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Abstract

In Game theory, there are situations in which it is
very difficult to characterize the private information
of each player. In this case, the payoffs can be given
by approximate values, represented by fuzzy num-
bers. Whenever there is uncertainty in the mod-
eling of those fuzzy numbers, interval fuzzy num-
bers may be used. This paper introduces two ap-
proaches for the solution of interval-valued fuzzy
zero-sum games. First, we extend the Campos-
Verdegay model, which uses triangular fuzzy num-
bers for the modeling of uncertain payoffs, to con-
sider interval-valued fuzzy payoffs. Then, defining
a ranking method for interval fuzzy numbers that
induces a total order, we generalize the interval-
valued Campos-Verdegay model to consider payoffs
modeled as any type of interval fuzzy numbers. In
both models, we establish an Interval Fuzzy Linear
Programming problem for each player, which are
reduced to classical Linear Programming problems,
used in the solution of classical zero-sum games. We
show that the solutions are of the same nature of the
parameters defining the game, corresponding to an
uncertain predicate of type: “the value of the game
is in the interval ϑ”.

Keywords: interval fuzzy numbers, ranking inter-
val fuzzy numbers, interval fuzzy zero-sum games,
interval fuzzy linear programming

1. Introduction
Game theory [1] is a well known important basis
to simulate several situations where multiple play-
ers interact strategically for decision making and
support [2]. In many applications, the players only
know their own characteristics, and must make deci-
sions while having to estimate the characteristics of
the other participants of the interaction, which con-
figures a game of incomplete information [3]. When
probabilities are assigned for the different types of
the interacting agents, we have a game of imperfect
information [4]. However, there are cases in which it
is very difficult to characterize the private informa-
tion of each player (e.g., ability, level of effort), in
order to establish the probabilities of the types that
they may assume. In these situations, the payoffs
are given by approximate (not probabilistic) values.
Fuzzy set theory [5] is an excellent basis for

studying the kind of game in which the payoffs are
represented by fuzzy numbers. In the literature,
there is a large amount of research on fuzzy games,
mainly focused on matrix fuzzy games and non-
cooperative fuzzy games, the majority on zero-sum
games, which are strictly competitive games.[6]

Campos and Verdegay [7, 8] introduced a two-
person zero-sum game with payoffs given by tri-
angular fuzzy numbers, whose solution is based on
the establishment of a Fuzzy Linear Programming
(FLP) problem for each player, which are reduced
to Linear Programming (LP) models by adopt-
ing ranking methods for triangular fuzzy numbers.
Amaral and Gomide [9, 10] analyzed equilibrium
strategies and developed computational methods for
the resolution of fuzzy zero-sum games, based on
evolutionary computation, in α-levels and decom-
position algorithms. See also the works by Dutta
and Gupta [11] and Maeda [12].

Whenever there is uncertainty in the modeling of
the fuzzy numbers (e.g., when they are given by a
group of different domain experts), interval fuzzy
numbers are frequently used, in order to represent
a range of fuzzy numbers, varying from the most
pessimistic (most uncertain) evaluation to most the
optimistic (less uncertain). Observe that interval-
valued fuzzy sets allows to deal not only with vague-
ness (lack of sharp class boundaries), but also with
uncertainty (lack of information) [13, 14, 15, 16].

This paper introduces two approaches for two-
person interval-based fuzzy zero-sum games, where
interval-valued fuzzy payoffs are considered. First,
the Campos-Verdegay model, which uses triangular
fuzzy numbers for the modeling of uncertain pay-
offs, is extended to consider interval fuzzy payoffs.
Then, defining a ranking method for interval fuzzy
numbers that induces a total order, we generalize
the interval-valued Campos-Verdegay model to con-
sider payoffs modeled by any type of interval fuzzy
number, so enlarging the scope of the applications
and allowing for further extensions. In both models,
we establish an Interval Fuzzy Linear Programming
(IFLP) problem for each player, which are reduced
to classical LP problems, used in the solution of
classical zero-sum games. We show that the solu-
tions are of the same nature of the parameters of
the game, corresponding to an uncertain predicate
of type: “the value of the game is in the interval ϑ”.

The paper is organized as follows. Section 2
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presents preliminary concepts, introducing a rank-
ing method for interval fuzzy numbers. Basic con-
cepts on zero-sum games are presented in Sect. 3. In
Sect. 4, we discuss fuzzy zero-sum games, present-
ing the original Campos-Verdegay model and gener-
alizing it considering Ezzati et al.’s ranking method.
Section 5 introduces interval-valued fuzzy zero-sum
games: the interval-valued Campos-Verdegay model
and a model based on the total order introduced in
Sect. 2. Section 6 is the Conclusion.

