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Abstract

In this paper we introduce a class of linear orders
for discrete gradual real numbers. Based on the lin-
ear orders we propose an OWA operator on the set
of discrete gradual numbers and discuss some its
properties. This is a first step of our intentions to
introduce a class of linear orders, and consequently
also OWA operator, for the set of discrete gradual
intervals. Because the set of all fuzzy intervals is in-
cluded in the set of all gradual intervals, proposed
linear orders and OWA operators would be applica-
ble in the settings of fuzzy intervals too.

Keywords: OWA operator, Ordered weighted aver-
aging operator, Gradual number, Linear order, To-
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1. Introduction

Since Yager in [1] proposed an ordered weighted av-
eraging operator (OWA operator) this operator is
one of the most widely used aggregation methods
for real numbers. In the recent years there is a grow-
ing interest of scholars to study OWA operators for
some other objects, e.g. intervals [2], [3] or fuzzy in-
tervals (fuzzy sets) [4], [5]. The obstacle to applying
OWA operators on these more difficult structures is
the need of linear order on the structures. This is
especially significant for fuzzy intervals which are
not linearly ordered [6] and whose aggregation is
the matter of interest for many authors (e.g. [7],
[8], [9], [10], [11], [12], [13]).

A new concept in fuzzy sets theory, namely a
gradual element, is discussed in [14] and [15]. This
arose from the distinction between fuzziness and
imprecision. According to the authors a gradual
real number possess fuzziness but not uncertainty.
On the other hand fuzzy interval (sometimes called
’fuzzy number’) possess both. For the similar point
of view on gradualness see [16], [17] and [18].

The aim of this paper is to propose an OWA op-
erator for gradual numbers. The crucial point of
this is the existence of a linear order. As is stated
in [15] the set of gradual numbers is not linearly or-
dered. Hence we will consider the discrete case and
propose a class of linear orders for discrete gradual

real numbers. We give an algorithm for such lin-
ear ordering which is the main result of the paper.
Based on this linear order we can state a definition
of OWA operator for discrete gradual real numbers
(DGOWA operator).

This is an introductory paper of our research.
In the future work we intend to use these results
and propose a linear order and OWA operator
(DGIOWA) for discrete gradual intervals (gradual
interval is a crisp interval of gradual real numbers).
Gradual intervals emerged as a new way of looking
at fuzzy intervals [19]: instead of considering them
as fuzzy sets, one can see them as crisp intervals
of gradual real numbers. Recall that the set of all
gradual intervals also include the set of all fuzzy
intervals, thus this DGIOWA operator will be ap-
plicable to fuzzy intervals too [20].

The paper is organized as follows. Section 2 con-
tains basic definitions and notations that are used
in the remaining parts of the paper. In Section 3
a linear order for discrete gradual real numbers is
proposed and an algorithm for the linear ordering
is given. Section 4 introduces an OWA operator for
discrete gradual real numbers and discusses some
basic properties of the operator. In Section 5 we
briefly discuss our future intentions and conclude
the paper.

2. Preliminaries

In this section we present some basic concepts and
terminology that will be used throughout the paper.

Definition 1 ([14], [15]) A gradual real number r̆

is defined by an assignment function Ar̆ : (0, 1] →
R. The set of all gradual real numbers is denoted by
G(R).

For discussion on rationale of gradual numbers
see [15]. Hereafter we only consider discrete gradual
real numbers.

Definition 2 Let k be a positive integer. A discrete
gradual real number r̆ is defined by an assignment
function Ar̆ : {α1, . . . , αk} → R, where 0 < α1 <

α2 < . . . < αk = 1. The set of all discrete gradual
real numbers is denoted by DGk(R).
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For simplicity we do not distinguish between
gradual number and its assignment function, thus
we write r̆(α) instead of Ar̆(α).

A partial order on discrete gradual real numbers
(see [15]) can be defined as follows:

r̆ ≤ s̆ iff r̆(αi) ≤ s̆(αi), ∀i ∈ {1, . . . , k}. (1)

Recall also that the equality is defined in a
straightforward way:

r̆ = s̆ iff r̆(αi) = s̆(αi), ∀i ∈ {1, . . . , k}.

