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Abstract

In this article, we present an algorithm for defuzzi-
fying multiple fuzzy sets simultaneously, where the
defuzzified values are bound by a constraint. The
algorithm aims at maximizing the lowest member-
ship grade of the defuzzified values in each fuzzy
set, while satisfying the constraint. In the exam-
ples, MeanOfMax will be used as a starting point,
while the constraint is that the sum of the defuzzi-
fied values has to match a given crisp value. The ar-
ticle describes the algorithm, experiments and eval-
uation of the outcome.

Keywords: defuzzification, spatial disaggregation,
constrained defuzzification

1. Introduction

Fuzzy sets represent imprecise or uncertain informa-
tion, allowing for the representation of a set of pos-
sible values with an associated possibility for each of
these values. Many computations can be performed
and conclusions can be drawn, but very often it is
necessary to extract a single crisp value that best
approximates the fuzzy set. This can be either for
use in future calculations using a traditional sys-
tem or just for providing an estimate that is easier
to comprehend (but is less informative). The rep-
resentation of a fuzzy set to a single value is done
using appropriate defuzzification methods, where a
crisp value deemed representative for a fuzzy set is
determined. In current methods, this is done by
giving priority to a specific desired aspect of the de-
fuzzification and then applying the most appropri-
ate defuzzifier: should the defuzzified value have the
highest occurring membership grade, or is it more
important that it reflects the shape of the fuzzy set?
In the first case, MeanOfMax (i.e. the mean of the
elements with highest occurring membershipgrade)
can for instance be chosen, in the second case Cen-
terOfGravity (i.e. the value associated with center
of gravity of the fuzzy set) may be more appropri-
ate, but additional considerations and defuzzifiers
are possible. In [1], additional constraints on the
domain of the fuzzy set are considered, which allows
for further control over the defuzzified value. These
constraints still do not incorporate constraints im-
posed by the not yet determined defuzzified value
of other fuzzy sets. To our knowledge, the problem

of combined defuzzification, in which the defuzzified
values together have to satisfy a constraint, has not
been considered before.

In this article, additional constraints for the de-
fuzzification are introduced. Consider the situation
where there are multiple fuzzy sets, but their de-
fuzzified values should be constrained by each other.
In our specific application, explained in section 2, a
number of fuzzy sets need to be defuzzified while
the sum of their defuzzified values should equal a
given, crisp value. To find an optimal solution for
this problem, it is not possible to apply an algorithm
to each fuzzy set individually, but it necessitates an
algorithm that considers all sets simultaneously. Si-
milar to criteria that exist for defuzzification meth-
ods, different criteria will need to be considered and
evaluated. In this article, the modification of the
criteria and an algorithm using MeanOfMax as a
basis for a combined defuzzification, is presented.
In the article, only the constraint of the sum is con-
sidered, as this is the problem that occurred in our
application (section 2). Other constraints may re-
quire a different solution method. The presented
methods starts with finding the MeanOfMax of the
fuzzy sets considered and then calculates a correc-
tion for each of them to yield defuzzified values that
meet the constraint. The correction is calculated
taking into account the shape of the fuzzy set, in
order to maximize the lowest membership grade of
the resulting defuzzified value in its respective fuzzy
set. By taking into account the shape of the fuzzy
sets, it is possible to derive a globally better solution
than what would be obtained by rescaling the crisp
values. The problem of combined defuzzification
generally occurs when a method yielding fuzzy so-
lutions is used to find multiple crisp solutions, which
are not independent of one-another. The presented
method was developed for the specific problem of
remapping gridded spatial data, as explained in the
next section 2.

The subsequent section contains a short descrip-
tion on defuzzification, definitions and criteria; sec-
tion 4 explains the proposed algorithm and criteria,
after which conclusions are drawn in section 6.

