16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

Understanding the Inference Mechanism of
FURIA by means of Fingrams

David P. Pancho, Jose M. Alonso, Luis Magdalena

European Centre for Soft Computing
Edificio de Investigacion, Gonzalo Gutiérrez Quirds s/n, 33600 Mieres, Asturias, Spain
{david.perez,jose.alonso,luis.magdalena } @softcomputing.es

Abstract

This paper shows the use of Fingrams —Fuzzy
Inference-grams— aimed at unveiling graphically
some hidden details in the usual behavior of the
precise fuzzy modeling algorithm FURIA —Fuzzy
Unordered Rule Induction Algorithm—. FURIA is
recognized as one of the most outstanding fuzzy
rule-based classification methods attending to ac-
curacy. Although FURIA usually produces com-
pact rule bases, with low number of rules and an-
tecedents per rule, its interpretability is arguable,
being penalized by the absence of linguistic readabi-
lity and a complex inference mechanism. Fingrams
offer a methodology for visual representation and
exploratory analysis of fuzzy rule-based systems.
FURIA-Fingrams, i.e. fuzzy inference-grams repre-
senting fuzzy systems learnt with FURIA, make ea-
sier understanding the FURIA inference mechanism
thanks to the possibilities they offer: detecting ins-
tances not covered by any rule; highlighting impor-
tant rules; clarifying the so-called stretching mecha-
nism; etc.
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1. Introduction

Interpretability is recognized as an appreciated and
valuable capability of fuzzy systems. It represents
the capability of fuzzy systems to model the ope-
ration of real systems in a human comprehensible
way [1, 2]. Therefore, it becomes an essential re-
quirement for those applications that involve exten-
sive interaction with human beings. E.g., decision
support systems in medicine [3, 4] must be unders-
tandable, for both physicians and patients, with the
intention of being widely accepted and successfully
applicable. Unfortunately, fuzzy systems are not
interpretable per se; they have to be designed care-
fully to fulfill that characteristic.

There are two main approaches when modeling
fuzzy rule-based systems (FRBSs): producing lin-
guistic or precise fuzzy modeling [5].

On the one hand, linguistic fuzzy modeling yields
fuzzy rules composed of linguistic variables [6] ta-
king terms with a real-world meaning [7]. Therefore
linguistic fuzzy modeling favors interpretability.
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On the other hand, precise fuzzy modeling cons-
tructs fuzzy systems that prioritize accuracy at the
cost of jeopardizing interpretability, specially ma-
king harder the understanding of the system beha-
vior at inference level [8]. They usually deal with
weighted rules, advanced defuzzification strategies,
a high number of rules, variables or antecedents per
rule, etc.

Along the years different alternatives have been
proposed to visualize data mining models [9]. Vi-
sual representations contain rich information to un-
derstand the behavior and characteristics of mo-
dels, supporting their comprehension and decision-
making.

The visual representation of fuzzy systems per-
mits the user to obtain and analyze elements of the
systems in meaningful and informative ways. There
are not many papers tackling with visual analysis
of fuzzy systems. Buck et al. presented in [10]
visual representations to deal with fuzzy numbers
and fuzzy vectors. Pham et al. provided in [11] a
complete analysis of visualization requirements for
fuzzy systems. Gabriel et al. proposed in [12] to
visualize and explore multi-dimensional FRBSs in a
2D graphical representation including data samples
and rules. Pancho et al. developed a methodology
to represent fuzzy rule interaction at inference level
through fuzzy inference-grams (Fingrams) [13].

Fingrams have arisen as a powerful tool for vi-
sualizing and analyzing FRBSs. Fingrams give a
global view of fuzzy systems, and allow us to un-
derstand its behavior at a high level of abstraction.
They present fuzzy systems as graphs where rules
are related each other reflecting how they cover the
input space. Different metrics and visual artifacts
have been proposed to reflect the particularities of
different kinds of fuzzy systems. Namely, FRBSs for
classification and regression [13] but also fuzzy asso-
ciation rules [14]. It is worthy to note the capability
of Fingrams to graphically depict the inference me-
chanism of fuzzy systems. Fingrams let us visualize
importance and complexity of rules, how instances
are covered by rules, how many instances are not
covered, and so on.

