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Abstract

We present an axiomatic approach to conditional
measures of fuzzy events which is inspired by the
Dupré–Tipler argument for Bayesianism. Unlike
there or in the older and related Cox argument, al-
though we are able to derive additive probabilities
other non-additive solutions exist. Our motivation
is to show that Bayesian foundational arguments
are based on Boolean logic but they do not require
it and may be based on fuzzy logic instead.
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1. Introduction

There is a large literature trying to justify Bayesian-
ism, mostly because it is far from self-evident that
degrees of belief, certainty, plausibility, or rational
expectations must satisfy the same mathematical
rules as frequencies. Unfortunately, this necessity
has led some to interpret the perceived reasonabil-
ity of Bayesian methods as grounds for the strong
adequacy thesis that the theory of probability mea-
sures on σ-algebras (or finitely additive probability
measures on Boolean algebras) is the unique math-
ematical tool valid to handle any one among a num-
ber of vaguely interlaced tasks concerning rational
reasoning under uncertainty.

What are objective logical Bayesians and their
Cox argument? The strong adequacy thesis is par-
ticularly upheld by a sub-community of Bayesians
which has been gaining traction for some years
since the posthumous publication of Jaynes’ book
[7]. They are considered objective Bayesians in that
their choice of priors is not based on personal belief
but on objective methods like maximum entropy or
symmetry arguments. Further, their prototypical
task for probability is plausible reasoning (a topic
going back to [14]), i.e. they spouse a logical view
of it.

Their standard argument for the necessity of the
probability calculus is based on the Cox theorem
[2, 17]. It starts with a short list of ‘commonsense’
requirements for reasoning with propositions whose
truth is unknown, which are translated mathemati-
cally as a list of functional equations. Some mathe-
matical assumptions are added in order to solve the
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equations and show that all solutions are bijective
transforms of finitely additive probability measures.

The argument from the Cox theorem has re-
peatedly been claimed to rule out, in particular,
fuzzy logic. To name just an instance, according to
Skilling [15, p. 30] ‘Cox ... showed that no other cal-
culus is admissible ... insofar as the various rules
of fuzzy logic ... diverge from probability calculus,
logical error enters’. It is unclear how this posi-
tion could be defensible: the Cox argument already
takes Boolean logic as true, whence identifying the
weaker fuzzy logics with ‘logical error’ seems self-
contradictory.

Why is it interesting to try and replace Boolean
logic by fuzzy logic in the Cox argument? Zadeh
said that probability theory should be based on
fuzzy logic, but this claim is not easily parsed by
Bayesians. By developing a Cox argument compat-
ible with fuzzy logic, it would be clearer to (objec-
tive logical) Bayesians that fuzzy logic does not go
against their foundational thinking. Since they be-
lieve those arguments to be forceful, they are not
likely to just take Kosko’s dictum that ‘Cox’s argu-
ment is limited by its forthright bivalent-logic frame-
work ... Outside the Bayesian/frequentist debate ...
it is hard to imagine citing Cox’s theorem as a con-
straint on anything’ [10, p. 140].

That is similar to what actually happened re-
cently with papers showing that the Dutch book
argument for Bayesianism does not necessitate
Boolean logic, e.g. [18, 12, 11], whence the Boolean
Dutch book argument just cannot be an argument
against other logics. The following quotation from
Hunter [6, p. 26–27] is representative of how those
past attacks had been: ‘The max-min rules ... in
fuzzy logic ... [are] rivals of standard probability
theory ... Attempts to replace probability theory
wrongly ignore the coherence arguments for the ax-
ioms of probability theory given by de Finetti and
others ... These arguments show that anyone whose
degrees of belief violate the probability axioms could
have a “Dutch book” made against him... Fuzzy
logic and other rivals of probability face a formidable
challenge’.

It may be that, if a fuzzy Cox argument is feasi-
ble, by weakening some of the logical assumptions
more solutions will appear other than probability
measures. It is worth checking whether this is the
case, as it would indicate that premises considered
self-evidently convincing by many do not actually
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support by themselves the strong adequacy thesis.
What is the state of the art in non-Boolean Cox

arguments? There is situation of confusion. Knuth
has written a number of papers, e.g. [8, 9, 4], extend-
ing the Cox theorem to lattices instead of Boolean
algebras. However, there are serious mathematical
problems in them, as the key step in his papers is
the evidently false claim that every real-valued asso-
ciative function on a lattice is isomorphic to the sum
(as an example, just take the maximum in [0, 1]).