2. Preliminary Concepts
A fuzzy set is defined by means of a graded member-
ship function. Given an universe U and a fuzzy sub-
set A ofU, the membership function ϕA : U→ [0, 1]
gives the grade ϕA(x) with which an element x ∈ U
belongs to A. A fuzzy subset A of U can be then
represented by a set of ordered pairs, given by
A = {(x, ϕA(x)) | x ∈ U}. The support of F is
defined as the set

suppA = {x ∈ U|ϕA(x) > 0}. (1)

The core of A is defined as the set coreA = {x ∈
U|ϕA(x) = 1}. For 0 ≤ α ≤ 1, the α-cuts of A are
defined as the classic subsets of U given by

A[α] =
{
{x ∈ U|ϕA(x) ≥ α} if 0 < α ≤ 1
ŝuppA if α = 0 (2)

where suppA is the support of A defined in Eq. (1)
and ŝuppA is the closure of suppA. A fuzzy set is
completely defined by its α-cuts. [17]
A fuzzy set Ñ is called a fuzzy number whenever

ϕÑ is defined on the set of real numbers R, and the
following conditions hold: (i) all α-cuts of Ñ are non
empty closed intervals in R and (ii) the support of
Ñ is bounded. [5, 18]

There are several kinds of fuzzy numbers, ac-
cording to their membership functions. A trape-
zoidal fuzzy number Ñ is given by a tuple Ñ =
(η1, η2, σ, β), where coreÑ = [η1, η2], σ is its left
fuzziness related to η1, β is its right fuzziness related
to η2 [19], and its membership function is given by:

ϕÑ (x) =


x−η1+σ

σ if η1 − σ ≤ x ≤ η1
1 if η1 ≤ x ≤ η2
η2+β−x

β η2 ≤ x ≤ η2 + β

0 otherwise.

(3)

Whenever η1 = η2 = η, then Ñ is a triangular fuzzy
number denoted by Ñ = (η, σ, β).

Considering its membership function, a fuzzy
number Ñ can be represented in a parametric form
as Ñ = (Ñ(t), Ñ(t)), for 0 ≤ t ≤ 1 [20]. For ex-
ample, given Eq. (3), a trapezoidal fuzzy number Ñ
can be represented in a parametric form as:
Ñ = (Ñ(t), Ñ(t)) = (η1 − σ+ σt, η2 + β − βt), (4)

for 0 ≤ t ≤ 1. The parametric form of a triangular
fuzzy number is similarly defined.
The magnitude of a fuzzy number in a parametric

form is given by: [20]

Mag(Ñ) =
1
2

∫ 1

0

(
Ñ(t) + Ñ(t) + Ñ(1) + Ñ(1)

)
F (t)dt, (5)

where the function F is is a non-negative and in-
creasing function defined on [0, 1] with F (0) = 0,
F (1) = 1 and

∫ 1
0 F (t)dt = 1

2 . F is considered as
a weighting function. In actual applications, the
function F can be chosen according to the actual
situation. In this paper, we use F (t) = t. The mag-
nitude of fuzzy numbers may be used for ranking
fuzzy numbers [20]. Ezzati et al. [19] introduced
another complementary magnitude of a fuzzy num-
ber Ñ = (Ñ(t), Ñ(t)), given by:

Mag
′(Ñ) =

1
2

∫ 1

0

(
Ñ
′(t)− Ñ ′(t) + Ñ(1)− Ñ(1)

)
dt. (6)

In order to rank two fuzzy numbers Ñ and M̃ ,
Ezzati et al. [19] defined a ranking value R:
R(Ñ , δ) = Mag(Ñ) + δMag′(Ñ) (7)
R(M̃, δ) = Mag(M̃) + δMag′(M̃), (8)

where δ =
{

0 if Mag(Ñ) 6= Mag(M̃)
1 if Mag(Ñ) = Mag(M̃), (9)

withMag andMag′ defined in Eqs. (5) and (6), re-
spectively. The ranking of Ñ and M̃ is given by: [19]

Ñ � M̃ ⇔ R(Ñ , δ) ≤ R(M̃, δ). (10)
There are several ranking methods for fuzzy num-

bers (see, e.g., [21, 22, 23, 24, 25]). We adopted the
one proposed by Ezzati et al. [19] because it induces
a total order, and can be easily combined with the
interval order by Costa et al. [26] in order to obtain
a ranking method for interval fuzzy numbers, which
also induces a total order.

