereas
the symmetrical values I(x,0) and I(1,x) are not
derived from the definition.

Definition 2 A uninorm is a two-place function
U : [0,1]2 −→ [0,1] which is associative, commuta-
tive, increasing in each place and such that there ex-
ists some element e ∈ [0,1], called neutral element,
such that U(e,x) = x for all x ∈ [0,1].

Evidently, a uninorm with neutral element e = 1
is a t-norm and a uninorm with neutral element
e = 0 is a t-conorm. For any other value e ∈]0,1[
the operation works as a t-norm in the [0,e]2 square,
as a t-conorm in [e,1]2 and its values are between
minimum and maximum in the set of points A(e)
given by

A(e) = [0,e[× ]e,1] ∪ ]e,1]× [0,e[.

We will usually denote a uninorm with neutral
element e and underlying t-norm and t-conorm,
T and S, by U ≡ 〈T,e,S〉. For any uninorm it
is satisfied that U(0,1) ∈ {0,1} and a uninorm U

is called conjunctive if U(1,0) = 0 and disjunctive
when U(1,0) = 1. On the other hand, let us recall
the most studied classes of uninorms in the litera-
ture.

Theorem 1 ([9]) Let U : [0,1]2 → [0,1] be a uni-
norm with neutral element e ∈ ]0,1[.

(a) If U(0,1) = 0, then the section x 7→ U(x,1) is
continuous except in x = e if and only if U is
given by U(x,y) =

eT
(
x
e ,
y
e

)
if (x,y) ∈ [0,e]2,

e+(1−e)S
(
x−e
1−e ,

y−e
1−e

)
if (x,y) ∈ [e,1]2,

min(x,y) if (x,y) ∈A(e),

where T is a t-norm, and S is a t-conorm.
(b) If U(0,1) = 1, then the section x 7→ U(x,0) is

continuous except in x = e if and only if U is
given by the same structure as above, changing
minimum by maximum in A(e).

The set of uninorms as in case (a) will be denoted
by Umin and the set of uninorms as in case (b) by
Umax. We will denote a uninorm in Umin with un-
derlying t-norm T , underlying t-conorm S and neu-
tral element e as U ≡ 〈T,e,S〉min and in a similar
way, a uninorm in Umax as U ≡ 〈T,e,S〉max.

Idempotent uninorms were characterized first in
[6] for those with a lateral continuity and in [14] for
the general case. An improvement of this last result
was done in [23] as follows.

Theorem 2 ([23]) U is an idempotent uninorm
with neutral element e ∈ [0,1] if and only if there
exists a non increasing function g : [0,1] → [0,1],
symmetric with respect to the identity function, with
g(e) = e, such that U(x,y) =

min(x,y) if y < g(x) or
(y = g(x) and x < g2(x)),

max(x,y) if y > g(x) or
(y = g(x) and x > g2(x)),

x or y if y = g(x) and x= g2(x),

being commutative in the points (x,y) such that
y = g(x) with x= g2(x).

Any idempotent uninorm U with neutral element
e and associated function g, will be denoted by U ≡
〈g,e〉ide and the class of idempotent uninorms will
be denoted by Uide. Obviously, for any of these
uninorms the underlying t-norm T is the minimum
and the underlying t-conorm S is the maximum.

Definition 3 ([9]) Let e be in ]0,1[. A binary oper-
ation U : [0,1]2→ [0,1] is a representable uninorm if
and only if there exists a strictly increasing function
h : [0,1]→ [−∞,+∞] with h(0) =−∞, h(e) = 0 and
h(1) = +∞ such that

U(x,y) = h−1(h(x)+h(y))
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for all (x,y) ∈ [0,1]2 \ {(0,1),(1,0)} and U(0,1) =
U(1,0) ∈ {0,1}. The function h is usually called an
additive generator of U .