2. Origin of the problem

The need for simultaneous defuzzification originated
from the application of fuzzy inference systems in
solving the map overlay problem, a specific spatial
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problem that occurs when combining or compar-
ing raster data. A raster or grid is a commonly
used structure to represent a numeric value over
a region (e.g. concentration of a pollutant). The
given input raster has to be transformed to match
a different, given target raster, as this yields a one-
to-one mapping of the grid cells, which in turn al-
lows for both rasters to be compared or combined.
The problem when using raster data is that the un-
derlying spatial distribution of the numeric data is
not known and needs to be either assumed or esti-
mated. Figure 1 illustrates how different spatial dis-
tributions within a single grid cell can still yield the
same value for the grid. Four different spatial dis-
tributions are depicted, ranging from a single point
source to an area source. At the level of the grid
cell, each of these four cases is represented by the
same grid cell: one cell with an associated value of
100. Comparing raster data is frequently needed

Figure 1: The problem with raster data sources:
different underlying distributions can yield the same
raster. The examples show: a single point source,
two point sources, a line source and an area source.

when analysing and/or combining spatial data. As
the data tends to come from different sources and
is obtained using different techniques and models,
the rasters on which the data are provided do not
match: there is no one-to-one mapping between
cells of the rasters. This makes a direct compari-
son impossible, and requires that one raster has to
be remapped onto the other. Different approaches
to this problem are considered, and presented in [2].
Current methods tend to use areal weighting ([3]),
as this is the easiest approach. However, it assumes
that the data is uniformly distributed over each in-
dividual grid cell. As the above illustration shows,
this may not be the case, and there may be many
different underlying distributions. Areal smoothing
is a second approach where the spatial distribution
is assumed to be smooth; the remapping is achieved
by treating the numeric data as a third dimension,
fitting a smooth surface over data and resampling
the three dimensional structure. Spatial regression
methods start from statistical assumptions on the
distribution of the data, but the results of remap-
ping highly depends on correct assumptions and fail

when the spatial distributions are erratic and dif-
ficult to approximate. Independent of remapping,
research has been done to combine data from dif-
ferent datasets, the authors in [4] combine linguis-
tically annotated data from different sources into a
better quality dataset.

In a new proposed approach presented in [5], ad-
ditional knowledge (e.g. in the case of a pollutant
stemming from car emissions, this can be road traf-
fic information) is used to estimate the underlying
spatial distribution. This additional information is
used in a fuzzy inference system, which intelligently
remaps the give raster onto a target raster, using
the additional information to estimate the underly-
ing distribution. The first step is to divide each cell
of the raster into segments, which are defined as the
intersections of input and target: this has the bene-
fit that each cell in the input raster is partitioned in
a number of segments, but as the target grid has the
same property, the segments can also be recombined
to form the target grid. This is illustrated on figure
2, where the input grid is the leftmost grid and the
target grid on which the data should be remapped
is the rightmost grid. For each cell in the input grid,
the data is redistributed over the segments that are
obtained from intersecting the input grid with the
target grid. This is illustrated using the shaded cell
in the input grid. Once a value for each segment is
obtained, the segments can be recombined into the
target grid, as shown using the highlighted cell in
the target grid.

Figure 2: Stages in the remapping process: the in-
put grid (top left), redistrubition of the data in each
grid cell into segments (top right), recombination of
segments into a target cell (bottom left), the target
and output grid (bottom right).

Each input cell models a numeric value (e.g. con-
centration of a pollutant). Finding the underlying
distribution means finding a way to distribute this
value over the segments of the cell. However, the to-
tal value modelled inside the input cell should not
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change, resulting in the constraint that the sum of
the values of the contained segments is the value of
the input cell. As the new value for each segment
is obtained through the application of a fuzzy infer-
ence system, a fuzzy set will be associated with each
segment. A simple approach is to apply classic de-
fuzzification methods on each segment individually,
and rescale the values; this was the method used in
[6]. While this does not take into account the fuzzy
sets, the result were acceptable, as in many cases,
the sum of the defuzzified values is not too different
from the value after rescaling. However, the rescal-
ing shifts the defuzzified values somewhat, and us-
ing a custom simultaneous defuzzification may allow
for a better result in general.

