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Abstract

We propose a poverty measure based on a non triv-
ial balance between the aggregated value of the in-
come gaps of the poor and the headcount ratio of
the poor in the population. The new poverty mea-
sure extends a previous proposal also based on the
exponential mean but with an exclusive focus on the
poor sector of the income distribution.
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1. Welfare functions and inequality indices

We consider populations of n ≥ 2 individuals and
we briefly review the notions of welfare function and
inequality index in the standard framework of aver-
aging functions on the Dn domain, with D = [0, ∞).
Comprehensive reviews of averaging functions can
be found in Fodor and Roubens [22], Calvo et al.
[15], Beliakov et al. [5], and Grabisch et al. [25].

The income distributions in this framework are
represented by points x, y ∈ Dn. In any case, most
of our results hold analogously over different do-
mains, for instance the reduced domain [0, 1] or even
the extended domain R.

Notation. Points in Dn are denoted x =
(x1, . . . , xn), with 1 = (1, . . . , 1), 0 = (0, . . . , 0) .
Accordingly, for every x ∈ D , we have x · 1 =
(x, . . . , x). Given x, y ∈ Dn, by x ≥ y we
mean xi ≥ yi for every i = 1, . . . , n, and by
x > y we mean x ≥ y and x ̸= y. Given
x ∈ Dn, the increasing and decreasing reorderings
of the coordinates of x are indicated as x(1) ≤
· · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively.
In particular, x(1) = min{x1, . . . , xn} = x[n] and
x(n) = max{x1, . . . , xn} = x[1] . In general, given
a permutation σ on {1, . . . , n}, we denote xσ =
(xσ(1), . . . , xσ(n)). Finally, the arithmetic mean is
denoted x̄ = (x1 + · · · + xn)/n.

Definition 1 Let A : Dn −→ D be a function.

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for
all x, y ∈ Dn. Moreover, A is strictly mono-
tonic if x > y ⇒ A(x) > A(y), for all
x, y ∈ Dn.

2. A is idempotent if A(x · 1) = x, for all x ∈ D.
On the other hand, A is nilpotent if A(x · 1) =
0, for all x ∈ D.

3. A is symmetric if A(xσ) = A(x), for any per-
mutation σ on {1, . . . , n} and all x ∈ Dn.

4. A is invariant for translations if A(x + t · 1) =
A(x), for all t ∈ D and x ∈ Dn. On the other
hand, A is stable for translations if A(x+t·1) =
A(x) + t, for all t ∈ D and x ∈ Dn.

5. A is invariant for dilations if A(t · x) = A(x),
for all t ∈ D and x ∈ Dn. On the other hand,
A is stable for dilations if A(t · x) = t A(x), for
all t ∈ D and x ∈ Dn.

We introduce the majorization relation on Dn and
we discuss the concept of income transfer follow-
ing the approach in Marshall and Olkin [26], fo-
cusing on the classical results relating majorization,
income transfers, and bistochastic transformations,
see Marshall and Olkin [26, Ch. 4, Prop. A.1].

Definition 2 The majorization relation ≼ on Dn

is defined as follows: given x, y ∈ Dn with x̄ = ȳ,
we say that

x ≼ y if
k∑

i=1
x(i) ≥

k∑
i=1

y(i) k = 1, . . . , n (1)

where the case k = n is an equality due to x̄ = ȳ.
As usual, we write x ≺ y if x ≼ y and not y ≼ x,
and we write x ∼ y if x ≼ y and y ≼ x. We say
that y majorizes x if x ≺ y, and we say that x and
y are indifferent if x ∼ y.

Another traditional reading, which reverses that
of majorization, refers to the concept of Lorenz
dominance: we say that x is Lorenz superior to y if
x ≺ y, and we say that x is Lorenz indifferent to y
if x ∼ y.

Given an income distribution x ∈ Dn, with mean
income x̄, it holds that x̄ · 1 ≼ x since k x̄ ≥∑k

i=1 x(i) for k = 1, . . . , n. The majorization is
strict, x̄ · 1 ≺ x, when x is not a uniform income
distribution. In such case, x̄ · 1 is Lorenz superior
to x. Moreover, for any income distribution x ∈ Dn

with mean income x̄ it holds that x ≼ (0, . . . , 0, nx̄),
which is strict for x ̸= 0.