Consider the set of real intervals IR and let
U = {[a, b] ∈ IR | 0 ≤ a ≤ b ≤ 1} be the set
of subintervals of the unit interval [0, 1]. An in-
terval fuzzy subset A of a universe U is defined as
the set of ordered pairs A = {(x, νA(x)) | x ∈ U},
where νA : U → U is the interval-valued member-
ship function ofA, which provides the interval mem-
bership grade νA(x) containing the uncertain mem-
bership grade with which an element x ∈ U belongs
to A. Whenever the interval membership function
νA is continuous1, then there exist continuous func-
tions ϕAl , ϕAu : U→ [0, 1], called, respectively, the
lower membership function (LMF) and the upper
membership function (UMF), such that, for every
x ∈ U, it holds that νA(x) = [ϕAl(x), ϕAu(x)],
where ϕAl(x) ≤ ϕAu(x). [18]
The inner and outer supports of an interval fuzzy

set A are defined, respectively, by lsuppA = {x ∈
U | ϕAl(x) > 0} and usuppA = {x ∈ U | ϕAu(x) >
0}, and its core is coreA = {x ∈ U | νA(x) = {x ∈
U | ϕAl(x) = ϕAu(x) = 1}. For [α1, α2] ∈ U , the
[α1, α2]-cuts of A are defined by: [18]

1The continuity of interval functions was defined by
Moore as an extension of the continuity of real functions.
More information on this subject can be seen in [27, 28].
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A[α1, α2] = (11)
{x ∈ U | νA(x) ≥IR [α1, α2]}, if α1 6= 0

Al[0] ∩ {x ∈ U | νA(x) ≥IR [α1, α2]}, if α1 = 0 ∧ α2 6= 0

Al[0] ∩ Au[0], if α1 = α2 = 0,

where ≥IR is an interval order relation2, Al[0] and
Au[0] are the closures of the supports lsuppA and
usuppA, respectively. As in the classical fuzzy the-
ory, an interval fuzzy set is completely determined
by its [α1, α2]-cuts. [18]

An interval fuzzy number N̂ is defined as an in-
terval fuzzy set of R satisfying the properties: (1)
the [α1, α2]-cuts and the core of N̂ are real intervals
of IR; (2) lsupp

N̂
and usupp

N̂
are bounded [18].

A trapezoidal interval fuzzy number may be rep-
resented as an ordered pair of fuzzy numbers N̂ =
(Ñ l, Ñu), where Ñ l and Ñu are called the lower and
upper generator fuzzy numbers of N̂ , respectively,
specified by the respective LMF and UMF.
An interval fuzzy number N̂ is called trapezoidal

whenever both LMF and UMF are given as in
Eq. (3), defining the lower and upper trapezoidal
fuzzy numbers Ñ l = (ηl1, ηl2, σl, βl) and Ñu =
(ηu1 , ηu2 , σu, βu), respectively. Similarly, we define
a triangular interval fuzzy number.

Now we generalize the ranking method intro-
duced by Ezzati et al. [19] for interval fuzzy num-
bers. Consider two trapezoidal interval fuzzy num-
bers N̂ = (Ñ l, Ñu) and M̂ = (M̃ l, M̃u), where the
lower and upper generator fuzzy numbers Ñ l, Ñu,
M̃ l and M̃u are defined in the parametric forms, and
the respective magnitudes are defined as in Equa-
tions (5) and (6). Then, the lower and upper rank-
ing values of N̂ and M̂ are given as:

R(Ñ l, δl) = Mag(Ñ l) + δlMag′(Ñ l)
R(M̃ l, δl) = Mag(M̃ l) + δlMag′(M̃ l)
R(Ñu, δu) = Mag(Ñu) + δuMag′(Ñu)
R(M̃u, δu) = Mag(M̃u) + δuMag′(M̃u),

where δl and δu are given by Eq. (9). Define:
N̂ � M̂ ⇔ (12)
[R(Ñ l, δl), R(Ñu, δu)] ≤C

IR [R(M̃ l, δl), R(M̃u, δu)],

where ≤CIR is the Costa et al.’s total order in the
set of real intervals IR [26]. It is immediate that
Proposition 1 � is a total order relation in the
set of trapezoidal fuzzy numbers.

Example 1 Let Â = (Ãl, Ãu) be a trapezoidal in-
terval fuzzy number, defined by the generator fuzzy
numbers Ãl = (−1, 1, 2, 2) and Ãu = (−1, 1, 3, 3),
and let B̂ = (B̃l, B̃u) be a triangular interval fuzzy
number, defined by the generator fuzzy numbers

2E.g., for X = [x1, x2], Y = [y1, y2] ∈ IR, the Kulish-
Miranker order relation [28] is defined by X ≤KM

IR
Y ⇔

x1 ≤ y1 ∧ x2 ≤ y2 and the Costa total order relation [26] is
given by X ≤C

IR
Y ⇔ x2 < y2 ∨ (x2 = y2 ∧ y1 ≤ x1).