In the considered problem for grid remapping, it
would be natural for the extreme values to be more
possible. Using the MeanOfMax as an initial esti-
mate, combined with the presented algorithm yields
defuzzifications that satisfy this.

3. Defuzzification

3.1. Definitions

Defuzzification is the process of reducing a fuzzy set
to a single crisp value ([7]). Commonly, the only
knowledge is the provided fuzzy set; all values of
the domain of the fuzzy set are considered possi-
ble values. While it may seem natural to search
the domain for a value that has the highest mem-
bership grade, arguments against this can be made
in the case of e.g. very skewed fuzzy sets. In this
case, a large portion of the knowledge (many val-
ues with sub-maximal membership) might be dis-
missed. To illustrate, compare e.g. a left skewed
and a right skewed triangular possibility distribu-
tion ([8]) around a given number. Considering the
value which has highest membership will - in both
cases - yield the number, ignoring the distributions.
Furthermore, there may be more than one value
which has the highest membership grade, in which
case one of these values need to be chosen. As there
are different possibilities which are applicable in
different cases, many defuzzification operations ex-
ist. Commonly used operations are CenterOfGrav-
ity and MeanOfMax ([9]). CenterOfGravity (COG)
is defined as:

COG(Ã) =

∑xmax

xmin
xµÃ(x)

∑xmax

xmin
µÃ(x)

(1)

CenterOfGravity considers the value that matches
the center of gravity of the fuzzy set as the most
representative value. This value not necessarily has
the highest occurring membership grade, but does
take into account the shape of the entire fuzzy set.
MeanOfMax is defined as

MeOM(Ã) =

∑

x∈core(Ã) x

|core(Ã)|
(2)

Mean of max considers the mean value of all el-
ements that have the highest membership grade.
This also does not guarantee it has the highest oc-
curring membership grade, and completely ignores
the shape of the fuzzy set. Other possiblities that
are somewhat similar to Mean of max are leftmost-
max or rightmost-max (smallest/greatest domain
value of those that have the highest membership
grade). In [7], a number of defuzzifiers are listed
and tested against objective criteria. Some of these
criteria are summarized below, as they will be ex-
panded to objectively judge the presented simulta-
neous defuzzification.

3.2. Criteria

In [7], a number of criteria by which a defuzzifica-
tion operator can be judged, are presented. The au-
thors consider different properties for different types
of domains, from arbitrary universes to fuzzy quan-
tities ([10]). In our application, only fuzzy quanti-
ties (fuzzy sets over the real domain) are considered,
and the presented algorithm is also only considered
or such fuzzy sets. The criteria from [7] that are
appropriate here are summarized below:

1. Core selection or semantically correct defuzzi-
fication: the defuzzified value is a value with
highest occurring membership grade.

2. Scale invariance: the scale of the domain does
not influence the relative position of the de-
fuzzified value (relative scale concerns transla-
tion of the fuzzy set, ratio scale concerns scaling
of the unit, interval scale combines both rela-
tive and ratio scale).

3. Monotony: the defuzzified value of a fuzzy set
that has greater values should be greater

4. x-Translation: if the fuzzy set is translated, the
relative position of the defuzzified value should
remain

5. x-Scaling: if domain values are multiplied with
a constant factor, the position of the defuzzified
value should remain

6. Continuity or robustness: a small change in
membership grades should not yield a big
change in defuzzified value.

Center of gravity for example, does not satisfy the
core selection criteria (not even for non-convex fuzzy
sets), as the method is not guaranteed to return
an element with the highest occurring membership
grade. It also does not satisfy any aspect of scale
invariance. By contrast, MeanOfMax does not sat-
isfy the core selection criteria in the event of non-
convex fuzzy sets, but it is guaranteed to satisfy it
if the fuzzy set is convex. It also satisfies all other
criteria.