The majorization relation is a partial preorder, in
the sense that x, y ∈ Dn are comparable only when
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x̄ = ȳ, and x ∼ y if and only if x and y differ by a
permutation. In general, x ≼ y if and only if there
exists a bistochastic matrix C (non-negative square
matrix of order n where each row and column sums
to one) such that x = Cy. Moreover, x ≺ y if the
bistochastic matrix C is not a permutation matrix.

A particular case of bistochastic transformation is
the so-called transfer, also called T -transformation.

Definition 3 Given x, y ∈ Dn with x̄ = ȳ, we say
that y is derived from x by means of a income trans-
fer T, with T (x) = y if, for some pair i, j = 1, . . . , n
with xi ≤ xj, we have

yi = (1−ε) xi+εxj yj = εxi+(1−ε) xj ε ∈ [0, 1]
(2)

and yk = xk for k ̸= i, j. These formulas express an
income transfer, from a richer to a poorer individ-
ual, of an income amount ε(xj − xi). The income
transfer obtains x = y if ε = 0, and exchanges the
relative positions of donor and recipient in the in-
come distribution if ε = 1, in which case x ∼ y. In
the intermediate cases ε ∈ (0, 1) the income transfer
produces an income distribution y which is Lorenz
superior to the original x, that is x ≻ y.

In general, for the majorization relation ≼ and
income distributions x, y ∈ Dn with x̄ = ȳ, it holds
that x ≽ y if and only if y can be derived from x
by means of a finite sequence of income transfers.
Moreover, x ≻ y if any of the income transfers is
not a permutation.

Definition 4 Let A : Dn −→ D be a function. In
relation with the majorization relation ≼, the no-
tions of Schur-convexity (S-convexity) and Schur-
concavity (S-concavity) of the function A are de-
fined as follows:

1. A is S-convex if x ≼ y ⇒ A(x) ≤ A(y) for all
x, y ∈ Dn

2. A is S-concave if x ≼ y ⇒ A(x) ≥ A(y) for
all x, y ∈ Dn.

Moreover, the S-convexity (resp. S-concavity) of
a function A is said to be strict if x ≺ y implies
A(x) < A(y) (resp. A(x) > A(y)). Notice that
S-convexity (S-concavity) implies symmetry, since
x ∼ xσ ⇒ A(x) = A(xσ).

Definition 5 A function A : Dn −→ D is an n-ary
averaging function if it is monotonic and idempo-
tent. An averaging function is said to be strict if it
is strictly monotonic. Note that monotonicity and
idempotency implies that min(x) ≤ A(x) ≤ max(x),
for all x ∈ Dn.

For simplicity, the n-arity is omitted whenever it
is clear from the context. Particular cases of aver-
aging functions are weighted averaging (WA) func-
tions, ordered weighted averaging (OWA) functions,
and Choquet integrals, which contain the former as
special cases.

Definition 6 Given a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n, with

∑n
i=1 wi = 1, the

Weighted Averaging (WA) function associated with
w is the averaging function A : Dn −→ D defined as

A(x) =
n∑

i=1
wi xi. (3)

Definition 7 Given a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n, with

∑n
i=1 wi = 1, the Or-

dered Weighted Averaging (OWA) function associ-
ated with w is the averaging function A : Dn −→ D
defined as

A(x) =
n∑

i=1
wi x(i). (4)

The traditional form of OWA functions as in-
troduced by Yager [40] is as follows, A(x) =∑n

i=1 w̃i x[i] where w̃i = wn−i+1. In [41, 42] the
theory and applications of OWA functions are dis-
cussed in detail.

The following are two classical results particulary
relevant in our framework. The proofs, given here
for convenience, are analogous. The first result, see
in particular Skala [36], regards a form of dominance
relation between OWA functions, see also Bortot
and Marques Pereira [13].

Proposition 1 Consider two OWA functions
A, B : Dn −→ D associated with weight-
ing vectors u = (u1, . . . , un) ∈ [0, 1]n and
v = (v1, . . . , vn) ∈ [0, 1]n, respectively. It holds that
A(x) ≤ B(x) for all x ∈ Dn if and only if

k∑
i=1

ui ≥
k∑

i=1
vi for k = 1, . . . , n (5)

where the case k = n is an equality due to weight
normalization.