B̃l = (0, 1, 1) and B̃u = (0, 2, 2), as shown in Fig. 1.
The parametric forms of the generator fuzzy num-
bers of Â and B̂, for 0 ≤ t ≤ 1, are:

Ãl = (Ãl(t), Ãl(t)) = (−3 + 2t, 3− 2t)

Ãu = (Ãu(t), Ãu(t)) = (−4 + 3t, 4− 3t)

B̃l = (B̃l(t), B̃l(t)) = (−1 + t, 1− t)

B̃u = (B̃u(t), B̃u(t)) = (−2 + 2t, 2− 2t).

The magnitudes are Mag(Ãl)=Mag(Ãu)=0,
Mag(B̃l)=Mag(B̃u)=0, Mag′(Ãl)= 1

2
∫ 1

0 6dt=3,
Mag′(Ãu)= 1

2
∫ 1

0 8dt=4, Mag′(B̃l)= 1
2
∫ 1

0 2dt=1,
Mag′(B̃u)= 1

2
∫ 1

0 4dt=2. Since δl=δu=1, then
one has that [Rl(Ãl, δl), Ru(Ãu, δu)]=[3, 4],
[Rl(B̃l, δl), Ru(B̃u, δu)]=[1, 2], and, thus, B̂ ≺ Â.

3. Two-person Zero-Sum Games
A zero-sum game is a non-cooperative game in
which a player’s gain (or loss) of utility is exactly
balanced by the losses (or gains) of the utility of the
other player(s). If the total gains of the playerss are
added up, and the total losses are subtracted, they
will sum to zero. A zero-sum game is also called
a strictly competitive game. Zero-sum games are
most often solved with the minimax theorem, which
is closely related to linear programming duality (as
we show below), or with Nash equilibrium. [29]

Usually, one represents a zero-sum game by the
matrix of gains (payoffs, rewards), according to the
chosen strategy in the interaction. The players
adopt mixed strategies, that is, probabilistic strate-
gies. The solution method for zero-sum two-person
games is based on the establishment of a LP prob-
lem for each player. [29]

Let I = {1, . . . ,m} and J = {1, . . . , n} be the set
of possible actions to be chosen by the players I and
II, respectively. The payoff matrix P of the rewards
of the player I is given by P = [pij ]i∈I,J∈J . In a
zero-sum game, the payoff matrix Q of the rewards
of the player II is given by Q = −P.

Consider the mixed strategies of the players I and
II, given by the following probabilistic vectors:

X = {x = (x1, · · · , xm) ∈ Rm | (13)
m∑
i=1

xi = 1, xi ≥ 0, i = 1, · · · ,m}

Y = {y = (y1, · · · , yn) ∈ Rn | (14)
n∑
j=1

yj = 1, yj ≥ 0, j = 1, · · · , n}.

The expected reward is given by: [30]

ϑ(x, y) =
m∑
i=1

n∑
j=1

xipijyj = xPy. (15)

Since the objetives of each player are just the oppo-
site, each player should obtain the following values:
vI = max

x∈X
min
y∈Y

xPy and vII = min
y∈Y

max
x∈X

xPy. (16)

307



0.0

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 1: Interval fuzzy numbers Â = (Ãl, Ãu) and B̂ = (B̃l, B̃u)

The equilibrium solution is the pair of strategies
(x, y) that satisfies the condition: vI = vII.[30]
Considering P |j= [p1j , . . . , pmj ]T , one has that

vI = max
x∈X

min
y∈Y

(xPy) = max
x∈X

min
j∈J

(xP |j) = max
x∈X

min
j∈J

m∑
i=1

pijxi.

So, define the following linear programming model:

max
x∈X

min
j∈J

m∑
i=1

pijxi (17)

s.t. : x1 + x2 + ...+ xm = 1
xi ≥ 0, i = 1, ...,m.

For the sake of simplicity, consider an auxiliary
variable z, such that: [9, 10, 7]

max z (18)
s.t. : p1jx1 + · · ·+ pmjxm ≥ z, j = 1, ..., n

x1 + x2 + ...+ xm = 1
xi ≥ 0, i = 1, ...,m.

Since max z is equivalent to min 1/z = s1 + ... +
sm, where s is an auxiliary variable, we obtain the
following linear programming:

min s1 + · · ·+ sm (19)
s.t. : p1js1 + · · ·+ pmjsm ≥ 1, j ∈ J

si ≥ 0, i ∈ I

The procedure to obtain vII is analogous, consid-
ering an auxiliary variable w in order to simplify the
linear programming analogous to (17), and the fact
that minw is equivalent to max 1/w = r1 + ...+ rn,
where r is an auxiliary variable. Then, we have the
following linear programming:

max r1 + · · ·+ rn (20)
s.t. : pi1r1 + · · ·+ pinrn ≤ 1, i ∈ I

rj ≥ 0, j ∈ J

Finally, considering that si = xi

z and rj = yj

w ,
with i ∈ I and j ∈ J , one obtains the solution
x∗ = s× z and y∗ = r × w. Then the final value of
the game is given by ϑ = x∗Py∗.