To develop the simultaneous defuzzification un-
der constraints, an existing defuzzifier will be used
as a starting point; in this article, MeanOfMax was
chosen. The main arguments for choosing MeanOf-
Max are related to the application: the occurring

328



fuzzy sets are known to be convex, and then it sat-
isfies most criteria. Furthermore, Basic Defuzzifica-
tion Distributions (BADD) reverts to MeanOfMax
when the parameter γ, which can be seen as the
confidence, is high. Similarly, Generalized Level Set
Defuzzification (GLSD) also reverts to Mean of max
for high confidence. In the application, experiments
have shown that in most cases, a solution can be
found when only considering the cores of the fuzzy
sets, which increases our subjective confidence that
a solution using values from the cores is a good so-
lution. In the case of asymmetric fuzzy sets, such as
those that represent the lowest values or the high-
est values of the domain, MeanOfMax tends to get
closer to the extreme values than CenterOfGravity,
which in our application, is a desired behaviour. An
additional benefit of using MeanOfMax is the effi-
ciency of computation.

3.3. Variants on defuzzification

In, [1] and [11], defuzzification of a fuzzy set under
specific constraints was proposed. The constraints
considered here were constraints imposed on the do-
main of the fuzzy set, limiting the possibilities for
defuzzification. While this allows for further adjust-
ment of the behaviour of defuzzifiers, it still consid-
ers defuzzification of a single fuzzy set at a time. In
the current problem, this would still be too limited:
the constraints imposed are still independent of the
other fuzzy sets. When the contstraints involve mul-
tiple fuzzy sets, treating the fuzzy sets individually
is no longer an option.

4. Simultaneous defuzzification

4.1. Concept

The aforementioned defuzzifications work on a sin-
gle fuzzy set. The concept of the simultaneous de-
fuzzification is that initially, each fuzzy set is de-
fuzzified, in our case using MeanOfMax, after which
the different defuzzified values are corrected in or-
der to meet the criterion, in our case the sum of the
defuzzified values is given.

For a given number of fuzzy sets, the aim is to
find a defuzzification that chooses best possible crisp
values so that the condition is satisfied. The given
data constitutes of:

• n fuzzy sets over the real domain, Ãi : i = 1..n.
We currently limit ourselves to our specific
problem where all fuzzy sets are known to be
continuous (piecewise linear) and convex.
• total value T to which the defuzzified output

should sum up

From a mathematical point of view, the problem
is an optimization problem, where values xi : i =
1..n need to found such that the following conditions

are met:
∑

i

xi = T (3)

µÃi
(xi) = as good as possible,∀i (4)

where xi are the defuzzifications of the different
fuzzy sets Ãi and t is the given value. What con-
stitutes as good as possible is a similar issue as to
what constitutes a good defuzzifier in the classic
sense: which criteria need to be considered and met.
Some criteria for classic defuzzifiers are listed in sec-
tion 3.2. In this article we considered maximization
of the lowest membership grade as the main crite-
rion. The reason for this is rather empirically estab-
lished, but it also goes hand-in-hand with MeanOf-
Max. As MeanOfMax favours higher membership
grades, the idea was that the combined defuzzifier
derived from it should also favour higher member-
ship grades. This means

∑

i

xi = T (5)

min(µÃi
(xi)) = as high as possible,∀i (6)

This not necessarily would result in a unique so-
lution: increasing one xi, while decreasing another
xj , j 6= i, might still keep the conditions satisfied
and both solutions can have the same highest mem-
bership grade among the involved fuzzy sets. To
overcome the problem that the solution is not nec-
essarily unique, an additional criterion will be intro-
duced. The algorithm starts from a known defuzzi-
fier; the differences between the defuzzified value of
each fuzzy set and the initial value of chosen defuzzi-
fier for this fuzzy set should be as small as possible:

abs(xi − di) = as low as possible,∀i (7)

where xi is the final defuzzified value for fuzzy set
Ãi and di is the value of the initial defuzzifier for
fuzzy set Ãi.