Remark 1 Recall that the are no continuous uni-
norms with neutral element e ∈]0,1[. In fact, repre-
sentable uninorms were characterized as those uni-
norms that are continuous in [0,1]2 \ {(1,0),(0,1)}
(see [21]) as well as those that are strictly increasing
in the open unit square (see [8]).

Any representable uninorm U with neutral ele-
ment e and additive generator h, will be denoted
by U ≡ 〈h,e〉rep and the class of representable uni-
norms will be denoted by Urep. For any of these
uninorms the underlying t-norm T is always strict
and the underlying t-conorm S is strict as well.
A more general class containing representable

uninorms is given by those uninorms that are con-
tinuous in the open unit square ]0,1[2. This class
was characterized in [10] as follows.

Theorem 3 ([10] and [21] for the current version)
Suppose U is a uninorm continuous in ]0,1[2 with
neutral element e ∈]0,1[. Then either one of the
following cases is satisfied:
(a) There exist u∈ [0,e[, λ∈ [0,u], two continuous

t-norms T1 and T2 and a representable uninorm R
such that U can be represented as U(x,y) =

λT1
(
x
λ ,

y
λ

)
if x,y ∈ [0,λ],

λ+(u−λ)T2
(
x−λ
u−λ ,

y−λ
u−λ

)
if x,y ∈ [λ,u],

u+(1−u)R
(
x−u
1−u ,

y−u
1−u

)
if x,y ∈ ]u,1[,

1 if min(x,y) ∈ ]λ,1]
and max(x,y) = 1,

λ or 1 if (x,y) = (λ,1)
or (x,y) = (1,λ),

min(x,y) elsewhere.
(1)

(b) There exist v ∈]e,1], ω ∈ [v,1], two continuous
t-conorms S1 and S2 and a representable uninorm
R such that U can be represented as U(x,y) =

v+(ω−v)S1
(
x−v
ω−v ,

y−v
ω−v

)
if x,y ∈ [v,ω],

ω+(1−ω)S2
(
x−ω
1−ω ,

y−ω
1−ω

)
if x,y ∈ [ω,1],

vR
(
x
v ,
y
v

)
x,y ∈ ]0,v[,

0 if max(x,y) ∈ [0,ω[
and min(x,y) = 0,

ω or 0 if (x,y) = (0,ω)
or (x,y) = (ω,0),

max(x,y) elsewhere.
(2)

The class of all uninorms continuous in ]0,1[2 will
be denoted by Ucos. A uninorm as in (1) will be
denoted by U ≡ 〈T1,λ,T2,u,(R,e)〉cos,min and the
class of all uninorms continuous in the open unit

square of this form will be denoted by Ucos,min.
Analogously, a uninorm as in (2) will be denoted
by U ≡ 〈(R,e),v,S1,ω,S2〉cos,max and the class of
all uninorms continuous in the open unit square of
this form will be denoted by Ucos,max. For any uni-
norm U ≡ 〈T1,λ,T2,u,(R,e)〉cos,min, the underlying
t-norm of U is given by an ordinal sum of three
t-norms, T1,T2 and a strict t-norm, whereas the
underlying t-conorm is always strict. Similarly, for
any uninorm U ≡ 〈(R,e),v,S1,ω,S2〉cos,max, the un-
derlying t-norm of T is always strict, whereas the
underlying t-conorm is given by an ordinal sum of
three t-conorms, a strict t-conorm, S1, and S2.
On the other hand, different classes of implica-

tions derived from uninorms have been studied. We
recall here RU -implications.

Definition 4 Let U be a uninorm. The residual
operation derived from U is the binary operation
given by IU (x,y) =

sup{z ∈ [0,1] | U(x,z)≤ y} for all x,y ∈ [0,1].

Proposition 4 ([7]) Let U be a uninorm and IU
its residual operation. Then IU is an implication if
and only if the following condition holds

U(x,0) = 0 for all x < 1. (3)

In this case IU is called an RU -implication.

