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Abstract

We present and analyze inference method called
Perception-based Logical Deduction (PbLD) aimed
at the treatment of fuzzy IF-THEN rules as linguis-
tically expressed genuine logical implications. Be-
sides the original PbLD, we propose a new balanc-
ing variant of PbLD, introduce both variants with
fuzzy inputs and study them from the point of view
of the interpolativity property.

Keywords: Perception-based Logical Deduction,
Fuzzy interpolation, Inference mechanism

1. Introduction

1.1. Fuzzy Rules and Inference Mechanisms

Consider a finite set of fuzzy IF-THEN rules (fuzzy
rules), which is called a fuzzy rule base:

Ri := IF X is Ai THEN Y is Bi, i = 1, . . . , n
(1)

where X, Y are linguistic variables [1] and Ai, Bi

are linguistic labels (e.g., “small”, “around ten”
etc.). The interpretation of expressions Ai, Bi is
modeled in a standard manner by appropriate an-
tecedent and consequent fuzzy sets Ai, Bi, which
are defined on some non-empty universes U, V , re-
spectively. For our purposes, we can restrict our
choice of U, V to closed real intervals. There ex-
ist two standard approaches to modelling a given
fuzzy rule base by an appropriate fuzzy relation
R ∈ F(U × V ) [2]. The first approach constructs
R̂ ∈ F(U × V ):

R̂(u, v) =
n∧

i=1
(Ai(u) → Bi(v)) (2)

where → is a fuzzy implication. In this implicative
approach, each fuzzy rule is viewed as a constraint.
Hence, all constraints are merged in a conjunctive
way (the more rules, the more constraints and the
less possible values to satisfy them) [2]. Therefore,
R̂ based on a residual implication seems to be ap-
propriate to model the conditional form of the rules.

The second approach, initiated by a successful
experimental application by Mamdani and Assil-
ian [3], consists in constructing the fuzzy relation

Ř ∈ F(U × V ) defined by

Ř(u, v) =
n∨

i=1
(Ai(u) ∗ Bi(v)) , (3)

where ∗ is a t-norm. Obviously, Ř can hardly be
considered as a model of fuzzy rule base (1). The
fuzzy rules modelled by (3) are not viewed as con-
straints but are considered as pieces of data. The
maximum in (3) then expresses accumulation of
data [2]. For further sources related to the inter-
pretability and interpretation of such systems, we
refer to [4, 5, 6].

There are many inference mechanisms that, with
the help of fuzzy rules, deduce an appropriate out-
put B0 ∈ F(V ) based on a given observation (input)
A0 ∈ F(U). Let us restrict our focus on the fuzzy
relational inference systems that directly use a fuzzy
relation R ∈ F(U × V ) as a model of fuzzy rules,
and an image of a fuzzy set under the fuzzy relation
as a model of the inference mechanism. Most often,
the direct image (sup-∗ composition) is used,

B0 = A0 ◦ R , (4)

also called Compositional Rule of Inference
(CRI) [7], which is defined, for all v ∈ V , by

(A0 ◦ R)(v) =
∨

u∈U

(A0(u) ∗ R(u, v)) . (5)

Another alternative is the Bandler-Kohout sub-
product (BK-subproduct):

B0 = A0 ▹ R , (6)

which is defined, for all v ∈ V , by

(A0 ▹ R)(v) =
∧

u∈U

(A0(u) → R(u, v)) . (7)

The BK-subproduct was firstly suggested as an
inference mechanism in [8] and later on, in [9],
it was shown that both inference mechanisms are
equally good. Particularly, the advantages, which
may be obtained from using one or the other in-
ference mechanism, do not come from the mecha-
nism itself, but from a proper combination of the
mechanism and the model of fuzzy rules. If an in-
ference mechanism provides some advantage when
connected with the model Ř, the same holds for

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 341



the other inference mechanism connected to R̂ and,
vice-versa, the same holds for disadvantages. There
is no advantage of any of the two above mentioned
inferences that would hold independently on the
choice of the fuzzy rule base model, see [9].