This paper shows how the use of Fingrams can
help to understand over the precise fuzzy modeling
algorithm FURIA [15]. FURIA -abbreviation of
Fuzzy Unordered Rule Induction Algorithm— is one



of the most outstanding fuzzy rule-based classifica-
tion methods attending to accuracy. Even though
FURIA produces compact rule bases, with low num-
ber of rules and antecedents per rule, its interpre-
tability is arguable. FURIA is penalized by the
absence of linguistic readability because it lacks of
global semantics. On the contrary, rule antecedents
are specific for each rule and they do not have lin-
guistic terms associated. In addition the inference
mechanism of FURIA occludes interpretability. It is
based on a winner class mechanism with weighted
rules in combination with the so-called rule stret-
ching method which is in charge of handling un-
covered instances. In consequence, it produces a
close-to-black-box inference mechanism, very hard
to predict and understand.

The rest of the manuscript is organized as follows.
Section 2 summarizes the characteristics of FURIA
and Fingrams. Section 3 goes in depth with the
analysis of FURIA through Fingrams over two illus-
trative examples. The first example introduces the
particularities of FURIA-Fingrams (Fingrams de-
picting fuzzy systems learnt by FURIA) in a high
dimensional problem. The second example focuses
on the stretching mechanism of FURIA with a case
of use that intensively takes advantage of it. Fina-
lly, some conclusions and future work are pointed
out in Section 4.

2. Preliminaries

2.1. FURIA

FURIA is a precise fuzzy modeling algorithm re-
cognized world-wide as one of the most accurate
fuzzy classification rule learning algorithms [15]. Its
popularity has grown during last years with more
than 100 works citing the original publication and
demonstrating to be a robust method, performing
properly in a bunch of scenarios [16, 17].

FURIA learning method follows RIPPER buil-
ding strategy [18]. Nevertheless, differently from
RIPPER, FURIA manages fuzzy rules instead of
crisp ones, considers the order of rules irrelevant,
and does not construct a default rule.

FURIA rule induction algorithm starts with the
fuzzification of rule antecedents provided by RIP-
PER, passing from crisp intervals to trapezoidal
fuzzy sets. Thus, the original crisp intervals deter-
mine the cores of the new fuzzy sets while supports
are extended trying to maximize the coverage of
data instances concordant with rule output. Then,
antecedents are ranked according to their relative
importance. The final rule format is as follows:

Ri:IF X, is A} AND ... AND X, is A", O
THEN Y is B (w')

where A is the rule antecedent for variable X
(h € [1,n]) and it is defined by the four points
that are characteristics of a trapezoidal fuzzy set,
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¢ ={a},a},a3,ap}. ai and @ are the bounds of
the core (pq; (2) =1ifz € [a2,a3]) while a}, and a}
limit the support (ua: (z) > 0if z € (a},a3)). B
denotes the rule output class. w’ is the weight asso-
ciated to rule Ri. FURIA rules are weighted accor-
ding to their Certainty Factor (CF) which reflects
the proportion of data instances correctly covered,
i.e. instances in concordance with rule output, with
respect to the total instances covered by the rule.

Given a data instance, the inference mechanism
operates differently if the instance is covered or not
by the set of induced rules:

e In case the instance is covered by the set of
induced rules, FURIA predicts as output the
winner class coming from the sum of activation
degrees (weighted by CF) of all induced rules
per class.

e Otherwise, FURIA dynamically creates a new

set of rules from the induced ones, taking ad-
vantage of the so-called rule stretching mecha-
nism. It checks rule by rule the whole set of
induced rules for the given instance. For each
induced rule, antecedents are removed from the
least to the most important one, passing to the
analysis of the next rule when the instance is
covered by the stretched rule or there are no
more antecedents to remove. Notice that im-
portance of antecedents is implicit in the order
in which they appear in each rule as it was given
by the rule induction mechanism in FURIA. If
all antecedents were removed for an individual
rule, then such rule would become an empty
rule and it would be discarded. On the con-
trary, the new rule would be added to the set
of stretched rules.
The new stretched rules are weighted according
to the Certainty Factor of the original rules and
the number of antecedents kept after finishing
the stretching procedure. The system predicts
as output the class given by the winner rule in
the new rule set. However, if all rules were dis-
carded by the stretching mechanism, then the
class with the highest frequency in the dataset
would be taken as output.