Holik et al. [5] have tried to adapt the Cox ar-
gument to quantum logic (which would include
Łukasiewicz fuzzy logic) but they make the same
mistake of taking it that associative functions are
isomorphic to the sum.

Therefore, a study of the feasibility of a fuzzy-
based Cox theorem has to start from scratch.

Why is this problem hard and may take time? The
proofs of variants of the Cox theorem, in the cases
which are mathematically correct, are very long and
formulas from Boolean logic which are not valid in
one or other fuzzy logic may be used many times.

The most careful proof from explicitly laid out ax-
ioms seems to be Van Horn’s [17]. In it, for example
Axiom R2.(3) says that, if a state of information X
grows by consecutively learning two propositions A
and C, the new state of information is the same as if
their conjunction had been learned. Without idem-
potency, learning A (e.g. ‘blue’) and then learning
A (i.e. learning nothing new) is not the same as
learning A ∩ A (e.g. ‘very blue’).

Thus, problems arise even before the first line of
the proof (which then goes up to ‘Theorem 14’).
Definitely, some stamina is needed for the task.

What is the alternative route taken in this pa-
per? Recently, Dupré and Tipler [3] claimed to have
found ‘a proof of the problematic Cox theorem which
is very simple, in fact trivial, as it should be’ [3,
p. 599]. What they in fact do (in my opinion, if
not theirs) is to present a theorem bearing some
undeniable family resemblance to Cox’s but which
proceeds from axioms of a different nature.

They start with a commutative unital R-algebra
endowed with a partial order, and set requirements
for a functional to be a good assessment of the plau-
sible value of an element x of the algebra. The plau-
sible value PV (x|i) is conditional on some element
i, which is taken to be idempotent (intuitively, x
plays the role of a random variable, i the indica-
tor function of an event, the product operation the
intersection, and PV the expectation functional).
They conclude that

PV (i′ · i′′|i) = PV (i′|i) · PV (i′′|i′ · i),

i.e. the product rule, and

xy = 0 ⇒ PV (x + y|i) = PV (x|i) + PV (y|i),

i.e. the sum rule.
We will adapt the Dupré–Tipler construction to

structures of fuzzy sets. Since one cannot rely on

idempotency, which plays a key role in [3], and must
have general fuzzy events at both sides of the con-
ditioning bar, and lacks a significant part of the
algebraic structure, some leeway is needed. But,
even with those modifications, the essence of the
Dupré–Tipler argument works well to establish the
‘product rule’ (better called the ‘combination rule’
here, see Theorem 3.1 below). We will not even
need two of their five axioms, and other two can be
weakened in obtaining some of the results, including
the combination rule1.

In the realm of fuzzy events, the combination rule
is not strong enough to imply additivity, and the
usage of t-norms other than the product is justi-
fied. Thus, other solutions appear, specially under
the weakened axioms. In particular, one can jus-
tify conditional possibilities by resorting to ‘kosher’
Bayesian argumentation that also produces condi-
tional probabilities.

2. The axioms

For the sake of comparison, Dupré and Tipler’s ax-
ioms are as follows. Note that these axioms will not
be used in the sequel2.

Axiom DT1. Let E be a commutative unital algebra
over R, and I its Boolean algebra of idempotent ele-
ments. E is equipped with a partial order ≤ such that,
for any i, i′ ∈ I, we have i′ ≤ i if and only if i′ = i · i′′ for
some i′′ ∈ I. Let A+ be the set of all non-zero elements
of a fixed Boolean subalgebra A of I which contains the
unit 1 of E. There exists a function P V : E × A+ → R,
with P V (x, e) being denoted P V (x|e).

Axiom DT2. For all a, b ∈ R, all x ∈ E, and all
i ∈ A+,

P V (a · x + b|i) = a · P V (x|i) + b.

Axiom DT3. For all i ∈ E and i′ ∈ A+ such that
i · i′ ∈ A+, and all x, x′ ∈ A, if P V (x|i · i′) = P V (x′|i · i′)
then P V (x · i|i′) = P V (x′ · i|i′).