The only exception in favor of the implicative ap-
proach represented by R̂ is an existence of a sort
of “built-in” consistency checking mechanism [10],
which uses the definition of the notion of coher-
ence [11]. This only underlines the fact that im-
plicative rules are not only more appropriate se-
mantical model with respect to the syntactical form
of the IF-THEN rules (1), but at least equally
or even more practical than the Mamdani-Assilian
rules that are used significantly more often [12].
Therefore, we will focus mainly on the implicative
type in this paper.

1.2. Motivation

Models of fuzzy rule bases and inference mecha-
nisms described in the previous subsection based
on CRI or BK-subproduct are well suited for the
purpose of approximation of an unknown function
characterized imprecisely by fuzzy rules. The fuzzy
sets Ai, Bi, which interpret linguistic labels Ai, Bi,
are usually of one of standard shapes, e.g., triangu-
lar, trapezoidal etc. Further, they are usually uni-
formly distributed along the intervals of real num-
bers U and V , forming a fuzzy partition.

If we are interested in capturing the meaning of
linguistic labels, which are used by humans most of-
ten, in a way that is in accordance with their intu-
itive understanding, we have to search for another
model of these labels. Consider, for example, lin-
guistic expressions “extremely small” and “small”.
We argue that, according to intuition shared by
humans, if something is extremely small, it is, at
the same time, small. Using the language of fuzzy
set theory, the interpretation of “extremely small”
should be a fuzzy subset of the interpretation of
“small”. Typical shapes of interpretations of these
linguistic expressions are depicted in Fig. 1. If we
accept that a model of these linguistic expressions
should possess this property, we find that inference
mechanisms and fuzzy rule base models described
above are not well suited for it.

Sm
Bi

Me

1
ML Sm

Ex Sm

ML Me

Figure 1: Graphical representations of fuzzy sets
that interpret linguistic expressions extremely small,
small, more or less small, more or less medium,
medium and big.

(a) Interpretation by Ř for u0 = 0.

(b) Interpretation by R̂ for u0 = 0.

Figure 2: Results of Ř and R̂ interpretations of RB1
in case of the inclusive interpretation of extremely
small and small.

For example, consider the following fuzzy rule
base RB1:

R1 := IF X is extremely small THEN Y is big,

R2 := IF X is small THEN Y is small,
R3 := IF X is medium THEN Y is medium.

If interpretations of extremely small and small are
as in Fig. 1 and the observation is u0 = 0, we expect
that the rule R1 has to be used, and the result has
to correspond to linguistic expression big. However,
as can be seen in Fig. 2, results of the conjunc-
tive interpretation of fuzzy IF-THEN rules R̂ (2) as
well as of the disjunctive interpretation Ř (3) are
unsatisfactory. The reason is that both rules R1
and R2 are fired for the observation u0 = 0. Be-
cause consequents of these rules are very different
(contradictory), the inference mechanism either put
both consequents into the conclusion (Fig. 2(a)), or
it annihilates both consequents into the constant
(empty) fuzzy set (Fig. 2(b)).

Further, we do not view a set of fuzzy IF-THEN
rules as a description of an unknown function, but
as a set of genuine linguistically expressed logi-
cal implications. Based on these considerations,
a method called Perception-based Logical Deduc-
tion (abbr. PbLD) has been developed [13, 14, 15].
Perception-based, because to an input we assign only
the most fitting linguistic expression(s) from an-
tecedents of a fuzzy rule base, and call them percep-
tions. PbLD then fires the fuzzy rules corresponding
to the perceptions. Logical, because it understands
IF-THEN rules as logical implications and it has
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been developed within a formal logical theory.1
A fuzzy relational model is interpolative (correct)

if and only if it models a certain type of continuous
behavior [16]. In general, this can be viewed as a
feature rather than a disadvantage, but there are
situations where even a smooth fuzzy model should
be able to provide a discontinuous jump [16]. Con-
sider the following fuzzy rule base RB2:

R1 := IF X is small THEN Y is − big,

R2 := IF X is extremely small THEN Y is + big,

where X is a distance of a vehicle from a traffic sig-
nal when the yellow light appears on it and Y is a
desired change of speed of that vehicle. Obviously,
the change from braking to speeding up (big nega-
tive and positive changes in speed) is something that
cannot be provided by a correct (consistent) model
using a fuzzy IF-THEN rule base within a fuzzy re-
lational inference. However, for PbLD method it
is no problem to provide conclusions based on this
rule base in accordance with intuition.