FURIA creates compact FRBSs that achieve high
performance thanks to its specific inference mecha-
nism. Unfortunately, the comprehension of such in-
ference mechanism is not straightforward although
it is a key issue to properly interpret the behavior
of systems built up with FURIA.

The interested reader can find a deeper explana-
tion of FURIA in [15].

2.2. Fingrams

Fingrams are graphs formed by nodes and edges
that overview at a glance the complete inference
process of fuzzy systems [13]. Rules are represented
by nodes with size proportional to the number of



instances covered, and edges reflect relations bet-
ween rules, i.e. how pairs of rules jointly cover the
input space; thus the larger the number of instances
commonly covered, the stronger the relation.

The relations are calculated according to a me-
tric that reflects how rules cover the instances in
a given dataset. The simplest metric (as shown
in eq. 2) relates two rules (Ri and Rj) according
to the number of instances covered in common by
them (|D* N D7) with respect to the total number
of instances they individually cover (|D?| and |D7|)
where D' and D’ are the set of instances covered
by rules Ri and Rj respectively, and |.| represents
the cardinality of sets.

|Di N DI
T I

Due to the usual high interaction between rules in
fuzz systems, Fingrams usually appear highly dense
and complex to analyze. Therefore, a suitable filte-
ring of elements is demanded to produce a clearer
graph where its backbone emerges. We take ad-
vantage of Pathfinder scaling algorithm [19] which
maintains all the nodes but only the most relevant
links looking at proximity between pairs of nodes.

A pleasant graphical representation is quite im-
portant to easily identify and understand the beha-
vior of the FRBS under study. Kamada-Kawai al-
gorithm [20] layouts Fingram elements in 2D, follo-
wing aesthetical criteria.

Fingrams can already deal with FURIA, fuzzy as-
sociation rules [14], fuzzy rule-based classifiers and
regressors [13]. The different adaptations involve
specific metrics and show relevant information ac-
cording to their characteristics.

A specific software, Fingrams Generator! [21],
permits the creation of Fingrams no matter how
the depicted FRBS was generated. Also, a few soft-
ware tools already allow the creation and analy-
sis of Fingrams, such as the fuzzy modeling tool
GUAJE [22] or the data mining suites KEEL [23]
and KNIME [24].

m;; € [0,1]

(2)

3. Analyzing FURIA through Fingrams

This section sketches the use of Fingrams to analyze
and comprehend FURIA.

Hiithn and Hillermeier summarized in [15, 25] the
experimentation done with FURIA over 45 data-
sets. They demonstrated that FURIA outperforms
the precision of other algorithms, but nothing is
mentioned about the systems interpretability. It
is worthy to note that FURIA includes elabora-
ted tricks, mainly in its inference mechanism, which
hamper its comprehension.

Let us consider Fingrams to yield some light on
how FURIA actually works in practice. FURIA-
Fingrams are compound by two graphical represen-
tations. The first representation shows the set of

Thttp://wuw.sourceforge.net/projects/fingrams/
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induced rules while the second one presents the set
of stretched rules. Moreover, a rectangular node de-
picts the data instances not covered by any rule in
both representations. It should be noticed that un-
covered instances penalize the precision of FRBSs
and their early detection is essential for the correct
design of the system.

In the remainder of this section, we analyze th-
rough Fingrams two systems constructed by FURIA
from two of the datasets considered in [15]. The first
system is learnt from a high dimensional and balan-
ced dataset. The second system intensively takes
advantage of the FURIA stretching mechanism.

3.1. Understanding the FURIA inference
mechanism in a high dimensional
problem

For this case study, we selected the dataset known
as synthetic-control (dataset 40 in [15]). It contains
600 instances of control charts synthetically genera-
ted. Each data instance includes 61 attributes and
belongs to one of the six established classes (Nor-
mal, Cyclic, Increasing trend, Decreasing trend, Up-
ward shift and Downward shift).