4. Fuzzy two-person Zero-Sum Games
Whenever one considers the uncertainty/vagueness
of the parameters in actual applications, it is pos-
sible to work with fuzzy zero-sum games. The
solution method is based on the establishment of
a Fuzzy Linear Programming (FLP) problem for
each player, as generalizations of that convention-
ally used in the solution of classical games (Sect. 3,
see also [7, 9, 10, 31, 32]). To solve a FLP problem,
auxiliary models resulting from the application of a
method for ranking fuzzy numbers are considered,
transforming the FLP into a classical crisp LP.

In fuzzy zero-sum games, the payoff matrix of the
rewards of the player I is given by the matrix of
fuzzy numbers P̃ = [p̃ij ]i∈I,j∈J . By a construction
analogous to presented in Sect. 3, considering the
fuzzy payoff matrix P̃ and the fuzzy independent
term b̃, the solution is obtained by the following
FLP models, for the players I and II, respectively:

min s1 + · · ·+ sm (21)
s.t. : p̃1js1 + · · ·+ p̃mjsm � b̃j , j ∈ J

si � 0, i ∈ I

max r1 + · · ·+ rn (22)
s.t. : p̃i1r1 + · · ·+ p̃inrn � b̃i, i ∈ I

rj � 0, j ∈ J.

where � (�) is a fuzzy order relation.

4.1. The Campos-Verdegay Model
Campos and Verdegay [7, 8] proposed a solution
method for the above FLP, where the fuzzy con-
straint set is replaced by a convex set using the fol-
lowing relations [7, page 277, Eq. (2)], which was
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first proposed by Delgado et al. [33]:

p̃js ≥ b̃j− t̃j(1−α) and p̃ir ≤ b̃i+ q̃i(1−α), (23)

with i ∈ I, j ∈ J , α ∈]0, 1], where t̃ and q̃ are fuzzy
parameters expressing the maximal violations that
the players permit in the accomplishment of the
constraints, and ≤ (≥) is any order relation between
triangular fuzzy numbers that preserves the ranking
if the fuzzy numbers are multiplied by a positive
scalar. Some specific fuzzy order relations trans-
forming the FLP into crisp LP are used, e.g., using
the following order relations [7, page 279, Eq. (d)]:

pjs ≥ bj−dj(1−α) and pir ≤ bi+ei(1−α), (24)

with i ∈ I, j ∈ J , α ∈]0, 1], dj = coret̃j , ej = coreq̃i

and b = coreb̃, one obtains the crisp LP:
min s1 + · · ·+ sm (25)

s.t. : p1js1 + · · ·+ pmjsm ≥ bj − dj(1− α),
j ∈ J, α ∈]0, 1]

si ≥ 0, i ∈ I

max r1 + · · ·+ rn (26)
s.t. : pi1r1 + · · ·+ pinrn ≤ bi + ej(1− α),

i ∈ I, α ∈]0, 1]
rj ≤ 0, j ∈ J.

Observe that, since a FLP model is transformed
into classical LPs, then, the solution is analogous to
the construction presented in Sect. 3.

4.2. The Proposed Model Based on Ezzati
et al.’s Ranking Method

Observe that sometimes it is not possible to find
a solution by Campos-Verdegay model, since it
was established for triangular fuzzy numbers only.
Then, we introduce a variation of the Campos-
Verdegay method, called generalized Campos-
Verdegay method, in order to consider the ranking
method proposed by Ezzati et al. [19] (see Sect. 2),
which derives a total order and can be easily applied
to any kind of fuzzy numbers.3
Consider the fuzzt payoff matrix P̃, and define

the matrix of ranking values of the payoffs by:
R(P̃, δ) = [R(p̃ij , δ)]i∈I,j∈J , (27)

where
R(p̃ij , δ) = Mag(p̃ij) + δMag′(p̃ij), (28)

with Mag and Mag′ given, respectively, by Eq. (5)
and Eq. (6), and

δ=

{
0 if ∀i, i′ ∈ I ∀j, j′ ∈ J :

i 6= i′ ∨ j 6= j′ ⇒Mag(p̃ij) 6= Mag(p̃i′j′ )
1 otherwise.