Clearly, gradual numbers generalize real numbers:
for each r ∈ R there exists r̆ ∈ DGk(R) such that
r̆(αi) = r for all i = 1, . . . , k. We will write r̆ ⊜ r

to emphasize that r and r̆ are objects of different
kinds. For instance, instead of r̆(αi) = 1 for all
i = 1, . . . , k we will write r̆ ⊜ 1, or simply 1̆.

Fuzzy intervals, i.e. fuzzy subsets of real line
whose α-cuts are closed intervals, were closely stud-
ied e.g. in [6] or [21]. It is easy to see that fuzzy
interval can be described by a pair of gradual num-
bers (so-called gradual interval) with several prop-
erties. See [19] for relation between fuzzy intervals
and gradual intervals.

Definition 3 ([1]) Let w = (w1, . . . , wn) ∈ [0, 1]n

with w1 + . . .+wn = 1 be a weighting vector. An or-
dered weighted averaging operator (OWA for short)
associated with w is a mapping OWAw : [0, 1]n →
[0, 1] defined by

OWAw(x1, . . . , xn) =

n∑

i=1

wix(i)

where x(i) denotes the ith largest number among
x1, . . . , xn.

Let us emphasize that the input (x1, . . . , xn) has
to be ordered prior to applying the summation.
Hence, if we want to apply an OWA operator, we
need a linear order on the relevant set of inputs.

3. Linear order of discrete gradual real
numbers

In this section we propose a linear order of discrete
gradual real numbers. First we give the following al-
gorithm for ranking ≺ of discrete gradual real num-
bers.

Algorithm 1: Let r̆, s̆ ∈ DGk(R) be discrete
gradual real numbers, v = (v1, . . . , vk) ∈ [0, 1]k be
a weighting vector with v1 + . . . + vk = 1, and g :
{0, 1, . . . , k} → [0, 1] be a function with appropriate
properties specified in the algorithm.

1. Initialization:
I = {1, . . . , k}.
M := ∅.
s := 1.
For all i ∈ I, let v′

i := vi.

2. Comparison:
If

∑
i∈I

v′
ir̆(αi) <

∑
i∈I

v′
is̆(αi), then r̆ ≺ s̆ (END).

If
∑
i∈I

v′
ir̆(αi) >

∑
i∈I

v′
is̆(αi), then s̆ ≺ r̆ (END).

If s = 1, then go to step 3.
If s = 2, then go to step 4.

3. Omitting 1:
M := M ∪ {j | vj = min{vi | i ∈ I}}.
I := I − M .
If I 6= ∅, then go to step 5,

else M := ∅, I = {1, . . . , k}, s := 2.

4. Omitting 2:
M := M ∪ min {j | vj = min{vi | i ∈ I}}.
I := I − M .
If I = ∅, then r̆ = s̆ (END).

5. Redistribution of weights:
For all i ∈ I, let v′

i := vi + g(i),
(where g : {0, 1, . . . , k} → [0, 1] is a function
with

∑
i∈I v′

i = 1).
Go to step 2.

The intuition behind Algorithm 1 is as follows.
Our ranking ≺ of discrete gradual real numbers r̆

and s̆ is based on the usual order (of real numbers)
of the fuzzy weighted averages (FWAs for short) of
r̆(α1), . . . , r̆(αk) and s̆(α1), . . . , s̆(αk) (step 2 of the
algorithm). If the FWAs are equal, we proceed as
follows:

• We omit the set of all elements with minimal
weight (step 3), redistribute the sum of their
weights to the rest of the elements (step 5, we
discuss the technique of redistribution below)
and compare FWAs again (step 2). We repeat
these steps till we get an inequality between
FWAs or we omit all the elements.

• If the above procedure does not lead to a sat-
isfactory result (inequality between FWAs), we
refine it as follows. We omit the element cor-
responding to minimal αi among the elements
with minimal weight (step 4), redistribute its
weight to the rest of the elements (step 5) and
compare FWAs again (step 2). We repeat these
steps till we get an inequality between FWAs
or we omit all the elements.