As we mentioned above, PbLD fires the rules
whose antecedents fit the observation best. But
what does it mean? Consider again the fuzzy
rule base RB1. Similarly as in case of the rule
base RB2 above, there is a substantial difference
between consequents corresponding to antecedents
extremely small (rule R1) and small (rule R2). In-
tuitively, if an observation is extremely small, only
R1 should be used. Similarly, if an observation is
small (but not extremely small) only R2 should be
used. The idea is that we use the rule which fits
the observation best (the membership degree of the
observation in fuzzy sets interpreting antecedent lin-
guistic expressions is maximal).2 If there are more
such rules, then we use the rule whose antecedent is
most specific. Consider the interval [0, 1] as the uni-
verse for the variable X. If the observation is, say,
0.1, we use the rule R2, because the firing degree
of the observation is maximal for it. The result of
PbLD inference in this case is depicted in Fig. 3(b)
and corresponds to the consequent of the rule R2,
that is, small. If the observation moves leftwards to
0.02, then antecedents of both rules R1 and R2 are
to be selected (both firing degrees are 1). However,
we use the rule R1 only, because the linguistic ex-
pression extremely small is more specific than small.
We can see the result of PbLD inference in this case
in Fig. 3(a). It corresponds to linguistic expression
big, that is, to the consequent of the fuzzy rule R1.

Up to now, the study and applications of
Perception-based Logical Deduction have been con-
ducted mainly for the case of crisp observations.
However, the more general case of fuzzy observa-
tions is important from the theoretical as well as

1Logical analysis of PbLD is omitted in this paper due to
lack of space.

2We will call this degree a firing degree of the observation
uo in fuzzy rule Ri.

(a) PbLD for u0 = 0.02.

(b) PbLD for u0 = 0.1.

Figure 3: Results of PbLD for fuzzy rule base RB1.

the practical viewpoint.3 Because a crisp observa-
tion can be understood as a fuzzy singleton, we in-
tuitively expect that PbLD inference method with
crisp observations should be a special case of PbLD
with fuzzy observations.

One important point has to be addressed in the
case of PbLD with fuzzy inputs. The fired fuzzy
IF-THEN rule is selected according to the firing de-
gree of the observation. However, for fuzzy inputs,
this notion is not defined. We can use a similarity
relation as in [17], but it can be argued that not all
properties usually required for similarity relations
are necessary here. In Section 2.4, we propose a
generalized firing degree to be used for this purpose.

Fuzzy inference systems including PbLD can be
studied from the viewpoint of various mathematical
properties based on intuitive requirements. For ex-
ample, interpolativity says that if a fuzzy input (ob-
servation) is equal to the antecedent of fuzzy rule
Ri, then the inferred conclusion should be equal
to the consequent of Ri. Other properties include
continuity, monotonicity etc. Due to space limita-
tions, we study only interpolativity in this paper
(Section 3).

2. PbLD Revisited

2.1. Mathematical Background

We fix the Łukasiewicz algebra

L = ⟨[0, 1], ∧, ∨, ∗, → 0, 1⟩

3Fuzzy observations occur, for instance, in hierarchical
fuzzy systems.

343



as the background algebraic structure. Thus, ∗ is
the Łukasiewicz t-norm defined as a ∗ b = (a + b −
1)∨0, and → is its residual Łukasiewicz implication
a → b = (1 − a + b) ∧ 1, for a, b ∈ [0, 1].

Major components of systems of fuzzy IF-THEN
rules are evaluative linguistic expressions [18], eval-
uative expressions for short. Their importance and
the potential for modeling their meaning in a math-
ematical manner were discussed, e.g., in [1].