Axiom DT4. For all i ∈ A+, and all x, x′ ∈ A, we
have P V (x|i) ≤ P V (x′|i).

Axiom DT5. For all x, x′, y ∈ A and i ∈ A+, if
P V (x|i) = P V (x′|i) then P V (x + y|i) = P V (x′ + y|i).

We present our axioms now. Those labelled with
primes are qualitatively weaker than their Dupré–
Tipler analogs: Axioms 1’ and 2” assume nothing
about taking complements, and Axiom 2’ assumes
less than Axiom 2. Axioms 1, 2 and 3 are numbered
that way by analogy to DT1, DT2 and DT3, not
because they are favoured over the weaker 1’, 2” or
2’.
Axiom 1’. Let E be a family of fuzzy subsets of
a set Ω, closed under intersections modelled by a
t-norm ⊤. For all λ ∈ [0, 1], the constant fuzzy set
λ is in E. Let E0 be a lower set of E with respect

1The same optimization may also be valid in Dupré and
Tipler’s original setting.

2The analogs of the axioms originally labelled 3 and 5 will
not be needed, so we relabel them as 4 and 5 for clarity.
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to inclusion, i.e. A ⊂ B ∈ E0 implies A ∈ E0. Set
E+ = E\E0. There exists a function p : E×E+ → R,
with p(A, C) being denoted p(A|C).
Axiom 1. Axiom 1’ holds and E is closed under
complementation modelled by an involutive nega-
tion c : [0, 1] → [0, 1] . The complement of A ∈ E
will be denoted by Ac.

Interpretation: E represents fuzzy events, p(A|C)
a measure of the event A conditional on the infor-
mation given by C, E0 is a subfamily of negligible
events under which p(·|C) is undefined. In the fuzzy
setting it seems unjustified to assume a priori that
the t-norm is the product.

Under Axiom 1, E is a ⊤-clan in the sense of [13,
Section 2]. Let ⊥ denote the t-conorm

a⊥b = c(c(a)⊤c(b)), a, b ∈ [0, 1] (1)

which makes (⊤, c, ⊥) a De Morgan triple. Inter-
sections, complements and unions of fuzzy sets will
always be associated to a De Morgan triple.
Axiom 2”. For all λ ∈ [0, 1], all A ∈ E and all
C ∈ E+, we have

p(λ ∩ A | C) = λ⊤p(A | C)

and
p(1 | C) = 1.

Interpretation: Axiom 2” establishes a commen-
surability between the p-scale and the membership
scale, as it implies that the p-measure of the fuzzy
event λ is the real number λ, and that p conforms
to the handling of constant fuzzy sets ‘preexistent
to p’.
Axiom 2’. Axiom 2” holds, moreover

p(Ac|C) = c(p(A|C)).

Axiom 2. Axiom 2’ holds and p(A|C) = 0 when-
ever C ∈ E+ and A ∩ C ∈ E0.3
Axiom 3. For all A, A′, B, C ∈ E such that B∩C ∈
E+, if p(A|B ∩C) = p(A′|B ∩C) then p(A∩B|C) =
p(A′ ∩ B|C).

Interpretation: That is a typical Bayesian view of
how learning works.
Remark 2.1. A few comments. Note how Axiom 3
is weaker than the (often criticized) assumption in
the Cox theorem that p(A ∩ B|C), as a function of
three arguments, depends only on p(A|B ∩ C) and
p(B|C). In its turn, Dupré and Tipler’s Axiom DT2
is already quite stronger than p(Ac|C) = 1−p(A|C),
which is obtained only after some work in the Cox
framework. In Axiom 2’, we just take a general com-
plement but will not aim at showing that c ‘must’
be c(λ) = 1 − λ, since doing that is not really nat-
ural for fuzzy sets. Finally, we surely acknowledge
that in various uncertainty theories, like possibil-
ity and Dempster–Shafer, the mere assumption that
p(Ac|C) is a function of p(A|C) is not natural.

3It has to be observed that the analog of this property
does follow from the Dupré–Tipler axioms. There, i ∈ A+ if
anf only if i ∈ A\{0}. If x · i = 0 = 0 · i, from Axioms DT4
and DT2 one has P V (x|i) = P V (0|i) = 0.