If an inequality between FWAs does not appear
through the whole procedure, then it holds s̆ = r̆

(see Theorem 1).
Redistribution of weights of the omitted elements

is done by a redistribution function g(i) in the fol-
lowing way: v′

i = vi + g(i), for all i ∈ I. The redis-
tribution function g : {0, 1, . . . , k} → [0, 1] should
satisfy

∑
i∈I g(i) =

∑
j∈M vj which clearly forces∑

i∈I v′
i = 1 (the sum of all new weights is again

equal to 1).
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Example 1. For instance,

g(i) =
vs

k − |M |

where |M | denotes the cardinality of M , vs =∑
j∈M vj , i.e.,

v′
i = vi +

vs

k − |M |
.

In this case the weight of each element is increased
by the same value.

Example 2. Let

g(i) =
vi

1 − vs

· vs,

i.e.,

v′
i = vi +

vi

1 − vs

· vs.

In this case the weights of individual elements are
increased in proportion of the original weights.

The following theorem states that the ranking
≺ given by Algorithm 1 is a linear order of dis-
crete gradual real numbers provided the weights are
nonzero, i.e.,

v1 > 0, . . . , vk > 0.

Moreover, it is not just a single linear order, but a
class of linear orders based on the choice of weight-
ing vector v and redistribution function g.

Theorem 1 Let ≺ be given by Algorithm 1 for
some fixed redistribution function g and weighting
vector v = (v1, . . . , vk) ∈ (0, 1]k with v1 + . . . + vk =
1. A binary relation �v,g defined by

r̆ �v,g s̆ iff (r̆ ≺ s̆ or r̆ = s̆)

is a linear order on the set of all discrete gradual
real numbers.

Proof. It is obvious that �v,g is reflexive, transitive
and antisymmetric, thus it is a partial order on the
set of all gradual real numbers. Hence it is sufficient
to show that each pair r̆, s̆ of gradual real numbers
is comparable by �v,g. From Algorithm 1 we obtain
exactly one of the following three results:
1. r̆ ≺ s̆, or
2. s̆ ≺ r̆, or
3.

∑

i∈I1

v1ir̆(αi) =
∑

i∈I1

v1is̆(αi), I1 = {1, 2, . . . , k},

∑

i∈I2

v2ir̆(αi) =
∑

i∈I2

v2is̆(αi), I2 ⊆ I1, |I2| = k − 1,

...∑

i∈Ik

vkir̆(αi) =
∑

i∈Ik

vkis̆(αi), Ik ⊆ Ik−1, |Ik| = 1.

From the equalities of item 3 it follows that
r̆(αi) = s̆(αi) for all i = 1, . . . , k, which gives r̆ = s̆.

�

It is easy to check that �v,g refines partial order
of gradual real numbers given by (1). This means
that, for all weighting vectors v and redistribution
functions g it holds:

r̆ �v,g s̆ whenever r̆ ≤ s̆.

Moreover, for each weighting vector v and redistri-
bution function g, �v,g generalizes the ’standard’
order of real numbers ≤, i.e.,

r̆ �v,g s̆ iff r ≤ s

for all r, s ∈ R where r̆ ⊜ r and s̆ ⊜ s.

Example 3. Let weighting vector v be given by
the fifth column of Table 1, discrete gradual real
numbers r̆, s̆ (see Figure 1) by the third and fourth
columns, and let redistribution function be g(i) =

vs

k−|M| . Then r̆ ≺v,g s̆. The detailed commentary

to application of Algorithm 1 (see Table 1):

• Column 5: For weighting vector v it holds
FWA(r̆) = FWA(s̆) = 3.23.
- Step 2 of Algorithm 1.

• Column 6: We omit α1, α2, α3, α4, i.e., M =
{1, 2, 3, 4} and redistribute the weights. Then
FWA(r̆) = FWA(s̆) = 3.44.
- Steps 3, 5 and 2 of Algorithm 1.

• Column 7: We also omit α5, α6, α7, i.e., M =
{1, 2, . . . , 7} and redistribute the weights. Then
FWA(r̆) = FWA(s̆) = 3.
- Steps 3, 5 and 2 of Algorithm 1.