This includes all conjunctive uninorms but also
many disjunctive ones, for instance in the classes of
representable uninorms (see [7]), idempotent uni-
norms (see [20]), and uninorms continuous in the
unit open square (see [22]). However, when we deal
with left-continuous uninorms U we clearly have
that U satisfies condition (3) if and only if it is con-
junctive.

Some properties of RU -implications have been
studied involving the main classes of uninorms,
those previously stated: uninorms in Umin, repre-
sentable uninorms, idempotent uninorms and uni-
norms continuous in the open unit square (for more
details see [1, 4, 7, 17, 20, 22]). However, although
the strong interest of the Modus Ponens property,
its study is not among the properties investigated
for implications derived from uninorms. Let us re-
call the definition of the Modus Ponens in the frame-
work of fuzzy logic.

Definition 5 Let I be an implication function and
T a t-norm. It is said that I satisfies the Modus
Ponens property with respect to T , or that I is a
T -conditional if

T (x,I(x,y))≤ y for all x,y ∈ [0,1]. (4)

A well known general result on T -conditionality
was proved in [24].

Proposition 5 Let I be an implication function
and T a left-continuous t-norm. Then I is a T -
conditional if and only if I ≤ IT , where IT denotes
the residual implication derived from T .
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3. RU-implications that are T -conditionals

In this section we want to deal with the case of RU -
implications. Thus, the main goal of this section
is to characterize when an RU -implication derived
from a uninorm U is a T -conditional for a t-norm
T , specially when T is continuous. All along this
section it will be understood that any considered
uninorm U satisfies U(x,0) = 0 for all x< 1, in order
to ensure that the corresponding residual IU is an
RU -implication, according to Proposition 4.

Proposition 6 Let U be a uninorm with neutral
element e ∈]0,1[ and underlying t-norm TU , and let
IU be the corresponding RU -implication. Then the
following items are equivalent:

i) IU is a T -conditional.
ii) IU satisfies Equation (4) for all y < x < e.
iii) The inequality

T
(
x,eITU

(x
e
,
y

e

))
≤ y

holds for all x,y such that y < x< e, where ITU

denotes the residual implication derived from
the t-norm TU .

This result proves that the underlying t-conorm
SU of the uninorm U and the values of U in the
region A(e) are not relevant in order IU to be
a T -conditional. Only the underlying t-norm TU
is relevant and the inequality corresponding to T -
conditionality only needs to be checked in the region

Re = {(x,y) ∈ [0,1]2 | y < x < e}.

The region Re is pictured in Figure 3.

�
�
�
�
�
�

e

e

1

10

Re

Figure 1: Region Re.

Thus, we continue our study depending on how
the underlying t-norm TU is. Note that if T (e,e) =
0, then condition iii) in Proposition 6 is always sat-
isfied. Then, any t-norm TU (continuous or not)
will work in this case. From now on, we will restrict
ourselves to the case when TU is continuous. Taking
into account the classification of continuous t-norms
(see for instance [11]), we will divide our study in

three steps respectively devoted to the cases when
TU = min, TU is Archimedean or TU is given by an
ordinal sum.

Let us begin with the case when TU = min.

Proposition 7 Let U be a uninorm with neutral
element e ∈]0,1[ and underlying t-norm TU given
by the minimum. Then the RU -implication IU is a
T -conditional for any t-norm T . In particular, this
is the case for any idempotent uninorm U .

Example 1 Let N be a strong negation. Among
the class of idempotent uninorms, an important ex-
ample is given by uninorms whenever g = N (see
[20]), that is, they have the form

U(x,y) =


min(x,y) if y < N(x),
max(x,y) if y > N(x),
min(x,y) or max(x,y) otherwise,

being commutative in the points (x,y) such that
y = N(x). In these cases the corresponding RU -
implication is given by

IU (x,y) =
{

min(N(x),y) if y < x,

max(N(x),y) if y ≥ x.

From the proposition above, all these implications
are T -conditionals for any t-norm T . Figure 3
shows the idempotent uninorm U ≡

〈
N, 1

2
〉

ide and
its RU -implication given in this example when the
considered negation is the classical one Nc(x) =
1−x.