3. The combination rule

Since we allow for t-norms other than the product,
we speak of the ‘combination rule’ instead of the
‘product rule’.

Theorem 3.1. Assume Axioms (1’, 2”, 3). Then,
for all A, B, C ∈ E such that B ∩ C ∈ E+,

p(A ∩ B | C) = p(A|B ∩ C)⊤p(B|C).

Proof. Consider the functions f, g : E → [0, 1] given
by f(A) = p(A∩B|C) and g(A) = p(A|B ∩C). No-
tice that f is well-defined since C ∈ E+ (if C ∈ E0
then, by Axiom 1’, also B ∩ C ∈ E0, a contradic-
tion). By Axiom 3,

g(A) = g(A′) ⇒ f(A) = f(A′).

Thus, there exists a function f∗
B,C : [0, 1] → [0, 1]

such that f(A) = f∗
B,C(g(A)). Now consider the

function F : E × E × E+ → [0, 1] given by

F (A, B, C) = p(A ∩ B|C).

For any fixed B ∈ E and C ∈ E+ such that B ∩
C ∈ E+, the reasoning above gives F (A, B, C) =
f∗

B,C(g(A)). Therefore, there exists a function F ∗ :
[0, 1] × E × E+ → [0, 1] such that

F (A, B, C) = F ∗(p(A|B ∩ C), B, C) (2)

whenever B ∩ C ∈ E+. Indeed, it suffices to take

F ∗(λ, B, C) =

{
f∗

B,C(λ), B ∩ C ∈ E+

0, B ∩ C ∈ E0.

From Axiom 2”, for any D ∈ E+ and λ ∈ [0, 1],

p(λ|D) = λ⊤p(1|D) = λ⊤1 = λ.

Applying (2) with A = λ,

F ∗(λ, B, C) = F ∗(p(λ|B ∩ C), B, C)

= F (λ, B, C) = p(λ ∩ B|C) = λ⊤p(B|C),

where the last identity uses Axiom 2”. Then, for
any A ∈ E,

p(A|B ∩ C) = F (A, B, C) = F ∗(p(A|B ∩ C), B, C)

= p(A|B ∩ C))⊤p(B|C).

When complementation enters the picture, one
obtains the following dual result.

Theorem 3.2. Assume Axioms (1, 2’, 3). For all
A, B, C ∈ E such that Ac ∩ C ∈ E+,

p(A ∪ B|C) = p(A|C)⊥p(B|Ac ∩ C).
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Proof. Since (⊤, c, ⊥) is a De Morgan triple, with
Axiom 2’ and Theorem 3.1 we have

p(A ∪ B|C) = c(p((A ∪ B)c|C)) = c(p(Ac ∩ Bc|C))

= c(p(Ac|C)⊤p(Bc|Ac ∩ C))

= c(p(Ac|C))⊥c(p(Bc|Ac ∩ C))

= p(A|C)⊥p(B|Ac ∩ C).

Remark 3.1. Taking c(λ) = 1 − λ, ⊤ = · and crisp
events, one obtains the formula

P (A ∪ B|C)

= P (A|C) + P (B ∩ Ac|C) − P (A|C)P (B ∩ Ac|C),

which is valid in traditional probability theory.
This formula is quite clearer in the language of t-
conorms.

4. Paradistributivity

Consider a triple (⊤, c, ⊥), where ⊤ and ⊥ are an
arbitrary t-norm and an arbitrary t-conorm. Let us
introduce a notion which will be central for the rest
of the paper.

We will say that ⊤ is paradistributive with respect
to c over ⊥ at λ ∈ [0, 1] if

(λ⊤µ)⊥(λ⊤c(µ)) = λ

for all µ ∈ [0, 1]. We will say paradistributive if it
is paradistributive at all λ ∈ [0, 1]. For brevity, we
will also say that the triple is paradistributive or
paradistributive at λ.

The additivity results obtained in the next sec-
tion when the triple (⊤, c, ⊥L) is paradistributive
should be contrasted to the behaviour induced by
the paradistributivity of (⊤, c, ⊥) for ⊥ the De Mor-
gan companion of ⊤ and c.