The next result, which is referred (without di-
rect proof) by Weymark [37] and Chakravarty [16,
p. 28], regards the relation between the weighting
structure and the S-convexity or S-concavity of the
OWA function, see also Bortot and Marques Pereira
[13].

Proposition 2 Consider an OWA function A :
Dn −→ D associated with a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n. The OWA function A is
S-convex if and only if the weights are non de-
creasing, w1 ≤ · · · ≤ wn, and A is strictly S-
convex if and only if the weights are increasing,
w1 < · · · < wn. Analogously, the OWA function
A is S-concave if and only if the weights are non
increasing, w1 ≥ · · · ≥ wn, and A is strictly S-
concave if and only if the weights are decreasing,
w1 > · · · > wn.

We will now review the basic concepts and def-
initions regarding welfare functions and inequality
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indices. Certain properties which are generally con-
sidered to be inherent to the concepts of welfare
and inequality are now accepted as basic axioms for
welfare and inequality measures, see for instance
Kolm [29, 30]. The crucial axiom in this field is
the Pigou-Dalton transfer principle, which states
that welfare (inequality) measures should be non-
decreasing (non-increasing) under income transfers.
This axiom translates directly into the properties of
S-concavity and S-convexity in the context of sym-
metric functions on Dn. In fact, a function is S-
concave (S-convex) if and only if it is symmetric
and non-decreasing (non-increasing) under income
transfers, see for instance Marshall and Olkin [26].

Definition 8 An averaging function A : Dn −→ D
is a welfare function if it is continuous, idempotent,
and S-concave. The welfare function is said to be
strict if it is a strict averaging function which is
strictly S-concave.

Due to monotonicity and idempotency, a welfare
function is non decreasing over Dn but increasing
along the diagonal x = x · 1 ∈ Dn, with x ∈ D.
Moreover, notice that S-concavity implies symme-
try. Due to S-concavity, a welfare function ranks
any Lorenz superior income distribution with the
same mean as x as no worse than x, whereas a strict
welfare function ranks it as better.

Given a welfare function A, the uniform equiv-
alent income x̃ associated with an income distri-
bution x is defined as the income level which, if
equally distributed among the population, would
generate the same welfare value, A(x̃ · 1) = A(x).
The uniform equivalent concept has been originally
proposed by Chisini [17] in the general context of
averaging functions, see for instance Bennet et al.
[6]. In the welfare context the uniform equivalent
income has been considered by Atkinson [4], Kolm
[28], and Sen [33] and further elaborated by Black-
orby and Donaldson [8, 9, 10] and Blackorby, Don-
aldson, and Auersperg [12].

Due to the idempotency of A, we obtain x̃ =
A(x). Since x̄ · 1 ≼ x for any income distribution
x ∈ Dn, S-concavity implies A(x̄ · 1) ≥ A(x) and
therefore A(x) ≤ x̄ due to the idempotency of the
welfare function. In other words, the mean income
x̄ and the uniform equivalent income x̃ are related
by 0 ≤ x̃ ≤ x̄.

We now define the notion of absolute inequal-
ity index, introduced by Kolm [29, 30] and devel-
oped by Blackorby and Donaldson [9], Blackorby,
Donaldson, and Auersperg [12], and Weymark [37].
Following Kolm, inequality measures are described
as “absolute” when they are invariant for additive
transformations (translation invariance).

Definition 9 A function G : Dn −→ D is an abso-
lute inequality index if it is continuous, nilpotent,
S-convex, and invariant for translations. The ab-
solute inequality index is said to be strict if it is
strictly S-convex.

In relation with the properties of the majoriza-
tion relation discussed earlier, it holds that: over all
income distributions x ∈ Dn with the same mean
income x̄, a welfare function has minimum value
A(0, . . . , 0, nx̄), and an absolute inequality index
has maximum value G(0, . . . , 0, nx̄).

In the AKS framework introduced by Atkinson
[4], Kolm [28], and Sen [33], a welfare function which
is stable for translations induces an associated ab-
solute inequality index by means of the correspon-
dence formula A(x) = x̄ − G(x), see Blackorby and
Donaldson [9]. The welfare function and the associ-
ated inequality index are said to be ethical, see also
Sen [35], Blackorby, Donaldson, and Auersperg [12],
Weymark [37], Blackorby and Donaldson [11], and
Ebert [20].