Let us now deal with the case when the underly-
ing t-norm TU is Archimedean and the t-norm T is
continuous. It is well known that when a t-norm is
Archimedean it is represented by a decreasing addi-
tive generator ϕ : [0,1]→ [0,+∞], with ϕ(0) = +∞
if the t-norm is strict, and with ϕ(0) = 1 when the
t-norm is nilpotent. Moreover, in this last case the
function N(x) = ϕ−1(1−ϕ(x)) for all x ∈ [0,1] is a
strong negation usually called the associated nega-
tion of the nilpotent t-norm T . Let us consider both
cases separately.

Proposition 8 Let U be a uninorm with neutral
element e ∈]0,1[ and underlying t-norm TU strict.
Let IU be the RU -implication derived from U and
T a continuous t-norm.

i) If IU is a T -conditional, then there exists a≥ e
such that T is an ordinal sum of the form T =
(〈0,a,Ta〉,〈a,1,T1〉), where Ta is Archimedean
and T1 continuous.

ii) Let ϕ and ϕa be the additive generators of
TU and Ta, respectively. Then IU is a T -
conditional if and only if the function g defined
from [0,+∞] to [ϕa( ea ),ϕa(0)] given by the ex-
pression g(u) = ϕa

(
e
aϕ
−1(u)

)
is sub-additive.
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Figure 2: Structure of U ≡
〈
N, 1

2
〉

ide (top) and IU
(bottom) with Nc(x) = 1−x.

Remark 2 i) Note that when a = e, the result
above can be related to the results about T -
conditionality for residual implications derived
from continuous t-norms given in [24]. Specifi-
cally, we can derive that IU is a T -conditional
if and only T = (〈0,e,Te〉,〈e,1,T1〉), where Te
is Archimedean, T1 continuous and ITU

is a
Te-conditional.

ii) Of course that one can take a= 1 in the propo-
sition above obtaining RU -implications that are
T -conditional for Archimedean t-norms T .

iii) Note that uninorms with TU strict include, but
are not limited to, all representable uninorms
as well as those uninorms continuous in ]0,1[2
lying in Ucos,max. In addition, the subset of
all uninorms with TU and SU strict have been
recently characterized in [13].

Example 2 Let us take, for instance, the conjunc-
tive uninorm given by U(x,y) ={

0 if (x,y) ∈ {(1,0),(0,1)},
xy

xy+(1−x)(1−y) otherwise,

whose residual implication IU is given by

IU (x,y) =
{

1 if (x,y) ∈ {(0,0),(1,1)},
(1−x)y
x+y−2xy otherwise,

and take also T = TP the product t-norm. It is easy
to see that in this case IU is a T -conditional.

Figure 3: Representable uninorm U with additive
generator h(x) = log

(
x

1−x

)
(top) and its residual

implication IU (bottom).

Namely, it is well known that U is a representable
uninorm with neutral element e = 1

2 and additive
generator h(x) = log

(
x

1−x

)
. In this case, the un-

derlying t-norm TU is strict with additive generator
given by ϕ(x) = log

(2−x
x

)
(see [9] or Section 10.2 in

[11]). Moreover, this situation corresponds to take
a = 1 and ϕ1(x) = − log(x) in Proposition 8 and
consequently the corresponding function g is given
by

g(x) = ϕ1

(
1
2ϕ
−1(x)

)
=− log

(
1
2

2
1+ex

)
= log(1+ex),

which is clearly sub-additive. In Figure 3 uninorm
U and its residual implication IU have been de-
picted.