The developed algorithm is illustrated in pseudo-
code in 1. The first 7 lines help determine the start-
ing point: for each fuzzy set (̃A)i, the MeanOfMax
(mi), height (hi) and the weak alpha cut ([cl

i, cr
i ])

at the height are calculated.
If the constraining value T is an element of

∑

i [cl
i, cr

i ], the corrected defuzzification for each
fuzzy set can be immediately calculated by the for-
mula:

xj ← mj + (T −
∑

i

mi)
cr

j − cl
j

∑

i(c
r
i − cl

i)
(8)

In this case, the lowest occurring membership grade
will be 1.

If however the constraining value T is not an el-
ement of

∑

i [cl
i, cr

i ], it means that it is not possi-
ble to satisfy the constraint while the lowest oc-
curring membership grade will be 1. Lowering the

329



Algorithm 1 Simultaneous defuzzification using
shifted Mean of max

1: for all i do

2: mi ← MeOM(Ãi)
3: hi ← height(Ãi)
4: ⊲ highest occuring membershipgrade
5: [cl

i, cr
i ]← Ãih(A)i

6: ⊲ reverts to core for normalized Ãi

7: end for

8: if T ∈
∑

i [cl
i, cr

i ] then

9: for all j do

10: xj ← mj + (T −
∑

i mi)
cr

j −cl
j

∑

i
(cr

i
−cl

i
)

11: end for

12: else

13: al
i ← cl

i, ar
i ← cr

i

14: if T <
∑

i cl
i then

15: repeat

16: cl
i ← al

i

17: α← findNextAlphaLeft(Ai)
18: ]al

i, ar
i [= Aiα

19: until T ∈
∑

i ]al
i, cl

i[

20: ⊲
Left shifts more left
Right becomes previous left

21: for all j do

22: xj ← cl
j − (

∑

i cl
i − T )

al
j−cl

j
∑

i
(al

i
−cl

i
)

23: end for

24: else if T >
∑

i cri then

25: repeat

26: cr
i ← ar

i

27: α← findNextAlphaRight(Ai)
28: ]al

i, ar
i [= Aiα

29: until T ∈
∑

i ]cr
i , ar

i [

30: ⊲
Right shifts more right
Left becomes previous right

31: for all j do

32: xj ← cr
j + (T −

∑

i cl
i)

ar
j −cr

j
∑

i
(ar

i
−cr

i
)

33: end for

34: end if

35: end if

alpha-level allows us to apply the algorithm on big-
ger intervals, which is what happens in the next
steps. Notice that, the fuzzy sets are assumed to
be convex, all α-levels are intervals. The functions
findNextAlphaLeft and findNextAlphaRight are used
to find the next α-value, going down from 1. The
former will be used if the constraining value T is
smaller than

∑

i cl
i, the latter if T is greater than

∑

i cr
i . The functions findNextAlphaLeft and find-

NextAlphaRight work on the same mechanism, look-
ing respectively on left side of the initial interval or
on the right side for the next breakpoint (the al-
gorithm is optimized for piecewise fuzzy sets, for
non-piecewise linear fuzzy sets, the alpha value can
be lowered with a given constant, e.g. 0.1). The
lowest possible value will be 0, in which case the
support of the fuzzy sets are returned. No solution

can be found if T is not contained in the sum or the
supports. With the new alpha levels found, new in-
tervals ]al

i, ar
i [ are associated. As soon as T is in the

sum of these intervals, the best values for xj can be
calculated.

From the construction, the algorithm satisfies the
criteria put forward: it maximizes the lowest mem-
bership grade and yields the solution with the short-
est distances to MeanOfMax. To evaluate the algo-
rithm, the criteria for defuzzifiers as mentioned in
section 3.2 are reconsidered here.

1. Core selection: the algorithm will select ele-
ments from the core, if the constraint allows for
this. In other words: if the given value T that
constrains the sum of the defuzzified values is
obtainable from values in the cores of the fuzzy
set, all returned defuzzified values will belong
the cores of their respective fuzzy sets.