According to experimental results reported in [15]
for the dataset under study: FURIA obtained an
average classification rate of 89.75%, the average
number of rules was 15.9, and the average number
of antecedents per rule was 2.7.

We run FURIA over the whole dataset and the
algorithm induced the list of rules given in Table 1.
The rule base is made up of 20 rules which involve in
the antecedents only 33 out of all the 61 given attri-
butes. These rules are apparently very simple and
they are quite accurate as can be deduced from the
fact that there are rules handling all target output
classes and most rules have CF higher than 0.9 (mi-
nimum CF is actually 0.86). Nevertheless, unders-
tanding the system behavior just reading and inter-
preting these rules is not easy. Firstly, the generated
trapezoidal fuzzy sets are specific for each rule and
they have no linguistic terms attached. This fact
strongly hampers the readability of the rule base.
Secondly, having a global view of the input space
gets away from human capabilities, due to the huge
number of attributes. This makes unfeasible to fi-
gure out a representation of the given dataset in
2D or 3D. The same difficulties arise when thinking
about identifying main interaction among rules. In
consequence, trying to guess the output class pre-
dicted by this rule base for a given data instance is
not a straightforward task.

Fig. 1 presents the Fingram depicting the induced
rule set given in Table 1.

Edges between rule nodes indicate rule interac-
tion and they are computed by equation 2. Green
edges relate rules of same output class whereas red
edges relate rules of different output class. Notice
that studying the graph structure in detail we ob-
serve how all edges but one (edge relating R2 and