• Column 8: We should also omit α8, α9, α10, i.e.,
M = {1, 2, . . . , 10} and I = ∅. This is the end
of Omitting 1, we let M := ∅, I = {1, . . . , k},
s := 2 and start Omitting 2. First we omit
α1, i.e., M = {1} and redistribute the weights.
Then FWA(r̆) = FWA(s̆) = 3.245.
- Steps 3, 4, 5 and 2 of Algorithm 1.

• Column 9: We also omit α2, i.e., M = {1, 2}
and redistribute the weights. Then FWA(r̆) =
FWA(s̆) = 3.2525.
- Steps 4, 5 and 2 of Algorithm 1.

• Column 10: We also omit α3, i.e., M = {1, 2, 3}
and redistribute the weights. Then FWA(r̆) =
3.39 ≤ FWA(s̆) = 3.49. Thus r̆ ≺v,g s̆.
- Steps 4, 5 and 2 (END) of Algorithm 1.

Remark 1. Although gradual numbers are func-
tions from (0.1] to real numbers, we depict them
in a reversed form, i.e. independent variable αi ∈
(0, 1] is on the vertical axis and dependent variables
r̆(αi), s̆(αi) are on the horizontal axis. Note that we
work with discrete gradual numbers, hence only the
points are important and the lines which connect
the points are added just for better lucidity.
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Figure 1: Discrete gradual real numbers r̆ and s̆

given by Table 1 from Example 3. See Remark 1
for discussion on graphical representation of discrete
gradual real numbers.

It is routine exercise to check that the linear or-
der �v,g depends on weighting vector v. By the
following example we will show that it also depends
on redistribution function g.

Example 4. Let weighting vector v be given by
the fifth column of Table 2, discrete gradual real
numbers r̆, s̆ by the third and fourth columns, and
let redistribution functions be g1(i) = vi

1−vs
· vs

(the algorithm is described by the sixth and sev-
enth columns) and g2(i) = vs

k−|M| (the algorithm is

described by the eighth column). Then s̆ ≺v,g1
r̆

and r̆ ≺v,g2
s̆ (see Table 2).

4. OWA operators for discrete gradual real
numbers

In this section an OWA operator for discrete gradual
real numbers is introduced and some of its basic
properties are discussed. Note that this operator is
based on the linear order proposed in the previous
section.

Definition 4 Let w̆ = (w̆1, . . . , w̆n) ∈
DGk([0, 1])n with w̆1 + . . . + w̆n = 1̆ be a
weighting vector of discrete gradual numbers.
A discrete gradual numbers OWA operator
(DGOWA for short) associated with w̆ is a map-

ping DGOWA
�

v,g

w̆
: DGk(R)n → DGk(R) defined

by

DGOWA
�

v,g

w̆
(r̆1, . . . , r̆n) =

n∑

i=1

w̆ir̆(i), (2)

where r̆(i), i = 1, . . . , n, denote the ith greatest com-
ponent of the input (r̆1, . . . , r̆n) with respect to a lin-
ear order �v,g.

We used discrete gradual real numbers as a
weighting vector in the definition of DGOWA, which
is more general approach than using real weights.
Now we show that DGOWA operator satisfies the

basic properties of aggregation operators [22], [23],
[24].

Theorem 2 For any DGOWA
�

v,g

w̆
on DGk([0, 1])

it holds:

1. DGOWA
�

v,g

w̆
(0̆, . . . , 0̆) = 0̆

2. DGOWA
�

v,g

w̆
(1̆, . . . , 1̆) = 1̆

3. r̆1 ≤ s̆1, . . . , r̆n ≤ s̆n imply

DGOWA
�

v,g

w̆
(r̆1, . . . , r̆n) ≤

DGOWA
�

v,g

w̆
(s̆1, . . . , s̆n)

for all r̆1, . . . , r̆n, s̆1, . . . , s̆n ∈ DGk([0, 1]).