A simple form of an evaluative expression has the
following structure:

⟨linguistic hedge⟩⟨atomic evaluative expression⟩.

An atomic evaluative expression is one of the canon-
ical adjectives: small, medium and big, which we
abbreviate in the following as Sm, Me and Bi, re-
spectively.4 In practice, these words are often re-
placed by other evaluative words, such as “thin”,
“old”, or “new”, depending on the context of speech.

Linguistic hedges are specific adverbs that make
the interpretations of atomic expressions more or
less precise. We may distinguish between hedges
with a narrowing effect and with a widening ef-
fect, (a special case is the empty hedge). Of course,
the number of hedges is limited in practical appli-
cations. In the following, without loss of general-
ity, we use the hedges introduced in Table 1, which
were successfully employed in real applications [19].
They are also implemented in the LFLC software
package [20]. Note that our hedges are of the so-
called inclusive type [21], which means that the in-
terpretations (fuzzy sets) of more specific evalua-
tive expressions are included in those of less spe-
cific ones, as shown in Fig. 1. Note also that we
always suppose the interpretations of evaluative ex-
pressions to be normal fuzzy sets.

Narrowing effect Widening effect
very (Ve) more or less (ML)

significantly (Si) roughly (Ro)
extremely (Ex) quite roughly (QR)

Table 1: Linguistic hedges and their abbreviations.

The theory of evaluative expressions was ex-
tended in [15] with the following partition axiom
adding the assumption that fuzzy sets which model
evaluative expressions cannot overlap in degree 1 if
these expressions are not of the same atomic type.
Indeed, no element u in any universe is naturally as-
sumed to belong in degree 1 to a fuzzy set of small
objects, as well as of medium or big objects, regard-
less of the influence of the widening or narrowing
effect of applied linguistic hedges.

4If necessary, it is possible to extend the range of atomic
evaluative expressions using a finite number of additional ex-
pressions, e.g., lower medium or upper medium, such that
Axioms 1 and 2 below hold.

Axiom 1 Let A1, A2 be evaluative expressions with
different atomic expressions that are modeled by
fuzzy sets A1, A2 on U . Then, for all u ∈ U it
holds that

A1(u) + A2(u) < 2.

Whenever we use the above recalled theory
of evaluative linguistic expressions with linguistic
hedges of an inclusive type, the use of a single fuzzy
relation – either R̂ or Ř – is not appropriate any-
more, as we discussed in Section 1.2, see also [17].
In order to distinguish the situation from the, say,
“standard” fuzzy rule base, which deal with fuzzy
partitions and may freely use a single fuzzy rela-
tion as an appropriate model, the set of rules (1)
will be called linguistic description and denoted by
LD = {R1, . . . , Rn}.5 The following conventions
will be kept throughout the rest of this paper: We
will denote by Nn the set {1, . . . , n} of natural num-
bers. If LD is given, then Ai and Bi, i ∈ Nn,
will denote antecedent and consequent evaluative
expressions from the i-th fuzzy IF-THEN rule Ri,
respectively. Further, Ai and Bi will denote inter-
pretations (fuzzy sets) of Ai and Bi, respectively,
Ai ∈ F(U) and Bi ∈ F(V ), where U and V are
closed real intervals.

A specificity ordering relation on the set of eval-
uative expressions is defined in order to allow us to
state the relationships (inclusions) among evalua-
tive expressions (or their models). First, let us de-
fine the ordering ≤H on the set of hedges that can
be defined on the hedges from Table 1 as follows:

Ex ≤H Si ≤H Ve ≤H⟨empty⟩ ≤H ML ≤H Ro ≤H QR.

Based on ≤H, we define the ordering ≤LE of
evaluative expressions. Let A1, A2 be two evalu-
ative expressions such that A1 := ⟨hedge⟩1A and
A2 := ⟨hedge⟩2A, where A is an atomic expression.
Then, we write

A1 ≤LE A2

if ⟨hedge⟩1 ≤H⟨hedge⟩2. In other words, evaluative
expressions of the same type (with identical atomic
expressions) are ordered according to their speci-
ficity, which is given by the hedges that appear in
these expressions. Evaluative expressions with dif-
ferent atomic expressions cannot be ordered by ≤LE.