2. Scale invariance: the algorithm exhibits scale
invariance. Ratio scale is satisfied provided
all fuzzy sets and the constraining value un-
dergo the transformation. Relative scale is sat-
isfied when the constraining value undergoes
the sum of all the translations of the fuzzy sets
involved. Interval scaling is satisfied under the
combination of conditions for ratio and relative
scale. This is explained through the fact that
MeanOfMax exhibits scale invariance, and the
operations in the algorithm are not scale de-
pendent.

3. Monotony: if one fuzzy set is replaced by a
fuzzy set that represents bigger values, while
all other sets and the constraining value remain
the same, monotony is not guaranteed. This is
due to the fact that the values are adjusted in
the last stage, and the amount of adjustment
for the new fuzzy set can differ. Even if the
constraining value also changes, it remains im-
possible to predict how this will affect the de-
fuzzified value of one fuzzy set without further
details on the shape of the fuzzy sets.

4. x-Translation: the algorithm satisfies x-
Translation if the constraining value is trans-
lated over the sum of all the translations of the
different fuzzy sets.

5. x-Scale: the algorithm satisfied x-Scale if the
fuzzy sets and the constraining value are scaled
with the same amount.

4.2. Examples

Consider the fuzzy sets A, B, C and D, with mem-
bership functions defined below and shown on figure
3.

330



µÃ : ℜ → [0, 1]

µÃ(x) =

{

−1
30 x + 1 ∀x ∈ [0, 30]

0 elsewhere

µB̃ : ℜ → [0, 1]

µB̃(x) =















1
20 x ∀x ∈ [0, 20[
1 ∀x ∈ [20, 40]

−1
20 (x− 40) + 1 ∀x ∈]40, 60]

0 elsewhere

µC̃ : ℜ → [0, 1]

µC̃(x) =























1
40 (x− 10) ∀x ∈ [10, 50[

1 ∀x ∈ [50, 60]
−0.2

20 (x− 60) + 1 ∀x ∈]60, 80]
−0.8

10 (x− 80) + 0.8 ∀x ∈]80, 90]
0 elsewhere

µC̃ : ℜ → [0, 1]

µC̃(x) =

{

1
30 (x− 60) ∀x ∈ [60, 90[

1 ∀x ∈ [90, 100]

The algorithm works based on α levels at break-
points. Due to the definition as convex fuzzy sets,
all α levels of the sets in the example are inter-
vals. The table 1 shows a number of these intervals
for given α values. In a constraint defuzzification,
it is obvious that situations can occur where the
constraints are too limiting and would prevent any
solution to be found. The last column in table 1
lists the supports of the involved fuzzy sets. The
sum of the supports is [70, 280], implying that if
the desired sum of defuzzified values is outside of
this interval, no solution will be found. Opposite,
the sum of the kernels-intervals is [160, 200]. As the
algorithm aims at maximizing the value of the low-
est membership grade, it should result in satisfying
constraining values from this interval while keeping
the lowest membership equal to 1.

Figure 3: Fuzzy sets used in the example

To illustrate this, consider that the sum has to
be 200. The centers of the core intervals sum up
to: 0 + 30 + 55 + 95 = 180. The difference with
the target value is 20. The lengths of the intervals
are 0, 20, 10, 10, with the total length of all core
intervals equalling 40. Following the algorithm, the

kernel α = 0.8 support

Ã [0, 0] [0, 6] [0, 30]

B̃ [20, 40] [16, 44] [0, 60]

C̃ [50, 60] [42, 80] [10, 90]

D̃ [90, 100] [84, 100] [60, 100]

sum [160, 200] [142, 230] [70, 280]
center 180 186 175

Table 1: Intervals

values are adjusted as follows:

xA = 0 + (200− 180)
0

40
= 0

xB = 30 + (200− 180)
20

40
= 30 + 10

xC = 55 + (200− 180)
10

40
= 55 + 5

xD = 95 + (200− 180)
10

40
= 95 + 5

The biggest intervals values are adjusted the most;
the lowest occurring membership grade is 1. The
calculations are similar for a constraining value of
160, and yield the smallest element of each core in-
terval. In between, all elements values are adjusted
linear in accordance with their length.