Theorem 4.1. Assume Axioms (1, 2’, 3). For all
A, B ∈ E and C ∈ E+, if (⊤, c, ⊥) is paradistribu-
tive at p(Ac|C) then

p(A|C) = p(A ∪ B|C)⊤p(A ∪ Bc|C).

Dually, if (⊤, c, ⊥) is paradistributive at p(A|C)
then

p(A|C) = p(A ∩ B|C)⊥p(A ∩ Bc|C).

Proof. As seen in the proof of Theorem 3.2,

p(A ∪ B|C) = c(p(Ac|C)⊤p(Bc|Ac ∩ C)).

Using Axioms 1 and 2’,

c(p(A ∪ B|C)) = p(Ac|C)⊤c(p(B|Ac ∩ C)),

whence

c(p(A ∪ B|C)⊥[p(Ac|C)⊤p(B|Ac ∩ C)]

= [p(Ac|C)⊤c(p(B|Ac∩C))]⊥[p(Ac|C)⊤p(B|Ac∩C)]

= p(Ac|C)

by the paradistributivity at p(Ac|C).
Therefore, with Axiom 2’ and Theorem 3.1,

p(A|C) = c(c(p(A ∪ B|C)⊥[p(Ac|C)⊤p(B|Ac ∩ C)])

= p(A ∪ B|C)⊤c(p(Ac|C)⊤p(B|Ac ∩ C))

= p(A ∪ B|C)⊤c(p(Ac ∩ B|C)

= p(A ∪ B|C)⊤p(A ∪ Bc|C).

To obtain the second formula, we reason as follows
(paradistributivity at p(A|C) is used in the second
step).

p(A|C) = c(p(Ac|C)) = c(p(Ac∪B|C)⊤p(Ac∪Bc|C))

= c(c(p(A ∩ Bc|C))⊤c(p(A ∩ B|C)))

= p(A ∩ Bc|C)⊥p(A ∩ B|C).

Remark 4.1. One may define paradistributivity of
⊥ over ⊤ analogously. It can be checked that, if
(⊤, c, ⊥) is a De Morgan triple, then ⊥ paradis-
tributes over ⊤ at µ if and only if ⊤ paradistributes
over ⊥ at c(µ). Thus Theorem 4.1 holds for every
A ∈ E such that ⊥ is paradistributive over ⊤ at
p(A|C) (first statement) or p(Ac|C) (second state-
ment).

At this point, we ignore whether paradistributive
(at every point) De Morgan triples exist. An appli-
cation of Theorem 4.1 is as follows. The equilibrium
of c is denoted by e (i.e. c(e) = e). Let ∧ and ∨
denote the minimum t-norm and the maximum t-
conorm, respectively.

Corollary 4.2. Assume Axioms (1, 2’, 3). Assume
further ⊤ = ∧. Let e be the equilibrium of c. For
all A, B ∈ E and C ∈ E+,

p(A|C) =

{
p(A ∪ B|C) ∧ p(A ∪ Bc|C), p(A|C) ≥ e

p(A ∩ B|C) ∨ p(A ∩ Bc|C), p(A|C) ≤ e.

Proof. Let us check that the De Morgan triple
(∧, c, ∨) is paradistributive at every λ ∈ [0, e]. In-
deed, using the distributivity of ∧ over ∨, for any
µ ∈ [0, 1]

(λ ∧ µ) ∨ (λ ∧ c(µ)) = λ ∧ (µ ∨ c(µ)).

To prove that the right-hand side equals λ, it is
enough to show that λ ≤ µ ∨ c(µ). If µ ≥ e, then

µ ∨ c(µ) ≥ µ ≥ e ≥ λ.

And if µ ≤ e, then c(µ) ≥ c(e) = e and the same
reasoning applies.

Now the result follows from Theorem 4.1 by not-
ing that p(A|C) ≥ e if and only if p(Ac|C) ≤ c(e) =
e, i.e. if (∧, c, ∨) is paradistributive at p(Ac|C).
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Remark 4.2. As Corollary 4.2 shows, the formula
p(Ac|C) = c(p(A|C)) in Axiom 2’ has a probabilis-
tic flavor but is not enough to enforce additivity.
This case is reminiscent of a necessity measure for
p-big events and of a possibility measure for p-small
events. This behaviour brings uninorms to mind.