Definition 10 Given a welfare function A :
Dn −→ D which is stable for translations, the asso-
ciated Atkinson-Kolm-Sen (AKS) absolute inequal-
ity index G : Dn −→ D is defined as

G(x) = x̄ − A(x) . (6)

The fact that A is stable for translations ensures the
translational invariance of G. The absolute inequal-
ity index can be written as G(x) = x̄ − x̃ and rep-
resents the per capita income that could be saved if
society distributed incomes equally without any loss
of welfare.

In the AKS framework, a welfare function A
which is stable for both translations and dilations is
associated with both absolute and relative inequal-
ity indices G and GR, respectively, with G(x) =
x̄ GR(x) for all x ∈ Dn. In what follows we will
omit the term “absolute” when referring to G.

An important class of welfare functions which are
stable for translations is that of the generalized Gini
welfare functions introduced by Weymark [37], see
also Mehran [31], Donaldson and Weymark [18, 19],
Yaari [38, 39], Ebert [21], Quiggin [32], Ben-Porath
and Gilboa [7].

Definition 11 Given a weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n, with w1 ≥ · · · ≥ wn ≥ 0 and∑n

i=1 wi = 1, the generalized Gini welfare function
associated with w is the function A : Dn −→ D de-
fined as

A(x) =
n∑

i=1
wix(i) (7)

and, in the AKS framework, the associated general-
ized Gini inequality index is defined as

G(x) = x̄ − A(x) = −
n∑

i=1
(wi − 1

n
) x(i) . (8)

The generalized Gini welfare functions, which are
strict if and only if w1 > · · · > wn > 0, are clearly
stable for both translations and dilations. For this
reason they have a natural role within the AKS
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framework and Blackorby and Donaldson’s corre-
spondence formula.

A fundamental instance of the AKS generalized
Gini framework is the classical Gini welfare function
Ac(x) and the associated classical Gini inequality
index Gc(x) = x̄ − Ac(x),

Ac(x) =
n∑

i=1

2(n − i) + 1
n2 x(i) (9)

where the coefficients of Ac(x) have unit sum,∑n
i=1(2(n − i) + 1) = n2, and

Gc(x) = −
n∑

i=1

n − 2i + 1
n2 x(i) (10)

where the coefficients of Gc(x) have zero sum,∑n
i=1(n − 2i + 1) = 0. The classical Gini inequality

index Gc is traditionally defined as

Gc(x) = 1
2n2

n∑
i,j=1

|xi − xj | , (11)

see for instance Bortot and Marques Pereira [13].
In this paper the authors discuss the family of
binomial Gini welfare functions Cj , j = 1, . . . , n
and associated binomial Gini inequality indices Gj ,
j = 1, . . . , n. In particular, it is shown that C2 and
G2 are proportional to the classical Ac and Gc, re-
spectively.

Another instance of the AKS correspondence be-
tween generalized Gini welfare functions and in-
equality indices is the S-Gini family introduced
by Donaldson and Weymark [18], and indepen-
dently by Kakwani [27] as an extension of a poverty
measure proposed by Sen [34], see also Donaldson
e Weymark [19], Yitzhaki [43], Bossert [14], and
Aaberge [1, 2, 3].

2. A new poverty measure

In this section we introduce a new poverty measure
based on a non trivial balance between the aggre-
gated value of the income gaps of the poor and the
headcount ratio of the poor in the population. This
poverty measure extends a previous proposal also
based on the exponential mean but with an exclu-
sive focus on the poor sector of the income distri-
bution.

The exponential mean is a strict averaging func-
tion which is symmetric and stable for translations.
It is also decomposable, in the sense that the values
associated with any given subset of individuals can
each be substituted by their own aggregated value.

Definition 12 The exponential mean Fα : Dn →
D, with parameter α ∈ R, is defined as

Fα(x) = 1
α

ln
(

e αx1 + · · · + e αxn

n

)
(12)

for α ̸= 0, and Fα=0(x) = x̄.

The continuity of the exponential mean with respect
to the parameter α is ensured by

lim
α→ 0

Fα(x) = x1 + · · · + xn

n
= x̄ . (13)

The following is a classical result, see for instance
García-Lapresta et al. [24].