Proof. The proof is straightforward and therefore
omitted. �

The calculation of DGOWA via the gradual num-
ber arithmetic [15] is simple. Equation (2) can be
replaced by the paralel calculation of k independent
results:

DGOWA
�

v,g

w̆ (r̆1, . . . , r̆n)(αj) =

n∑

i=1

w̆i(αj)r̆(i)(αj)

(3)
for all j = 1, . . . , k. This means that the most
computational cost is due to ordering of the input
(r̆1, . . . , r̆n) with respect to a linear order �v,g.

Using DGOWA for real numbers and real weights
leads to the same results as ’standard’ OWA opera-
tor, hence, the proposed DGOWA operator for dis-
crete gradual real numbers encompasses ’standard’
OWA operator for real numbers (see the following
theorem).

Theorem 3 Let w = (w1, . . . , wn) ∈ [0, 1]n satisfy
w1 + . . . + wn = 1,and r1, . . . , rn ∈ R. Let w̆i ⊜ wi,
r̆i ⊜ ri, for i = 1, . . . , n, be discrete gradual real
numbers, and w̆ = (w̆1, . . . , w̆n). Then

DGOWA
�

v,g

w̆ (r̆1, . . . , r̆n) ⊜ OWAw(r1, . . . , rn)

for any weighting vector v and redistribution func-
tion g.

Proof. It is easy to check that r(n) ≤ . . . ≤ r(1) im-
plies r̆(n) �

v,g
. . . �

v,g
r̆(1) for any v and g. Hence

DGOWA
�

v,g

w̆
(r̆1, . . . , r̆n) =

n∑

i=1

w̆ir̆(i) ⊜

⊜

n∑

i=1

wir(i) = OWAw(r1, . . . , rn).

�

Although equation (3) shows that DGOWA can
be calculated as k independent results for each αi,
i = 1, . . . , k, it is worth pointing out that in general
DGOWA operator cannot be represented by k ’stan-
dard’ OWA operators for real numbers. In other
words, it is not true that:

DGOWA
�

v,g

(w̆1,...,w̆n)(r̆1, . . . , r̆n)(αj) =

= OWA(w̆1(αj),...,w̆n(αj))(r̆1(αj), . . . , r̆n(αj)) (4)
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for all v, g and j = 1, . . . , k.
This is an important fact which shows that our

approach takes into account the specific nature of
real gradual numbers. So the using of real grad-
ual numbers is not equal to just repeatedly using
of real numbers. The reason is as follows: the ith
greatest element of r̆1, . . . , r̆n with respect to �v,g

needs not correspond to the ith greatest element
of r̆1(αj), . . . , r̆n(αj) with respect to the ’standard’
order of real numbers (see the following counterex-
ample).

Figure 2: Discrete gradual real numbers r̆1 and
r̆2 given by Table 3. We can see that, for all

j ∈ {1, . . . , 5}, DGOWA
�

v,g

(0̆.8,0̆.2)
(r̆1, r̆2) is not equal

to OWA(0.8,0.2)(r̆1(αj), r̆2(αj)). See Example 5.

Example 5. Let discrete gradual real numbers
r̆1, r̆2 be given by Table 3, see Figure 2. Clearly,
r̆1 �v,g r̆2 for v = (0.1, 0.1, . . . , 0.1). We can

see that DGOWA
�

v,g

(0̆.8,0̆.2)
(r̆1, r̆2)(αj) is not equal

to OWA(0.8,0.2)(r̆1(αj), r̆2(αj)) for j ∈ {1, . . . , 5}.
The difference lays in the fact that in DGOWA the
greater weight 0.8 is assigned to the greater element
r̆2 for all αj , however, in OWA operator the greater
weight is assigned to the greater number of the pair
r̆1(αj), r̆2(αj) which is r̆1(αj) for j = 1, . . . , 5, and
r̆2(αj) for j = 6, . . . , 10. This means that

DGOWA
�

v,g

(0̆.8,0̆.2)
(r̆1, r̆2)(αj) =

= 0.8 · r̆2(αj) + 0.2 · r̆1(αj)

and

OWA(0.8,0.2)(r̆1(αj), r̆2(αj)) =

= 0.8 max{r̆1(αj), r̆2(αj)}+0.2 min{r̆1(αj), r̆2(αj)}.