R1: IF cold in [37.07, 37.11, oo, co] AND col2 in [29.42, 30.16, co, oo] THEN class is Cyclic (CF=0.982)
R2: IF col5 in [37.34, 38.32, co, oo] THEN class is Cyclic (CF=0.978)
R3: IF col60 in [-oco, -co, 15.02, 15.14] AND col21 in [-oc0, -oo, 27.03, 27.54] AND coll7 in [-co, -oco, 29.58, 29.87] THEN class is Decreasing trend
(CF=0.977)
R4: IF col58 in [-o0o, -co, 20.66, 23.77] AND coll6 in [-co, -co, 24.82, 24.86] THEN class is Decreasing trend (CF=0.972)
R5: IF col48 in [-co, -0o, 16.43, 19.93] AND col13 in [-co, -co, 23.86, 24.01] THEN class is Decreasing trend (CF=0.946)
R6: IF col60 in [-oco, -oo, 17.56, 18.50] AND col39 in [19.45, 21.55, oo, oo] AND col4 in [-oo, -co, 31.10, 31.62] AND coll0 in [-oo, -co, 32.83, 33.46]
THEN class is Decreasing trend (CF=0.889)
R7: IF col47 in [-oc0, -co, 23.41, 23.47] AND col21 in [25.86, 26.11, co, co] AND coll6 in [23.45, 24.86, oo, oo] AND col44 in [-co, -oco, 17.19, 17.28]
THEN class is Downward shift (CF=0.971)
R8: IF col54 in [-o0, -00, 23.92, 24.25] AND col10 in [28.87, 29.35, oo, o] AND col57 in [14.40, 15.02, oo, oo] AND coll19 in [24.25, 24.71, oo, oo] THEN
class is Downward shift (CF=0.967)
R9: IF col47 in [-oc0, -co, 21.49, 24.03] AND col24 in [30.46, 30.74, co, co] THEN class is Downward shift (CF=0.938)
R10: IF col29 in [-oco, -oo, 18.35, 18.45] AND col60 in [14.95, 17.45, oo, oo] AND col2 in [-co, -co, 31.03, 34.40] THEN class is Downward shift (CF=0.860)
R11: IF col55 in [41.65, 42.00, oo, co] AND col20 in [33.54, 33.65, co, co] AND col21 in [31.43, 31.53, co, co] AND coll in [24.16, 24.25, co, oco] THEN
class is Increasing trend (CF=0.978)
R12: IF col54 in [42.32, 43.71, oo, oo] AND coll17 in [34.60, 34.93, co, oo] AND col22 in [28.04, 30.35, co, oo] THEN class is Increasing trend (CF=0.970)
R13: IF col9 in [36.02, 36.13, oo, oo] THEN class is Increasing trend (CF=0.940)
R14: IF coll0 in [36.00, 36.25, co, oo] THEN class is Increasing trend (CF=0.949)
R15: IF colll in [35.99, 36.85, co, oo] THEN class is Increasing trend (CF=0.936)
R16: IF col46 in [-co, -oo, 36.02, 36.95] AND col57 in [23.76, 24.11, oo, co] AND col5 in [-c0, 0o, 32.84, 33.15] AND col31 in [-c0, -oo, 35.85, 35.97] AND
col29 in [19.53, 24.30, oo, oo] THEN class is Normal (CF=0.980)
R17: IF col5 in [27.69, 33.23, co, oc] AND coll7 in [-oc0, -oo, 31.99, 32.54] AND col52 in [24.37, 25.35, oo, co] AND col43 in [-oco, -oo, 35.88, 36.32] AND
col39 in [23.50, 24.78, oo, oo] THEN class is Normal (CF=0.953)
R18: IF coldl in [35.67, 35.80, oo, co] AND coll7 in [-00, -0, 33.68, 34.81] AND col20 in [-co, -co, 32.89, 33.65] AND coll8 in [-co, -co, 35.59, 35.62]
THEN class is Upward shift (CF=0.978)
R19: IF col42 in [36.01, 39.20, co, co] AND coll5 in [-oc0, -co, 28.72, 29.02] THEN class is Upward shift (CF=0.963)
R20: IF col42 in [38.91, 39.20, oo, oo] AND col21 in [-oo, -oo, 33.13, 33.35] AND col4 in [-oo, -co, 35.23, 35.71] AND coll6 in [-oo, -co, 35.70, 36.70]
THEN class is Upward shift (CF=0.975)
Table 1: Textual description of the induced rule base for the synthetic-control dataset.
R9) are green. There are bunches of rules with the
same output class which cover jointly and exclusi-
A vely the same parts of the input space. This means
0.012) . .
that the induced rule base is somehow redundant.
It is easy to appreciate how nodes are grouped into
|2 communities (bunches of rules with the same out-
\\\ put class) which emerge naturally and tend to be
(corssn isolated.
i .
() In the case of rule nodes, they include the follo-
(cov=0.045) . . . . . .
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a0 coverage (cov)7 i.e., the proportion of data instan-
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oo r ces covered by the rule; the Certainty Factor (CF);
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= of data instances with the same output class than
o I that pointed out by the rule. The node size is pro-
(cov=0." 0.576 . . .
‘{’3:{3‘?;{2 portional to the rule coverage. The node color is in
Ry
accordance with the rule output class. It is easy to
R16 . . . .
0419 \ (oo appreciate 6 different colors in the picture corres-
(CF=0.980) . . .
oo 0423 (c2=0010) ponding to the 6 output classes given in the legend.
G . .
] The node borders indicate the number of antece-
dents in the rule, e.g. R1 has two antecedents in
Table 1 and two borders in Fig. 1.
There is a special node, labeled as “UNCOVE-
RED INSTANCES”, which shows in a striped chart
the proportion of instances of each class not covered
by the induced rule base. This node size is propor-
/ B tional to the total number of uncovered instances.
0833 ey In this problem, only 7 out of the 600 instances
@R (cov=0.012) are uncovered (1 of class Decreasing
pur= 0.17 . .
oot 0-639/ trend, 2 of Downward shift, 2 of Cyclic, 1 of Increa-

Output class

R20 Cyclic
(cov=0.115)

(pur= 0.558)
(CF=0.975) Decreasing trend
(cc=0.380)

Downward shift

Increasing trend

sing trend, and 1 of Upward shift).

In order to handle the uncovered instances, FU-
RIA triggers the stretching mechanism. Table 2
shows the textual description of the stretched ru-
les and Fig. 2 shows the related Fingram. Notice
that it is slightly different from the previous one.