Proposition 3 The exponential mean Fα is S-
convex (S-concave) for α ≥ 0 (α ≤ 0) and strictly
S-convex (strictly S-concave) for α > 0 (α < 0).

Given an income distribution x ∈ Dn and a
poverty threshold z ∈ (0, ∞) representing the neces-
sary income to maintain a minimum level of living,
the set of poor individuals in the population is iden-
tified by

Q(x) = {i ∈ {1, . . . , n} | xi < z} (14)

and q(x) = #Q(x) is the number of the poor. We
define the restricted poor income distribution xp as

xp
i = x(i) i = 1, . . . , q (15)

where q = q(x). In this way xp
1 ≤ xp

2 ≤ · · · ≤ xp
q .

Given an income distribution x ∈ Dn and a
poverty threshold z ∈ (0, ∞), the associated income
gap distribution g(x) = (g(x1), . . . , g(xn)) is defined
by means of the income gap function

g(x) = max
(z − x

z
, 0

)
x ∈ D . (16)

The income gap distribution is normalized in the
sense that g(x) ∈ [0, 1] for any income x ∈ D and
the income gaps of the non poor are null. Focusing
on the poor we obtain the restricted poor income
gap distribution g(xp) as

g(xp
i ) = g(x(i)) i = 1, . . . , q (17)

with g(xp
1) ≥ g(xp

2) ≥ · · · ≥ g(xp
q).

A poverty measure P : Dn → [0, 1] should satisfy
the following traditional axioms:

• Poverty Focus (PF): For all x, y ∈ Dn and z ∈
(0, ∞), if Q(x) = Q(y) = Q and xi = yi for
every i ∈ Q, then P (x) = P (y).

• Poverty Monotonicity (PM): For all x, y ∈ Dn

and z ∈ (0, ∞), if Q(x) = Q(y) = Q and x = y
except for xi > yi with i ∈ Q, then P (x) <
P (y).

• Transfer Sensitivity (TS): For all x, y ∈ Dn

and z ∈ (0, ∞), if y is obtained from x by an
income transfer among the poor, with x ≻ y,
then P (x) > P (y).

• Normalization (N): For all x, y ∈ Dn and z ∈
(0, ∞), P (x) = 0 if and only if Q(x) = ∅, that
is xi ≥ z for every i ∈ {1, . . . , n}.

• Poverty Symmetry (PS): For all x ∈ Dn, z ∈
(0, ∞), and permutations σ on {1, . . . , n}, it
holds that P (xσ) = P (x).
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• Replication Invariance (RI): For all x ∈ Dn

and z ∈ (0, ∞), if y is obtained from x by
a replication, that is y = (x, . . . , x) with m
copies of the income distribution x for some
m ∈ N, then P (y) = P (x).

• Diminishing Transfer Sensitivity (DTS): For
all x, y ∈ Dn and z ∈ (0, ∞), if Q(x) = Q(y)
and y is obtained from x by an income transfer
from the poor person with income xi + c to
the poor person with income xi, for some c >
0, then the magnitude of decrease in poverty
P (x) − P (y) is higher the lower xi.

On the basis of the exponential mean (12) and
the income gap function (16) we introduce a new
poverty measure depending on the full income gap
distribution of the population. A preliminary ver-
sion of this proposal has been presented in García-
Lapresta et al. [23].

Definition 13 We define the poverty measure Pα :
Dn → [0, 1], with parameter α ≥ 0, as

Pα(x) = Fα(g(x)) (18)

which means

Pα(x) = 1
α

ln
(

e αg(x1) + · · · + e αg(xn)

n

)
(19)

for α ̸= 0, and Pα=0(x) = (g(x1) + · · · + g(xn))/n.

Proposition 4 For every α ≥ 0, the poverty mea-
sure Pα satisfies PF, PM, N, PS, RI. Moreover,
Pα satisfies TS and DTS for every α > 0.

The poverty measure Pα, which combines the in-
come gap function and the exponential mean, is in-
teresting in so far as it is analytically sensitive to the
value of the poverty threshold as well as to income
transfers between the rich and the poor, a form of
extended transfer sensitivity, see also [23].