Consider now that the constrained value is de-
creased to 159; this constraint can no longer be
solved using only values for the cores. The algo-
rithm requires lowering of the α-level value. The
function findNextAlphaLevelLeft scans from mem-
bership grade 1 (the starting value) downto 0, only
considering the left sides of the fuzzy sets, and stops
when it encounters a breakpoint, or reaches 0. In
this case, 0 will be reached: the intervals in the col-
umn support in table 1 will be used; the formula in
the algorithm (line 18) yields:

xA = 0− (160− 159)
0− 0

70− 160
= 0

xB = 20− (160− 159)
0− 20

70− 160
= 19.78

xC = 50− (160− 159)
10− 50

70− 160
= 49.56

xD = 90− (160− 159)
60− 90

70− 160
= 89.67

The defuzzified values are such that the small-
est membership grade of each of the values in their
respective fuzzy set is maximised. The amount of
adjustment is inverse proportional to the steepness
of the left side of the fuzzy set: B, which has the
steepest left side adjusts the least; D, which has the
least steep left side adjusts the most.The values con-
tinue to decrease linearly as the constraining value
T is decreased; all the way till values match the min-
imum possible values of the respective supports.

The algorithm behaves similarly on the right side
of the fuzzy sets. To illustrate the need for find-
ing the breakpoints, consider the example where the
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value T = 229. This situation is similar to the pre-
vious situation, with the difference that getNextAl-
phaLevelRight will return 0.8, as there is a break-
point in C. The algorithm yields:

xA = 0 + (229− 200)
6− 0

230− 200
= 5.8

xB = 40 + (229− 200)
44− 40

230− 200
= 43.87

xC = 60 + (229− 200)
80− 60

230− 200
= 79.33

xD = 100 + (229− 200)
100− 100

230− 200
= 100

In this example, the term added by C is the biggest,
as it is the least steep fuzzy set. This changes when
the constraining value increases further; for T =
231, the result becomes:

xA = 6 + (231− 230)
30− 6

280− 230
= 6.48

xB = 44 + (231− 230)
60− 44

280− 230
= 44.32

xC = 80 + (231− 230)
90− 80

280− 230
= 80.2

xD = 100 + (231− 230)
100− 100

280− 230
= 100

This time, the term added by C is the smallest,
as now the right side of this fuzzy set is the steep-
est. The algorithm manages to balance the terms
in order to maximise the lowest membership grade.

It is obvious that the algorithm is only applicable
if the fuzzy sets are convex, continuous and piece-
wise linear.

5. Future work

In this article, the Mean of max was used as a start-
ing point. The reason for this stems from the ap-
plication: the Mean of max was considered to be
a good defuzzifier. In general, starting from a dif-
ferent defuzzifier can be useful under different cir-
cumstances; how this can be achieved is possible
future research. Starting from e.g. Center of grav-
ity immediately implies that the algorithm would
have to start differently, but it would incorporate
more knowledge concerning the shape of the fuzzy
set. Extending on that is considering the use of dif-
ferent defuzzifiers for the different fuzzy sets that
play a part.

6. Conclusion

The problem of defuzzifying multiple fuzzy sets un-
der a shared constraint was considered here. An al-
gorithm for shifting Mean of max values in order to
maximise the lowest membership grade is presented

and tested. The algorithm is limited to continu-
ous, convex, piecewise linear fuzzy sets. It was di-
rectly developed to be used in spatial data process-
ing, where multiple fuzzy sets need to be defuzzified
while their sum equals a given value. The algorithm
will improve the results of a novel approach to the
map overlay problem; the approach uses a fuzzy in-
ference system and the presented algorithm aids at
by better interpreting the outcome of this system.
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