5. Additivity

In this section, we show that Axioms 1-3 are enough
to obtain conditional measures satisfying the classi-
cal properties of (finitely additive) probabilities.

The standard complement given by c(λ) = 1 − λ
will be denoted by s. Denote by ⊥L the bounded
sum or Łukasiewicz t-conorm given by λ⊥Lµ =
min{λ + µ, 1}.

Theorem 5.1. Assume Axioms (1, 2’, 3). Assume
further that c = s and that (⊤, s, ⊥L) is paradis-
tributive. Then, for all A, B, C ∈ E such that
Ac ∩ C ∈ E+,

p(A ∪ B|C) = p(A|C)⊥Lp(B ∩ Ac|C)

= p(A|C) + p(B ∩ Ac|C).

Proof. Notice that the union of fuzzy sets is still
given by the De Morgan t-conorm ⊥ in (1), not ⊥L.
Using Axiom 2’, Theorem 3.1 and paradistributiv-
ity, we have

p(A ∪ B|C) = 1 − p(Ac ∩ Bc|C)

= 1 − [p(Ac|C)⊤p(Bc|Ac ∩ C)]
= 1 − [p(Ac|C)⊤(1 − p(B|Ac ∩ C))]

= 1 − [p(Ac|C) − p(Ac|C)⊤p(B|Ac ∩ C)]
= 1 − p(Ac|C) + p(Ac ∩ B|C)

= p(A|C) + p(Ac ∩ B|C).
Since the sum in the right-hand side is p(A ∪ B|C),
which is bounded above by 1,

p(A|C)⊥Lp(Ac ∩ B|C) = p(A ∪ B|C)

as well.

Theorem 5.2. Assume Axioms (1, 2’, 3). Assume
further that (⊤, c, ⊥L) is paradistributive. Then,
for all A, B, C ∈ E such that A ∩ C ∈ E+,

p(A|C) = p(A ∩ B|C) + p(A ∩ Bc|C).

Proof. We have

p(A ∩ B|C)⊥Lp(A ∩ Bc|C)

= [p(A|C)⊤p(B|A ∩ C)]⊥L[p(A|C)⊤c(p(B|A ∩ C))]
= p(A|C).

Since p(A|C) ≤ 1 by Axiom 1’, also

p(A ∩ B|C)⊥Lp(A ∩ Bc|C)

= p(A ∩ B|C) + p(A ∩ Bc|C).

Remark 5.1. The triple (·, s, ⊥L) is paradistributive
(as a consequence of the distributivity of · over +).
Is the product the only t-norm for which that holds?

Fuzzy sets A, B ∈ E will be called disjoint if A ∩
B = 0 (remember that this is contingent on the
choice of the t-norm ⊤).

Theorem 5.3. Assume Axioms (1, 2’, 3). Assume
further that c = s and that (⊤, s, ⊥L) is paradis-
tributive. If A, B ∈ E+ are disjoint and A∩C ∈ E+,
then

p(A ∪ B|C) = p(A|C) + p(B|C).

If A1, . . . , An ∈ E are such that Ai is disjoint from∪n
j=i+1 Aj and Ai ∩ C ∈ E+ for all 1 ≤ i < n, then

p(
n∪

i=1
Ai|C) =

n∑
i=1

p(Ai|C).

Proof. We claim that B∩Ac = B whenever A and B
are disjoint. Indeed, assume that B(ω)⊤Ac(ω) = 0
for all ω ∈ Ω. Then

[B(ω)⊤A(ω)]⊥L[B(ω)⊤s(A(ω))] = B(ω)⊤s(A(ω)).

By the paradistributivity, the left-hand side is A(ω),
while the right-hand side is (B ∩ Ac)(ω). That
proves the claim.

Now, since p(B ∩Ac|C) = p(B|C), it follows from
Theorem 5.1 that

p(A ∪ B|C) = p(A|C) + p(B|C)

whenever A ∩ C ∈ E+.
The second part follows easily using induction.

Remark 5.2. Notice that Theorems 5.1 and 5.2 do
not follow from Theorem 5.3 as they do in classical
probability theory, since the events there (e.g. A
and B ∩ Ac) are not necessarily disjoint.