Proposition 9 Let U be a uninorm with neutral
element e ∈]0,1[ and underlying t-norm TU nilpo-
tent with associated negation NU . Let IU be the
RU -implication derived from U and T a continuous
t-norm.

i) If IU is a T -conditional with respect to T , then
there exists a≥ e such that T is an ordinal sum
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of the form T = (〈0,a,Ta〉,〈a,1,T1〉), where Ta
is nilpotent with associated negation Na such
that Na covers NU , i.e., eNU (xe )≤ aNa(xa ) for
all x ∈ [0,e], and T1 is continuous.

ii) Let ϕ and ϕa be the additive generators of
TU and Ta, respectively. Then IU is a T -
conditional with respect to T if and only if the
function g : [0,1]→ [ϕa( ea ),1] given by g(u) =
ϕa
(
e
aϕ
−1(u)

)
is sub-additive.

Remark 3 i) Note that in the previous proposi-
tion, the fact that g is subadditive already en-
sures that the corresponding negations Na and
NU are such that Na covers NU . Namely, we
have that Na covers NU if and only if

eϕ−1
(

1−ϕ
(x
e

))
≤ aϕa−1

(
1−ϕa

(x
a

))
,

but taking the change x = eϕ−1(z), this is
equivalent to

g(1−z)≥ 1−g(z),

which is clearly satisfied when g is sub-additive.
ii) Again note that when a = e, the result above

can be stated as follows: IU is a T -conditional
if and only T = (〈0,e,Te〉,〈e,1,T1〉), where Te
is Archimedean, T1 continuous and ITU

is a
Te-conditional. Of course a = 1 can be taken
in the proposition above obtaining RU -impl-
ications that are T -conditional for nilpotent t-
norms T .

iii) Recall that uninorms U with TU nilpotent and
SU Archimedean were characterized in [12] and
[13].

Example 3 Let U be a uninorm in Umin with neu-
tral element e= 1

2 and underlying t-norm TU = TL
the Łukasiewicz t-norm, that is, U is given by the
expression

U(x,y) =


max(0,x+y− 1

2 ) if (x,y) ∈ [0, 1
2 ]2,

1+SU (2x−1,2y−1)
2 if (x,y) ∈ [ 1

2 ,1]2,
min(x,y) otherwise,

where SU can be any t-conorm. In this case IU is
given by (see [7]):

IU (x,y) =



1 if x < 1
2 and x≤ y,

1
2 −x+y if x < 1

2 and x > y,

y if y ≤ 1
2 ≤ x,

1
2 if 1

2 ≤ y < x,
1+RSU

(2x−1,2y−1)
2 if 1

2 ≤ x≤ y,

where RSU
(x,y) = sup{z ∈ [0,1]|SU (x,z) ≤ y}.

Then IU is always a TL-conditional because, using
Proposition 9, we have a = 1 and ϕ(x) = ϕ1(x) =
1− x, obtaining g(x) = x+1

2 which is clearly sub-
additive. In Figure 4 we can see the structure of this
general uninorm in Umin as in this example and the
corresponding RU -implication.

1
2

1
20

1

1

min

min

SU

0

x + y − 1
2

@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�
��

1
2

1
2

1

y

RSU

1
2 − x + y

1
2

0

1

1

Figure 4: Structure of U (top) and IU (bottom)
when U ∈ Umin, TU = TL and e= 1

2 .

Proposition 10 Let U be a uninorm with neutral
element e∈]0,1[ and underlying t-norm given by the
ordinal sum TU = (〈ai

e ,
bi
e ,Ti〉)i∈I with 0≤ ai < bi ≤

e and Ti Archimedean for all i ∈ I. Let IU be the
RU -implication derived from U and T a continuous
t-norm. Then IU is a T -conditional if and only if
the following items hold:

i) The set of idempotent elements of T , that are
less than or equal to e, are contained in [0,e]\
{∪i∈I(ai, bi)}.

ii) The t-norm T is an ordinal sum of the form
T = (〈cj ,di,T ′j〉)j∈J in such a way that for all
i ∈ I there exists a j ∈ J such that
– (ai, bi) ⊆ (cj ,dj), and if Ti is nilpotent

with associated negation Ni for some i∈ I
and ai = cj then T ′j must be also nilpotent
with associated negation Nj such that Nj
covers Ni.