((cav=!a.15§;)) Normal
2= . . .
(cesoare) Upward shif Firstly, the stretched rule identifier makes refe-

Figure 1: Fingram of the set of rules induced for
the synthetic-control dataset.
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rence to the identifier of the originating induced
rule, i.e. the induced rule from which the stret-
ched rule is derived. Thus, stretched rules are na-
med RXX.YY with RXX being the identifier of the
originating rule and Y'Y being the number of ante-



R3.1:
R5.1:

IF col60 in [-oco, -oo,
IF col48 in [-o0, -co,

15.02, 15.14] THEN class is Decreasing trend (CF=0.272)
16.43, 19.93] THEN class is Decreasing trend (CF=0.267)
23.41, 23.47] AND col21 in [25.86, 26.11, oo, co] AND coll6 in [23.45, 24.86, oo, oo] THEN class is Downward

23.92, 24.25] AND coll0 in [28.87, 29.35, oo, oco] AND col57 in [14.40, 15.02, oo, oo] THEN class is Downward

only 7 data instances. In addition, the coverages

R7.3: IF col47 in [-oo, -0o,
shift (CF=0.573)

RS8.1: IF col54 in [-oco, -co, 23.92, 24.25] THEN class is Downward shift (CF=0.137)

R8.3: IF col54 in [-oco, -co,
shift (CF=0.591)

R11.3: IF col55 in [41.65, 42.00, oo, co] AND col20 in [33.54, 33.65, oo, oo] AND col21 in [31.43, 31.53, oo, oo] THEN class is Increasing trend
(CF=0.636)

R12.1: IF col54 in [42.32, 43.71, co, oo] THEN class is Increasing trend (CF=0.230)

R16.1: IF col46 in [-o0, -0, 36.02, 36.95] THEN class is Normal (CF=0.078)

R16.2: IF col46 in [-oco, -oo, 36.02, 36.95] AND col57 in [23.76, 24.11, oo, oco] THEN class is Normal (CF=0.292)

R16.3: IF col46 in [-co, -oco, 36.02, 36.95] AND col57 in [23.76, 24.11, oo, o] AND col5 in [-oco, -co, 32.84, 33.15] THEN class is Normal
(CF=0.512)

R17.1: IF col5 in [27.69, 33.23, oo, oo] THEN class is Normal (CF=0.038)

R17.2: IF col5 in [27.69, 33.23, oo, co] AND coll7 in [-oco, -oco, 31.99, 32.54] THEN class is Normal (CF=0.089)

R17.3: IF col5 in [27.69, 33.23, oo, oo] AND coll7 in [-oc0, -oco, 31.99, 32.54] AND col52 in [24.37, 25.35, oo, oo] THEN class is Normal
(CF=0.232)

R18.2: IF col4l in [35.67, 35.80, oo, co] AND coll7 in [-00, -oo, 33.68, 34.81] THEN class is Upward shift (CF=0.368)

R19.1: IF col42 in [36.01, 39.20, oo, oo] THEN class is Upward shift (CF=0.229)
Table 2: Textual description of the set of stretched rules for the synthetic-control dataset.
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Upward shift

RS51
RI9.1
(cov=0.003)
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1.000 RIT2
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(ee=0.010) 1.000

Figure 2: Fingram of the set of stretched rules for
the synthetic-control dataset.

cedents the stretched rule keeps from it.

Secondly, stretched rules are always more gene-
ral than induced ones. Notice that they include
less antecedents to cope with instances not cove-
red previously. Fingrams of stretched rules are
usually more dense (thus exhibiting more interac-
tion among rules) than Fingrams of induced rules.
Thus, finding communities among stretched rules is
not as simple as regarding induced rules. In addi-
tion, edge values are much higher too. Namely, sets
of rules R11.3-R17.3, R12.1-R17.1, R3.1-R7.3-R8.3-
R17.2 cover exactly the same instances. Therefore,
they are connected with edge values equal 1.