We can write the poverty measure as

Pα(x) = 1
α

ln
(

e αg(x(1)) + · · · + e αg(x(q)) + n − q

n

)
(20)

since the n−q income gaps of the non poor are null.
We can now use the fact that the exponential mean
is a decomposable aggregation function, see [22] [15]
[5] [25], in order to obtain

Pα(x) = 1
α

ln
(

q e α up + n − q

n

)
(21)

where up is the exponential mean of the income gaps
of the poor, up = Fα(g(xp)), that is,

up = 1
α

ln
(

e αg(x(1)) + · · · + e αg(x(q))

q

)
(22)

We can thus write the poverty measure Pα as

Pα(x) = fα(u, v) (23)

where u = up is the aggregated value of the income
gaps of the poor and v = q/n is the headcount ra-
tio of the poor in the income distribution x. The
aggregation function fα is defined below.

Definition 14 We define the aggregation function
fα : [0, 1]2 → [0, 1], with parameter α ≥ 0, as fol-
lows,

fα(u, v) = 1
α

ln
(

1 + (eαu − 1)v
)

(24)

for α ̸= 0, and fα=0(u, v) = uv.

The continuity of the aggregation function with re-
spect to the parameter α is ensured by

lim
α→ 0

fα(u, v) = uv . (25)

In the null parameter case the poverty measure
reduces to Pα=0(x) = fα=0(u, v) = uv = up(q/n),
which corresponds to the poverty measure proposed
in García-Lapresta et al. [24]. The two poverty
measures differ for positive values of the parameter
α, in which case the poverty measure Pα as in (23)
breaks the u, v symmetry which is present in [24]
and yields a non trivial balance between the aggre-
gated value of the income gaps of the poor and the
headcount ratio of the poor in the population.

In the new poverty measure Pα as in (23) the be-
haviour of the aggregation function with respect to
each variable is illustrated by the following figures:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: fα(u, v) as a function of u.

• Fig. 1 shows fα(u, v) as a function of u for two
values of the variable v: v = 1/4 (group below) and
v = 3/4 (group above). In each group the parame-
ter α takes the values α = 0, 1, 2, 3, 4 where α = 0
corresponds to the inferior graph and α = 4 corre-
sponds to the superior graph in the group.

• Fig. 2 shows fα(u, v) as a function of v for two
values of the variable u: u = 1/2 (group below) and
u = 1 (group above). In each group the parameter α
takes the values α = 0, 1, 2, 3, 4 where α = 0 corre-
sponds to the inferior graph and α = 4 corresponds
to the superior graph in the group.
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Figure 2: fα(u, v) as a function of v.

From the interpretative point of view the pa-
rameter α tends to emphasize the convexity of the
poverty measure dependence on u and thus it tends
to accentuate the importance of extreme poverty
levels (high u values). On the other hand the pa-
rameter α tends to emphasize the concavity of the
poverty measure dependence on v and thus it tends
to accentuate the effect of scarce headcount ratios
(low v values).

The aggregation function fα is continuously dif-
ferentiable in any order with respect to the param-
eter. The derivatives of fα with respect to the pa-
rameter at α = 0 can be obtained (by means of
l’Hospital’s rule) as follows,

ḟα=0(u, v) = lim
α→ 0

fα(u, v) − fα=0(u, v)
α − 0

(26)

H= lim
α→ 0

ḟα(u, v) = 1
2

u2v(1 − v)

f̈α=0(u, v) = lim
α→ 0

ḟα(u, v) − ḟα=0(u, v)
α − 0

(27)

H= lim
α→ 0

f̈α(u, v) = 1
3

u3v(1 − v)(1 − 2v)

just to mention the first and second order deriva-
tives.

The general form of the derivatives of fα with re-
spect to the parameter at α = 0 is complex in its
dependence on the variable v. However the roots
v = 0 and v = 1 are always present in every order
and the root v = 1/2 is present in even orders. In
Fig. 3 we indicate all the roots numerically obtained
up to order sixteen. Notice the interesting sigmoid
shape of the plot due to the fact that the root den-
sity is higher in the neighbourhood of the extreme
values 0 and 1.

Proposition 5 The aggregation function fα as in
(24), with parameter α ≥ 0, is strictly increasing
in both variables u and v, is strictly convex in u
and strictly concave in v, and overall it is neither
concave nor convex.

Figure 3: Roots in v of derivatives of fα w.r.t. α.