Further, we adopt the extension of the theory of
evaluative expressions by the following inclusion ax-
iom.

Axiom 2 Let A1, A2 be two nonequal evaluative
expressions ordered as A1 ≤LE A2 and modeled by
fuzzy sets A1, A2, respectively. Then,

A1 ⊆ A2 and Ker(A1) ⊂ Ker(A2),

where Ker(A) denotes the kernel of a fuzzy set A.

5LD is viewed as a set, hence we omit multiple occurrences
and each rule may be contained in LD only once.
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Finally, we define the ordering of antecedent fuzzy
sets (for a given linguistic description) with respect
to an observation.

Definition 1 Let LD be a linguistic description
and u0 ∈ U . We write

Ai ≤u0 Aj

either if Ai(u0) > Aj(u0),
or if Ai(u0) = Aj(u0) and Ai ≤LE Aj .

It should be noted that antecedents of a linguistic
description usually contain more than one variable.
In this case, antecedent variables are compounded
by conjunction and the ordering ≤LE of compound
evaluative expressions is extended in a straightfor-
ward way.

2.2. “Original” PbLD

A perception is understood to be a set of indices
of fuzzy IF-THEN rules (for a given LD) that is
assigned to an input. Intuitively, each index from a
perception corresponds to the antecedent evaluative
expression that fits best the given input.

Definition 2 Let LD be a linguistic description.
The local perception function is a mapping PLD :
U → P(Nn) that assigns to each value u0 ∈ U a set
of indices

PLD(u0) = {i ∈ Nn | Ai(u0) > 0 &
& (∀j ∈ Nn)((Aj ≤u0 Ai) ⇒ (Aj = Ai))}. (8)

The local perception function has a key role in
the PbLD inference expressed as the rule of PbLD.

Definition 3 Let LD be a linguistic description.
Let us be provided with an observation u0 ∈ U .
Then, the rule of PbLD (rP bLD) is given as follows:

rP bLD : PLD(u0), LD
C

,

where

C =
∩

{Cj | j ∈ PLD(u0) &

& (∀v ∈ V )(Cj(v) = Aj(u0) → Bj(v))},

where ∩ is the Gödel intersection.

Informally, the inputs for this inference rule are
the linguistic description LD and local perception
PLD(u0). This local perception is formed by a set of
indices corresponding to antecedent fuzzy sets that
are selected according to (8). Formula (8) selects
indices of these antecedents that are the best fit for
the given numerical input u0. Then, the individual
conclusions Cj are computed as Aj(u0) → Bj(v)
for all v ∈ V , that is, for each j ∈ PLD(u0), we take
the j-th IF-THEN rule and compute the conclusion
Cj , forgetting for the moment remaining IF-THEN
rules from LD. Finally, we aggregate fuzzy sets Cj

by intersection.

2.3. “Balancing” PbLD

As we explained in Section 1.2, the motivation for
the introduction of PbLD was to design an infer-
ence method that comply with understanding of
fuzzy IF-THEN rules as linguistically expressed log-
ical implications. These fuzzy IF-THEN rules con-
tain evaluative expressions in their antecedents and
consequents. We argue that interpretations cor-
responding to these expressions must be inclusive,
that is, if A1 and A2 are interpretations of extremely
small and small, respectively, then A1 should be a
fuzzy subset of A2.

However, arguments in favor of use of the
perception-based approach apply mainly to the case
when antecedents of fired rules are in an inclusion,
i.e., they have the same atomic expression. Never-
theless, consider the case when two rules have non-
zero firing degrees and their antecedents have dif-
ferent atomic expressions. According to the original
PbLD from the previous subsection, we should use
only the rule which is fired to a higher degree.6 But,
the information coming from the second rule is lost
in this case. It seems reasonable to use both rules
with their respective firing degrees and then aggre-
gate the conclusions conjunctively (mimicking the
standard implicative approach represented by R̂).