For the product t-norm, more can be said.

Theorem 5.4. Assume Axioms (1, 2’, 3). Assume
further that ⊤ = · and c = s. If A1, . . . , An ∈ E are
pairwise disjoint and Ai ∩ C ∈ E+ for all 1 ≤ i < n,
then

p(
n∪

i=1
Ai|C) =

n∑
i=1

p(Ai|C).

Proof. Note that (·, s, ⊥L) is paradistributive.
Thus, in order to use Theorem 5.3 one just needs to
check that pairwise disjointness implies the formally
stronger disjointness property there.

Indeed, for any ω ∈ Ω,

(Ai ∩
n∪

j=i+1
Aj)(ω) = Ai(ω) · [1 −

n∏
j=i+1

(1 − Aj(ω))]

= Ai(ω) − Ai(ω)
n∏

j=i+1
(1 − Aj(ω))
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= Ai(ω) − Ai(ω) · 1 = 0
because all the cross-products Ai(ω)·Aj(ω) are zero
by the disjointness with respect to the product.

The reader must have observed the maybe un-
comfortable assumptions like Ai ∩ C ∈ E+. These
are easily disposed of if one accepts Axiom 2.

Theorem 5.5. Assume Axiom 2. Then, the condi-
tions that Ac∩C ∈ E+, A∩C ∈ E+ and Ai∩C ∈ E+
in Theorems 5.1, 5.2, 5.3 and 5.4 are unnecessary.

Proof. We will prove it for Theorem 5.1, the others
being similar and left to the reader.

We need to show
p(A ∪ B|C) = p(A|C) + p(B ∩ Ac|C) (3)

when C ∈ E+ and Ac ∩ C ∈ E0. By Axiom 2,
p(Ac|C) = 0 and then

p(A|C) = c(p(Ac|C)) = c(0) = 1.

Moreover, since E0 is a lower set by Axiom 1’, both
Ac ∩ B ∈ E0 and Ac ∩ Bc ∈ E0 hold. By Axiom 2
again, p(Ac ∩B|C) = 0 and p(Ac ∩Bc|C) = 0. From
the latter, Axiom 2’ and the De Morgan property,

p(A ∪ B|C) = c(p(Ac ∩ Bc|C)) = 1.

Thence the left-hand side of (3) is 1, and the right-
hand side is 1 + 0.

Remark 5.3. Since Axioms 2 and even 2’ are not
valid in several uncertainty theories (e.g. the union
of two sets with necessity 0 can have non-zero ne-
cessity), it seems worthwhile to explore the conse-
quences of Axiom 2” once it has been established
that the theory contains a subtheory with the usual
properties of probability. Accordingly, in Axiom 1’
we have not assumed that E0 is closed under finite
unions.
Remark 5.4. One can show that, for ⊤ = · and
under Axiom 2,

p(A|C) = p(A ∩ C|1)
p(C|1)

whenever p(C|1) > 0.

6. Examples

6.1. Probability of fuzzy events

Let (Ω, A, P ) be a probability space. Let E be the
class of all fuzzy events (measurable fuzzy sets).
Zadeh [19] proposed an extension of P from A to E,
given by P (A) =

∫
AdP . Take

E0 = {C ∈ E | P (C) = 0}.

Define, for all C ∈ E+,

P (A|C) = P (A · C)
P (C)

[19, p. 425]. Then the mapping P (·|·) satisfies Ax-
ioms 1, 2 and 3 for the choices ⊤ = · and c = s.

6.2. Choquet capacities and conditional
plausibility

One can extend the example above to an arbitrary
Choquet capacity ν by replacing the Lebesgue in-
tegral against P by a Choquet integral against ν,
i.e.

ν(A) =
∫ 1

0
ν({A ≥ α})dα.