Proof : The first partial derivatives of fα with re-
spect to the variables u and v are as follows,

(fα) ′
u(u, v) = v

v + (1 − v)e−αu
(28)

(fα) ′
v(u, v) = eαu − 1

α(1 + (eαu − 1)v)
(29)

and continuity in the parameter α is ensured by

(fα=0) ′
u(u, v) = v = lim

α→ 0
(fα) ′

u(u, v) (30)

(fα=0) ′
v(u, v) = u = lim

α→ 0
(fα) ′

v(u, v) . (31)

The second partial derivatives are as follows,

(fα) ′′
uu(u, v) = αv(1 − v)

(veαu + (1 − v))(v + (1 − v)e−αu)
(32)

(fα) ′′
vv(u, v) = − (eαu − 1)2

α(1 + (eαu − 1)v)2 (33)

(fα) ′′
uv(u, v) = eαu

(1 + (eαu − 1)v)2 (34)

and continuity in the parameter α is ensured by

(fα=0) ′′
uu(u, v) = 0 = lim

α→ 0
(fα) ′′

uu(u, v) (35)

(fα=0) ′′
vv(u, v) = 0 = lim

α→ 0
(fα) ′′

vv(u, v) (36)

(fα=0) ′′
uv(u, v) = 1 = lim

α→ 0
(fα) ′′

uv(u, v) . (37)

The determinant of the Hessian matrix of the ag-
gregation function fα is given by

detHα(u, v) = − ve−αu + (1 − v)
(v + (1 − v)e−αu)3 e−αu < 0 (38)

which means that the quadratic form associated
with the Hessian matrix is indefinite, i.e., the ag-
gregation function is neither concave nor convex.�
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In relation with the balance between the variables
u and v of the aggregation function fα, the points in
which an increase in u is compensated by an equal
decrease in v (or viceversa) are the solutions of the
equation

(fα) ′
u(u, v) = (fα) ′

v(u, v) (39)

v

v + (1 − v)e−αu
= 1 − e−αu

α(v + (1 − v)e−αu)
(40)

v = 1
α

(1 − e−αu) = hα(u) (41)

where the curve v = hα(u), depending on the pa-
rameter α, illustrates the character of the balanc-
ing mechanism between the two variables in the
context of the new poverty measure. Notice that
hα=0(u) = u as in the poverty measure proposed in
[24].

Finally, the Taylor expansion of the aggregation
function fα with respect to the parameter α pro-
vides further insight on the way the new poverty
measure extends the one proposed in [24]. The
Taylor expansion with respect to the parameter at
α = 0 expresses the change in the aggregation mech-
anism of the poverty measure, particularly in the
way it combines the two variables u and v, from the
symmetric balance fα=0(u, v) = uv as in [24] to the
more complex asymmetric balance in fα(u, v) as in
(24).

In this way the Taylor expansion with respect to
the parameter illustrates the effect of having ex-
tended the focus of the poverty measure by con-
sidering the full income gap distribution of the pop-
ulation.

Below we indicate the second order Taylor expan-
sion with respect to the parameter at α = 0,

fα(u, v) α≈ uv
(

1 + 1
2

αu(1 − v)
(

1 + 1
3

αu(1 − 2v)
))

(42)
where the null order term in the parameter corre-
sponds to the case fα=0(u, v) = uv as in the poverty
measure [24]. The remaining terms,
• first order term u2v(1 − v)
• second order term u3v(1 − v)(1 − 2v)
correspond to corrections which are proportional to
increasing powers of u (aggregated income gap of
the poor) together with increasing order polynomi-
als in v whose roots introduce reference values for
the headcount ratio of the poor in the population.

3. Conclusion

We propose a poverty measure based on the expo-
nential mean of the full income gap distribution of
the population. We show that this poverty measure
expresses a non trivial balance between the aggre-
gated value of the income gaps of the poor and the
headcount ratio of the poor in the population.

The new poverty measure extends a previous pro-
posal also based on the exponential mean but with

an exclusive focus on the poor sector of the income
distribution.

The new poverty measure combining the income
gap function and the exponential mean is interesting
in so far as it is analytically sensitive to the value of
the poverty threshold as well as to income transfers
between the rich and the poor, a form of extended
transfer sensitivity.
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