Therefore, we come up with a new “balancing”
PbLD that employs this idea and applies the per-
ceptions only on the chains of antecedents with the
same atomic expressions. The only necessary mod-
ification is the one of ≤u0 (Definition 1).

Definition 4 Let LD be a linguistic description
and let Ai, Aj be such that Ai := ⟨hedge⟩iA and
Aj := ⟨hedge⟩jA where A is an atomic expression.
Let u0 ∈ U . We write

Ai ≤u0 Aj

either if Ai(u0) > Aj(u0),
or if Ai(u0) = Aj(u0), and Ai ≤LE Aj .

The definition of the local perception as well as
of the rule rP bLD remain unmodified. However,
the behavior of the inference mechanism adopts the
above discussed balancing character. Let us demon-
strate the difference in behavior of the original and
the balancing PbLD on an example. Consider the
following linguistic description RB3:

R1 := IF X is Ex Sm THEN Y is Bi,
R2 := IF X is Ro Sm THEN Y is Ro Sm,

R3 := IF X is Ro Me THEN Y is Ro Me.

In Figs. 4 and 5, differences between the original
and the balancing PbLD can be seen in cases when
two rules whose antecedents have different atomic

6Both rules are used only in the rare case when both firing
degrees are equal.
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(a) Original PbLD.

(b) Balancing PbLD.

Figure 4: Results of the original and the balanc-
ing PbLD for linguistic description RB3 and u0 =
0.240.

expressions (rules R2 and R3) have non-zero firing
degrees. Results of the original PbLD (Figs. 4(a)
and 5(a)) contain the conclusion of the rule with the
highest firing degree only. For example, in Fig. 4(a),
the rule R2 fires and the conclusion corresponds
to its consequent roughly small. This conclusion
is modified (“shifted up”), because the firing degree
of the observation (u0 = 0.240 in this case) is less
than 1.

For the balancing PbLD (Figs. 4(b) and 5(b)),
both rules R2 and R3 are fired and the inference
uses information from both rules in the construction
of its conclusion. For example, in Fig. 5(b), the fir-
ing degree of the observation u0 = 0.257 in the rule
R3 is higher than that in R2. Hence, the result “has
more from” the consequent of R3 (roughly medium)
in it than from R2 (roughly small).

2.4. PbLD with Fuzzy Inputs

Now we propose the generalization of both PbLD
variants to the case of fuzzy inputs in such a way
that the inference with crisp inputs would be a spe-
cial case of the one with the fuzzy inputs, as it holds
for fuzzy relational inference.

Indeed, if we consider crisp inputs and the fuzzy
relational inference, the inference mechanism itself
is not important. Irrespective of using the CRI or
the BK-subproduct, the inference reduces to a sub-
stitution of the input u0 ∈ U into the fuzzy relation
R that models the fuzzy rule base, i.e. (A0@R)(v) =
R(u0, v) for A0 = χu0 , where χ denotes the charac-
teristic function of a set and @ ∈ {◦,▹}.

(a) Original PbLD.

(b) Balancing PbLD.

Figure 5: Results of the original and the balanc-
ing PbLD for linguistic description RB3 and u0 =
0.257.

Let the orderings ≤H and ≤LE be defined as
above. Let the generalized firing degree of an ob-
servation A0 ∈ F(U) with respect to a fuzzy set Ai

for a given LD be defined as follows

Ai(A0) = A0@Ai, @ ∈ {◦,▹} (9)

that is, depending on the image:

Ai(A0) = A0 ◦ Ai =
∨

u∈U

(A0(u) ∗ Ai(u)), or

Ai(A0) = A0 ▹ Ai =
∧

u∈U

(A0(u) → Ai(u)) .

Then, for the original PbLD, we may introduce
the following ordering of antecedent fuzzy sets with
respect to a fuzzy observation.

Definition 5 Let LD be a linguistic description.
Let A0 ∈ F(U). We write

Ai ≤A0 Aj

either if Ai(A0) > Aj(A0),
or if Ai(A0) = Aj(A0) and Ai ≤LE Aj .

Analogously, the ordering ≤A0 may be introduced
for the balancing PbLD.