For complete results see Table 3 and Figure 2.
Recall that the difference disappears if r̆1 ≤ r̆2.

5. Conclusion

We introduced a class of linear orders for discrete
gradual real numbers, and consequently proposed
an DGOWA operator which is an OWA operator on
the set of discrete gradual numbers. Although the

calculation of DGOWA operator can be done inde-
pendently for each level α, we showed that DGOWA
operator cannot be represented by k OWA opera-
tors for real numbers.

In [19] gradual intervals were defined as ordered

pairs of gradual real numbers [ă, b̆] where ă ≤ b̆.
According to the authors of [19] this is a natural
way of looking at fuzzy intervals. Moreover, the no-
tion of gradual interval is more general than that of
fuzzy interval. Hence our future intentions are the
following. Once we have linear order for discrete
real gradual numbers, we can propose a linear or-
der for discrete gradual intervals. Consequently, we
can introduce an OWA operator for discrete gradual
intervals too. Because gradual intervals encompass
fuzzy intervals, the resulting OWA operator would
also be applicable to fuzzy intervals with discretized
range which is very important (the need for OWA
operators on fuzzy intervals is presented e.g. in [4]
and [5]).
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i αi r̆(αi) s̆(αi) vi v′
i v′

i v′
i v′

i v′
i

10 1 3 2 0.14 0.186 0.3 0.147 0.1575 0.17
9 0.9 3 3 0.14 0.186 0.3 0.147 0.1575 0.17
8 0.8 3 4 0.14 0.186 0.3 0.147 0.1575 0.17
7 0.7 4 5 0.1 0.146 0.107 0.1175 0.13
6 0.6 4 4 0.1 0.146 0.107 0.1175 0.13
5 0.5 4 3 0.1 0.146 0.107 0.1175 0.13
4 0.4 3 4 0.07 0.07 0.0875 0.1
3 0.3 3 2 0.07 0.07 0.0875
2 0.2 2 2 0.07 0.07
1 0.1 3 3 0.07

FWA(r̆) 3.23 3.44 3 3.245 3.3525 3.39
FWA(s̆) 3.23 3.44 3 3.245 3.3525 3.49

order ? ? ? ? ? r̆ ≺v,g s̆

Table 1: Application of Algorithm 1 (see the detailed commentary in Example 3).

i αi r̆(αi) s̆(αi) vi v′
i,g1

v′
i,g1

v′
i,g2

10 1 5 2 0.14 0.1591 0.1944 0.155
9 0.9 5 2 0.14 0.1591 0.1944 0.155
8 0.8 4 3 0.12 0.1364 0.16 0.135
7 0.7 4 3 0.12 0.1364 0.16 0.135
6 0.6 3 5 0.1 0.1136 0.1389 0.115
5 0.5 2 6 0.1 0.1136 0.1389 0.115
4 0.4 2 5 0.08 0.0909 0.095
3 0.3 2 5 0.08 0.0909 0.095
2 0.2 3 4 0.06
1 0.1 3 2 0.06

FWA(r̆) 3.54 3.6136 3.9722 3.585
FWA(s̆) 3.54 3.6136 3.3056 3.645

order ? ? s̆ ≺v,g1
r̆ r̆ ≺v,g2

s̆

Table 2: Application of Algorithm 1 (Example 4). By v′
i,g1

and v′
i,g2

are denoted weights calculated via
redistribution functions g1 and g2, respectively.

j αj r̆1(αj) r̆2(αj) DGOWA OWA

10 1 0.1 1 0.82 0.82
9 0.9 0.2 0.9 0.76 0.76
8 0.8 0.3 0.8 0.7 0.7
7 0.7 0.4 0.7 0.64 0.64
6 0.6 0.5 0.6 0.58 0.58
5 0.5 0.6 0.5 0.52 0.58
4 0.4 0.7 0.4 0.46 0.64
3 0.3 0.8 0.3 0.4 0.7
2 0.2 0.9 0.2 0.34 0.76
1 0.1 1 0.2 0.36 0.84

Table 3: A counterexample to equation (4). See Example 5.
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