(29)

Consider the FLP model given in (21) and (22),
and the relations (23) adapted as follows:

R(p̃j , δ)s ≥ R(b̃j , δ)−R(t̃j , δ)(1− α) (30)
R(p̃i, δ)r ≤ R(b̃i, δ) +R(q̃i, δ)(1− α), (31)

3An initial proposal of this method was discussed in [32].

with i ∈ I, j ∈ J , α ∈]0, 1], where t̃ and q̃ are
fuzzy parameters expressing the maximal violations
that the players permit in the accomplishment of
the constraints. Then one obtains the following LP
model for the players I and II, respectively:

min s1 + · · ·+ sm (32)

s.t. :
m∑

i=1

R(p̃ij , δ)si ≥ R(b̃j , δ)−R(t̃j , δ)(1− α),

j ∈ J, α ∈]0, 1]
si ≥ 0, i ∈ I

max r1 + · · ·+ rn (33)

s.t. :
n∑

j=1

R(p̃ij , δ)rj ≤ R(b̃i, δ) +R(q̃i, δ)(1− α),

i ∈ I, α ∈]0, 1]
rj ≥ 0, j ∈ J.

Since a FLP model is transformed into classical
LPs, the solution is analogous to which we presented
in Sect. 3. Considering the solutions x∗ and y∗, the
value of the game is obtained as x∗R(P̃, δ)y∗.

5. Interval-valued Fuzzy Zero-Sum Games

Whenever one considers uncertainty/vagueness in
both the parameters and the membership func-
tions modelling those parameters, it is possible to
work with interval fuzzy zero-sum games. The so-
lution method for two-person interval fuzzy zero-
sum games is based on the establishment of an
IFLP problem for each player, as generalizations of
what we present for the the solution of fuzzy games
(Sect. 4). To solve an IFLP problem, we first split
the model obtaining two FLPs (namely, the Lower
an the Upper FLPs), and then we proceed as ex-
plained in Sect. 4, using a method for ranking fuzzy
numbers, transforming each FLP into a classical LP.

The payoffs of an interval fuzzy zero-sum game
are given by interval fuzzy numbers p̂ij = (p̃lij , p̃uij).
We consider an interval fuzzy payoff matrix P̃ of
the rewards of the player I, defined by the interval
fuzzy matrix P̂ = (P̃ l, P̃u), represented by the pair
composed by the lower and upper payoff matrices,
given, respectively, by: P̃ l = [p̃lij ]i∈I,j∈J and P̃u =
[p̃uij ]i∈I,j∈J . Then, according to (21) and (22), one
obtains the lower FLP:

min s1 + · · ·+ sm (34)
s.t. : p̃l1js1 + · · ·+ p̃lmjsm � b̃lj , j ∈ J

si � 0, i ∈ I

max r1 + · · ·+ rn (35)
s.t. : p̃li1r1 + · · ·+ p̃linrn � b̃li, i ∈ I

rj � 0, j ∈ J.

where � (�) is a fuzzy order relation. The upper
FLP is analogous, considering the upper payoff ma-
trix P̃u. In the following subsections, we introduce
two approaches for solving (34)–(35).
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5.1. Interval-valued Campos-Verdegay
Model

In this section, we extend the Campos-Verdegay
method (Sect. 4) to an interval fuzzy approach.
Considering that the payoffs are given by triangular
interval fuzzy numbers, and taking the lower FLPs
given in (34)–(35), and interval fuzzy versions of the
relations (23) and (24), we obtain:

min s1 + · · ·+ sm (36)
s.t. : pl1js1 + · · ·+ plmjsm ≥ blj − dlj(1− α),

j ∈ J, α ∈]0, 1]
si ≥ 0, i ∈ I

max r1 + · · ·+ rn (37)
s.t. : pli1r1 + · · ·+ plinrn ≤ bli + elj(1− α),

i ∈ I, α ∈]0, 1]
rj ≤ 0, j ∈ J.

The upper FLP is obtained analogously, considering
the upper payoff matrix P̃u.
Since we get LP models, the solution is analogous

to what was presented in Sect. 3. It follows that
the solutions are obtained as xl∗ = sl × zl, yl∗ =
rl × wl, xu∗ = su × zu and yu∗ = ru × wu, that is,
x∗ = (sl × zl, su × zu) and y∗ = (rl × wl, ru × wu),
where si = xi

z and rj = yi

w , for auxiliary variables z
and w, as defined in Sect. 3, and i ∈ I, j ∈ J .
The final interval value of the game is specified

by ϑl = xl
∗P lyl∗ and ϑu = xu∗Puyu∗, so that:

ϑ =
{

[ϑl, ϑu] if ϑl ≤ ϑu
[ϑu, ϑl] if ϑl > ϑu.