Finally, in this case there is no special node “UN-
COVERED INSTANCES” because all 7 uncovered
instances are covered after applying the stretching
mechanism. Anyway, it is worthy to comment that
stretching mechanism is quite inefficient in this pro-
blem since it produces 15 rules in order to handle
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of stretched rules are very low due to the so small
number of given instances. Even worse, instances
handled by the stretching mechanism (take a look
at “UNCOVERED INSTANCES” node in Fig. 1)
correspond to only 5 classes but the set of stretched
rules produces 6 classes as output. This implies that
class Normal is predicted incorrectly in some of the
7 instances.

3.2. Going in depth with the FURIA
stretching mechanism

The second case study deals with the dataset called
metStatRST (dataset 22 in [15]). It presents 336
instances with the mean values of weather condi-
tions taken in different stations placed in Germany.
It includes three attributes: average rainfall; suns-
hine duration; and temperature per year. Output
class corresponds to the German State where the
met station is located (12 classes/States).

According to results published in [15], this is
a hard problem, with 12 highly unbalanced clas-
ses, where the best performance was 42.02% and it
was achieved by the genetic learning algorithm ca-
lled SLAVE [26]. FURIA produced a fuzzy system
which performed poorly with only 33.56% correctly
classified instances. The average number of rules
was 15.9, and the average number of antecedents
per rule was 2.7.

We run FURIA over the whole dataset and the
algorithm induced the list of rules given in Table 3.
The rule base is made up of 12 rules which involve
all the 3 given attributes in the antecedents. These
rules cover only 8 out of the 12 output classes. Even
worse, CF is quite low (always under 0.87) for all
rules. This means that covered instances are not
predicted correctly.

Let us analyze rule interaction with the help of
Fingrams in order to find out why FURIA does not
work properly in this problem.

Fig. 3 presents the Fingram related to the set of
induced rules given in Table 3. It is worthy to note
how the global structure of this Fingram is very
different from the ones described in the previous
section. Induced rules are quite specific (individual
coverage < 0.101) and they mostly cover instances



IF Temperature in [9.1, 9.2, oo, co] AND Sunshine in [-00, -co, 1528.2, 1536.2] AND Rainfall in [706, 723.3, oo, oo] THEN class is
Nordrhein-Westfalen (CF=0.746)

R2: IF Sunshine in [-oco, -oo, 1464.7, 1492.1] AND Rainfall in [858.7, 867.6, co, co] AND Temperature in [8.2, 8.3, oo, oco] AND Rainfall in
[-o0, -0, 1200.2, 1286.9] THEN class is Nordrhein-Westfalen (CF=0.796)

R3: IF Temperature in [8.1, 8.2, co, co] AND Temperature in [-co, -00, 8.5, 8.6] AND Rainfall in [698.4, 701.1, oo, co] AND Sunshine in
[1432.1, 1443.3, oo, oo] THEN class is Schleswig-Holstein (CF=0.659)

R4: IF Temperature in [-co, -co, 8.1, 8.2] AND Sunshine in [1540.9, 1541.8, oo, co] AND Rainfall in [607.8, 665, co, co] AND Temperature
in [7.3, 7.4, co, co] THEN class is Bayern (CF=0.697)

R5: IF Temperature in [-oco, -co, 8.3, 8.5] AND Rainfall in [1360.2, 1363.5, co, co] THEN class is Bayern (CF=0.511)

R6: IF Temperature in [9, 9.2, co, co] AND Sunshine in [-oc0, -co, 1370, 1379] THEN class is Rheinland-Pfalz (CF=0.619)

RT: IF Rainfall in [-co, -co, 594.8, 644.2] AND Sunshine in [1639.4, 1664.8, co, co] AND Temperature in [8.4, 8.6, co, co] THEN class is
Brandenburg (CF=0.724)

RS8: IF Rainfall in [-c0, -0o, 532.1, 535.8] AND Sunshine in [1618.7, 1636.7, oo, oco] THEN class is Brandenburg (CF=0.597)

R9: IF Rainfall in [-co0, -oco, 620.3, 625.5] AND Temperature in [-co, -oo, 8.4, 8.5] AND Sunshine in [1602.8, 1606.6, oo, co] AND Rainfall
in [532.1, 535.8, oo, co] AND Sunshine in [-co, -co, 1739, 1740.7] THEN class is Mecklenburg-Vorpommern (CF=0.840)