– If ϕi and ϕj are the respective additive
generators of Ti and T ′j , then the func-
tion gij that is defined from [0,ϕi(0)] to[
ϕj(

bi−cj

dj−cj
),ϕj(

ai−cj

dj−cj
)
]
given by

gij(u) = ϕj

(
ai+(bi−ai)ϕ−1

i (u)− cj
dj− cj

)
is sub-additive.

From the previous result we can easily derive the
following result.
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Proposition 11 Let U be a uninorm with neutral
element e∈]0,1[ and underlying t-norm given by the
ordinal sum TU = (〈ai

e ,
bi
e ,Ti〉)i∈I with 0≤ ai < bi ≤

e and Ti Archimedean for all i ∈ I. Let T be the or-
dinal sum T = (〈ai, bi,T ′i 〉)i∈I with T ′j Archimedean
for all i ∈ I and suppose that IT ′

i
is Ti-conditional

for all i ∈ I. Then IU is a T -conditional.

Example 4 Let U be a uninorm in Umin with neu-
tral element e= 1

2 and underlying t-norm TU given
by the ordinal sum TU = (〈0, 1

2 ,TP〉,〈12 ,1,TL〉) that
is, U is given by the expression

U(x,y) =


4xy if (x,y) ∈ [0, 1

4 ]2,
max(1

4 ,x+y− 1
2 ) if (x,y) ∈ [ 1

4 ,
1
2 ]2,

1+SU (2x−1,2y−1)
2 if (x,y) ∈ [ 1

2 ,1]2,
min(x,y) otherwise,

where SU can be any t-conorm.
Let us consider the t-norm T given by the expres-

sion

T (x,y) =


TP if (x,y) ∈ [0, 1

2 ]2,
TL if (x,y) ∈ [ 1

2 ,1]2,
min(x,y) otherwise.

Using Proposition 11, IU is a T -conditional be-
cause, ITP is a TP-conditional and ITL is a TL-
conditional.
In Figure 5 we can see the structure of this gen-

eral uninorm in Umin as in this example and the
corresponding RU -implication.

4. Conclusions and future work

Forward inference schemes in approximate reason-
ing are based on the Modus Ponens property, also
called T -conditionality. Thus, fuzzy implication
functions used in the inference process of any fuzzy
rule based system are required to satisfy this prop-
erty, which becomes essential in approximate rea-
soning and fuzzy control. Fixed a continuous t-
norm T modelling the conjunction, we studied in
this paper which fuzzy implication functions satisfy
T -conditionality among a special kind of implica-
tions derived from uninorms: RU -implications. In
this case we have characterized all the solutions of
the Modus Ponens property with respect to a con-
tinuous t-norm T and from these characterizations
we obtain a lot of new fuzzy implication functions
satisfying the T -conditionality.
Moreover, we want to extend this study to the

cases of other classes of fuzzy implication functions
derived from uninorms, like (U,N)-implications and
QL and D-implications. It is worth to point out
that we have already started with the case of (U,N)-
implications obtaining again a lot of new solu-
tions. Moreover, contrariously to what happens
with RU -implications, T -conditionality for (U,N)-
implications only depends on the underlying t-
conorm SU and only in some cases, depending on

1
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1
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1
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min

SU

min

minTP

TL

1
2

1
2

1
4

1
40

1

1

min

min

TL

TP

Figure 5: Structure of U (top) and T (bottom) such
that U ∈ Umin, and IU is a T -conditional.

the value

αN = inf{z ∈ [0,1] |N(z) = e},

where N is the negation used to derive the corre-
sponding (U,N)-implication, and e is the neutral
element of the uninorm U . Another possible ex-
tension that deserves to be investigated is related
to the Modus Ponens with respect to a conjunctive
uninorm U instead of a continuous t-norm T.
Of course that, as future work, it should be also

included the study of the Modus Tollens for all these
classes of implications.
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