(38)

5.2. The Proposed Model Based on a Total
Order

In this section, we introduce a model based
on the total interval fuzzy order relation de-
fined in Eq. (12), called generalized Interval-
valued Campos-Verdegay Model. Let R(P̃ l, δl) and
R(P̃u, δu) be the matrices of the ranking values of
the lower and upper payoffs, respectively, defined
as in Eq. (27). Considering the lower FLP given in
(34)–(35), and the relations (30) and (31) defined
for lower payoffs, we obtain:

min s1 + · · ·+ sm (39)

s.t. :
m∑

i=1

R(p̃l
ij , δ

l)si ≥ R(b̃l
j , δ

l)−R(t̃lj , δ
l)(1− α),

j ∈ J, α ∈]0, 1]
si ≥ 0, i ∈ I

max r1 + · · ·+ rn (40)

s.t. :
n∑

j=1

R(p̃l
ij , δ

l)rj ≤ R(b̃l
i, δ

l) +R(q̃l
i, δ

l)(1− α),

i ∈ I, α ∈]0, 1]
rj ≥ 0, j ∈ J,

where δl is defined as in Eq. (29). The upper FLP
is constructed analogously, considering the upper
payoff matrix P̃u, the relations (30) and (31) defined
for upper payoffs and δu as defined in Eq. (29).

Since we now have LP models, the solution is
analogous to what was presented in Sect. 3. Con-
sider the optimal solutions x∗ = (sl × zl, su × zu)
and y∗ = (rl × wl, ru × wu), where si = xi

z and
rj = yi

w , for auxiliary variables z and w, as defined
in Sect. 3, and i ∈ I, j ∈ J . The final interval
value of the game is given as in Eq. (38), where
ϑl = xl

∗
R(P l, δl)yl∗ and ϑu = xu∗R(Pu, δu)yu∗.

5.3. Example
Consider an interval fuzzy zero-sum game whose in-
terval fuzzy payoff matrix P̂ = (P̃ l, P̃u) is specified
by the lower and upper fuzzy payoff matrices:

P̃l =

[
(180, 0.5, 0) (156, 0.5, 2) (90, 0.5, 0.5)
(90, 1, 0.5) (180, 2, 0.5) (155, 4, 4)

(180, 0.5, 0.5) (156, 1, 1) (177, 2, 2)

]

P̃u =

[
(180, 2, 0) (156, 2, 5) (90, 2, 2)
(90, 4, 2) (180, 4, 2) (155, 6, 6)
(180, 2, 2) (156, 3, 3) (177, 4, 4)

]
.

Let the independent term b̂ = (b̃l, b̃u) be given
by b̃l = b̃u = (1, 0, 0), and the interval fuzzy pa-
rameters t̂ = (t̃l, t̃u) and q̂ = (q̃l, q̃u), expressing
the maximal violations that the players permit in
the accomplishment of the constraints, be defined
by t̃l = (0.10, 0.01, 0.005), t̃u = (0.10, 0.03, 0.02),
q̃l = (0.15, 0.005, 0.01) and q̃u = (0.10, 0.02, 0.03).

Since we are adopting triangular interval fuzzy
numbers, then it is possible to apply the pro-
posed Interval-valued Campos-Verdegay Model, in-
troduced in Sect. 5.1. According (36)–(37), the fol-
lowing LP for both lower and upper fuzzy payoff
matrices is obtained:
min s1 + s2 + s3

s.t. : 180s1 + 90s2 + 180s3 ≥ 1− 0.1(1− α)
156s1 + 180s2 + 156s3 ≥ 1− 0.1(1− α)
90s1 + 155s2 + 177s3 ≥ 1− 0.1(1− α)
s1, s2, s3 ≥ 0, α ∈]0, 1]

max r1 + r2 + r3

s.t. : 180r1 + 156r2 + 90r3 ≤ 1 + 0.15(1− α)
90r1 + 180r2 + 155r3 ≤ 1 + 0.15(1− α)
180r1 + 156r2 + 177r3 ≤ 1 + 0.15(1− α)
r1, r2, r3 ≥ 0, α ∈]0, 1].

The solution is obtained as
xl
∗

= xu
∗

= (0.1301, 0.2104, 0.6594)
yl
∗

= yu
∗

= (0.2104, 0.7893, 0.0000)

z(α) = 161.0026
1− 0.1(1− α) , α ∈]0, 1]

w(α) = 161.0026
1 + 0.15(1− α) , α ∈]0, 1]

and the interval fuzzy value of the interval fuzzy
game game is given by ϑl = ϑu = 161.0026, that is,
it is around 161.0026.
On the other hand, applying the proposed gen-

eralized Interval-valued Campos-Verdegay method,
introduced in Sect. 5.2, the matrix of magnitudes of
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the interval fuzzy payoff matrix P̂, using Eq. (5), is:

Mag(P̃ l) =

 179.95 156.12 90
89.95 179.87 155
180 156 177


Mag(P̃u) =

 179.83 156 90
89.83 179.83 155
180 156 177


Since, by Eq. (29), δl = δu = 0, then, by Eq. (28),
it holds that R(P̃ l, δl) = Mag(P̃ l) and R(P̃u, δu) =
Mag(P̃u). Analogously, the magnitudes of the in-
dependent term b̂ and of the interval fuzzy viola-
tion parameters t̂ and q̂ are given by Mag(b̃l) =
Mag(b̃u) = 1, Mag(t̃l) = 0.0995, Mag(t̃u) =
0.0991, Mag(q̃l) = 0.1504 and Mag(q̃u) = 0.1508,
and the ranking values are similarly obtained. As in
(39)-(40), considering the lower fuzzy payoff matrix
P̃ l, one has the following LP:
min s1 + s2 + s3

s.t. : 179.95s1 + 89.95s2 + 180s3 ≥ 1− 0.0995(1− α)
156.12s1 + 179.87s2 + 156s3 ≥ 1− 0.0995(1− α)
90s1 + 155s2 + 177s3 ≥ 1− 0.0995(1− α)
s1, s2, s3 ≥ 0, α ∈]0, 1]

max r1 + r2 + r3

s.t. : 179.95r1 + 156.12r2 + 90r3 ≤ 1 + 0.1504(1− α)
89.95r1 + 179.87r2 + 155r3 ≤ 1 + 0.1504(1− α)
180r1 + 156r2 + 177r3 ≤ 1 + 0.1504(1− α)
r1, r2, r3 ≥ 0, α ∈]0, 1].

And, considering the upper fuzzy payoff matrix
P̃u, one has the following LP:
min s1 + s2 + s3

s.t. : 179.83s1 + 89.83s2 + 180s3 ≥ 1− 0.0991(1− α)
156s1 + 179.83s2 + 156s3 ≥ 1− 0.0991(1− α)
90s1 + 155s2 + 177s3 ≥ 1− 0.0991(1− α)
s1, s2, s3 ≥ 0, α ∈]0, 1]

max r1 + r2 + r3

s.t. : 179.83r1 + 156r2 + 90r3 ≤ 1 + 0.1508(1− α)
89.83r1 + 179.83r2 + 155r3 ≤ 1 + 0.1508(1− α)
180r1 + 156r2 + 177r3 ≤ 1 + 0.1508(1− α)
r1, r2, r3 ≥ 0, α ∈]0, 1].

The solution is obtained as
xl
∗

= (0.1301, 0.2104, 0.6593)
xu
∗

= (0.0000, 0.2105, 0.7894)
yl
∗

= (0.2091, 0.7898, 0.0009)
yu
∗

= (0.2090, 0.7916, 0.0000)

zl(α) = 160.9700
1− 0.0995(1− α) , α ∈]0, 1]

zu(α) = 161.0900
1− 0.0991(1− α) , α ∈]0, 1]

wl(α) = 160.9700
1 + 0.1504(1− α) , α ∈]0, 1]

wu(α) = 161.0900
1 + 0.1508(1− α) , α ∈]0, 1]

and the interval fuzzy value of the interval fuzzy
game game is given by ϑl = 160.9700 and

ϑu = 161.0900, that is, it is in the interval
[160.9700, 161.0900].
The results showed that the solution provided by

the Interval-valued Campos-Verdegay method is en-
capsulated by the solution obtained with the gen-
eralized Interval-valued Campos-Verdegay method,
showing the lower and upper bounds for the approx-
imate solution. We have used triangular interval
fuzzy numbers in order to be able to compare the
solutions obtained by both methods. Observe that
in the generalized Interval-valued Campos-Verdegay
model it is possible to adopt also trapezoidal fuzzy
numbers, which is not true for the Interval-valued
Campos-Verdegay model.

6. Conclusion
This paper introduced two approaches for two-
person interval-based fuzzy zero-sum games, where
the payoffs are modeled as interval fuzzy numbers,
in order to be applied in strategic interactions where
two kinds of uncertainty may be considered: the un-
certainty in the characteristics of each player (con-
sequently, the vagueness of the payoffs of the game)
and the lack of information for the establishment of
the membership functions of the fuzzy numbers.

The first approach consisted in an extension of
the Campos-Verdegay model, which uses triangular
fuzzy numbers for the modeling of uncertain pay-
offs, in order to consider interval-valued fuzzy pay-
offs. For the second approach, we defined a ranking
method for interval fuzzy numbers that induces a
total order, based on Ezzati et al.’s and Costa et
al.’s methods. Then, we generalized the interval-
valued Campos-Verdegay model to consider payoffs
modeled as any type of interval fuzzy numbers. In
both models, we establish an IFLP problem for each
player, which are reduced to classical LP problems,
used in the solution of classical zero-sum games. We
show that the solutions are of the same nature of the
parameters defining the game, corresponding to an
uncertain predicate of type: “the value of the game
is in the interval ϑ”.

Future work will be concerned with the develop-
ment of applications in decision making.
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