R10: IF Temperature in [-00, -00, 7.4, 7.5] AND Sunshine in [1623.4, 1627.6, co, co] AND Rainfall in [-co, -0o, 1190.4, 1209.8] THEN class
is Baden-Wuerttemberg (CF=0.853)

R11: IF Sunshine in [1685.8, 1689.4, oo, co] AND Temperature in [8.8, 9.1, oo, co] THEN class is Baden-Wuerttemberg (CF=0.865)

R12: IF Rainfall in [-oc0, -co, 563.4, 565.5] AND Sunshine in [-oc0, -c0, 1578.9, 1583.3] THEN class is Sachsen-Anhalt (CF=0.653)

Table 3: Textual description of the induced rule base for the metStatRST dataset.

at their own, with very low interaction to each ot-
her. This fact produces very few edges and most
nodes appear isolated.

Differently from previous case, here many instan-
ces are not covered by the induced rules. The “UN-
COVERED INSTANCES” node is the largest one.
Actually, more than half of the instances (171 out of
336 instances) are covered by none of the induced

(mFRGZOZI)
o rules. So, they trigger the stretching mechanism.
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Figure 3: Fingram of the set of induced rules for
the metStatRST dataset.
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veys much richer information than that of the mere
textual description.

Like in the previous case study, once the stret-
ching mechanism ends there are not uncovered ins-
tances anymore. Thus, the “UNCOVERED INS-
TANCES” node disappears in Fig. 4. Again, stret-
ched rules are more densely related than induced
rules, meaning that they are more general and co-
ver part of the input space in common. In addition,
most relations connect rules with different output
class, what is remarked through red edges in the
graph.

Rules with just one antecedent (RXX.1) gets a
central position in the graph because they are quite
general and jointly cover instances with many ot-
hers. For example, Rule R3.1 covers near half of
the instances handled by the stretching mechanism.
Even more, Rules R4.1 and R5.1 cover most of ins-
tances in common producing a high relation bet-
ween them (ms1 41 = 0.917).

Finally, we can conclude that FURIA fails to pro-
duce an accurate fuzzy system in this case because
of several factors:

e Even though the dataset contains only three
attributes, the classification problem becomes
extremely hard mainly due to the big number
of highly unbalanced output classes.

e Induced rules only cover a reduced part of the
whole dataset. Even worse, most covered ins-
tances are not properly classified. Notice that
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Figure 4: Fingram of the set of stretched rules for the metStatRST dataset.

4 out of 12 classes are margined and not pre-
dicted.

Half of the data instances have to be mana-
ged by the stretching mechanism. It successes
to cover them; but it fails to predict the right
output classes. Notice that stretched rules are
directly derived from induced ones. Obviously,
starting from a poor set of induced rules FU-
RIA stretching mechanism is expected to per-
form poorly.

4. Conclusions and future work

This paper has introduced the use of Fingrams for
dealing with FURIA, an outstanding precise fuzzy
modeling algorithm which constructs accurate but
hardly to interpret fuzzy rule-based classifiers.

We take advantage of the so-called FURIA-
Fingrams that permit a comfortably visualization
and analysis of fuzzy systems learnt by FURIA.
FURIA-Fingrams are compound by a twofold vi-
sualization that presents on the one hand the set
of induced rules and on the other hand the set of
stretched rules.

Additionally, a visual artifact represents instances
not covered by the given set of rules. Notice that the
detection and analysis of uncovered instances is key
in fuzzy modeling because such instances directly
penalize precision.

We worked over a couple of illustrative exam-

303

ples showing the difficulties FURIA inference me-
chanism presents and the opportunities Fingrams
offer to illuminate its inference mechanism. Fin-
grams have demonstrated their capability to unveil
FURIA particularities, such as details related to the
stretching mechanism.

In the near future, FURIA-Fingrams will be in-
cluded in the next release of the free software Fin-
grams Generator. Later on, we will extend Fin-
grams to assist the comprehension of other complex
precise fuzzy systems.
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