This has been used e.g. in [16]. Then the mapping
ν(·|·) given by

ν(A|C) = ν(A · C)
ν(C)

satisfies Axioms 1, 2” and 3, and the property in
Axiom 2 that C ∈ E+ and A ∩ C ∈ E0 imply
ν(A|C) = 0, for the choices ⊤ = · and c = s. But
Axiom 2’ fails, since the Choquet integral satisfies

ν(Ac) = 1 − ν(A)

(where ν is the dual capacity to ν) instead.
In the case when the capacity is a plausibility

measure, Dempster’s combination rule is obtained.
The conclusion of Theorem 3.1, for the choice ⊤ = ·,
is singled out in [1] as one of the defining proper-
ties, property (ddd), of an axiomatized ‘Dempster
conditional plausibility’. Thus we can offer a justifi-
cation for that property (and an extension to fuzzy
events). Property (d) in that paper should prob-
ably be abandoned for fuzzy events, at it conflicts
with non-idempotence. It is open whether, in that
abstract setting, property (dd) is ensured by the
Dupré–Tipler construction, i.e. whether p(·|1) be-
ing a plausibility measure when restricted to crisp
events implies that p(·|C) is so as well for all crisp
C ∈ E+.

6.3. Conditional possibility

Let Π be a possibility measure defined on a τ -
algebra (or ‘ample field’) A. The relationship

Π(A ∩ B) = Π(A|B)⊤Π(B) (4)

is often presented as a unifying definition of condi-
tional possibility. It is interesting that this defini-
tion by analogy can be recovered from our axioms,
which may provide a justification for it. To do so,
set

E = {λ · IA | λ ∈ [0, 1], A ∈ A}
and extend Π to E by

Π(λ · IA) = λ⊤Π(A)

for some t-norm ⊤. Finally, take E0 = {0}.
Then, whenever p : E × E+ → [0, 1] satisfies Ax-

ioms 1’, 2” and 3, and agrees with Π in the sense
that

p(A|1) = Π(A)
for all A ∈ E, Theorem 3.1 with C = 1 implies

Π(A ∩ B) = Π(B)⊤p(A|B ∩ 1) = Π(B)⊤p(A|B).

In particular, for A, B crisp, one has (4).
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7. Concluding remarks

A Bayesian would be likely to choose E0 = {0} or
even E0 = ∅. However, we see no reason to ex-
clude a priori the possibility of a non-trivial family
of negligible events upon which conditionalization is
undefined (for instance, because one assumes they
are not going to happen in practice).

The commensurability assumption p(λ|1) = λ
which follows from Axiom 2” is questionable. We
do not make the claim that the axioms are ‘true’ or
reject any conditional measure that fails one axiom
or other. We just claim that studying them ad-
vances the understanding of the interplay between
Bayesian arguments and their (usually taken for
granted) logical assumptions.

Corollary 4.2 looks weird to the probabilistic eye,
but it generalizes the following (Boolean) properties
of crisp sets. If C ⊂ A, then C ⊂ A ∪ B and C ⊂
A ∪ Bc. If C ⊂ A ∩ B or C ⊂ A ∩ Bc, then C ⊂ A.
This is obtained when p is 0-1 valued on crisp sets
with

p(A|C) =

{
1, C ⊂ A

0, C ̸⊂ A,

as this p satisfies Axiom 3. Indeed, we have to show
that, for a fixed C, if B ∩ C ⊂ A ⇐⇒ B ∩ C ⊂ A′

then C ⊂ A ∩ B ⇐⇒ C ⊂ A′ ∩ B. The premise is
equivalent to A∩C = A′∩C. By symmetry, to prove
the conclusion it suffices to show C ⊂ A∩B ⇒ C ⊂
A′ ∩B. But if C ⊂ A∩B then C = A∩C = A′ ∩C,
whence C ⊂ A′. That gives C ⊂ A′ ∩ (A ∩ B) ⊂
A′ ∩ B.

Note that the construction in this paper must be
founded on fuzzy events. It is not a more sophisti-
cated variant of a construction available for Boolean
events, as the key to the combination rule is to use
events of the form λ∩A. That is the main difference
with the Cox approach.

The main divergence from Dupré–Tipler is that
the structures demanded by Axioms DT1 and 1 are
entirely different, whence non-additive solutions ap-
pear in our case. Moreover, note that their A+ is
much smaller than E: they only allow conditioning
on idempotent elements which form a Boolean alge-
bra, while elements of our E+, which can be as big as
E\{0} or even E, are typically non-idempotent and
do not form a Boolean algebra. Finally, it should
be checked whether Dupré and Tipler’s plan can be
carried out without invoking Axioms DT4 and DT5,
since we have not needed analogs to them.
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