Definition 6 Let LD be a linguistic description
and let Ai, Aj be such that Ai := ⟨hedge⟩iA and
Aj := ⟨hedge⟩jA, where A is an atomic expression.
Let A0 ∈ F(U). We write

Ai ≤A0 Aj
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either if Ai(A0) > Aj(A0),
or if Ai(A0) = Aj(A0) and Ai ≤LE Aj .

The local perception will then be given as follows.

Definition 7 Let LD be a linguistic description.
The local perception is a mapping PLD : F(U) →
P(Nn) that assigns to each fuzzy set A0 ∈ F(U)
the set

PLD(A0) = {i ∈ Nn | Ai(A0) > 0 &
& (∀j ∈ Nn)((Aj ≤A0 Ai) ⇒ (Aj = Ai))}. (10)

Definition 8 Let LD be a linguistic description.
Let us be provided with an observation A0 ∈ F(U).
Then, the rule of PbLD (rP bLD) is given as follows:

rP bLD : PLD(A0), LD
C

, (11)

where
C = A0@ R̂A0 (12)

and, for all u ∈ V and all v ∈ V ,

R̂A0(u, v) =
∧

i∈PLD(A0)

(Ai(u) → Bi(v)).

Note that we suppose the use of the same image
operation @ ∈ {◦,▹} in (12) as in (9). One can
easily check that, in case of a crisp (singleton) input,
the above definitions are equivalent to Definitions 1–
4. Indeed, let us be given an input A0 = χu0 for
some u0 ∈ U . Then Ai(A0) = A0@Ai = Ai(u0) for
@ ∈ {◦,▹}. Thus, ≤u0 and ≤A0 coincide (for both
PbLD variants). Furthermore, in the case of @ = ◦:

C(v) =
∨

u∈U

A0(u) ∗
∧

i∈PLD(A0)

(Ai(u) → Bi(v))


=

∧
i∈PLD(A0)

(Ai(u0) → Bi(v))

and, similarly, for the case of @ = ▹:

C(v) =
∧

u∈U

A0(u) →
∧

i∈PLD(A0)

(Ai(u) → Bi(v))


=

∧
i∈PLD(A0)

(Ai(u0) → Bi(v)) .

Hence, one can see that irrespective of the cho-
sen image operator @, the inferred output coincides
with the one obtained from the crisp input u0 when
we use the rP bLD from Definition 3.

3. Fuzzy Interpolation

Each inference mechanism should possess a funda-
mental property — preservation of modus ponens.
If an input fuzzy set A0 ∈ F(U) is equal to one
of the antecedents, say to the Ai, then the inferred

output B0 ∈ F(V ) should be equal to the respec-
tive consequent Bi. This requirement leads to the
following system of fuzzy relational equations

Ai@R = Bi , i = 1, . . . , n (13)

where R ∈ F(U×V ) is unknown. A fuzzy relation R
which satisfies (13) is called a solution of the system
and we say that R interpolates (Ai, Bi). In such
case, R can be seen as a correct model of the given
fuzzy rule base in the given fuzzy inference system.

Obviously, not all systems (13) are solvable, i.e.,
not for all sets of pairs (Ai, Bi)n

i=1 there exists a
fuzzy relation that interpolates them. The ques-
tion of solvability of such systems was addressed by
many researchers. In this section, we recall only the
most fundamental results [22, 23, 24].

Theorem 1 System (13) with @ = ◦ (@ = ▹) is
solvable if and only if R̂ (Ř) is a solution of this
system. In case of solvability, R̂ (Ř) is the greatest
(the least) solution of (13) with @ = ◦ (@ = ▹).

Theorem 1 actually states that the implicative
model R̂ (Mamdani-Assilian model Ř) should be
the first choice whenever dealing with the inference
modelled by ◦ (▹). If there exist some reasons (e.g.,
preservation of robustness, low computational com-
plexity [9] or the existence of hierarchical inference
that is identical to the non-hierarchical one [9, 25]),
why the combination of Mamdani-Assilian model Ř
and the CRI inference ◦ (or the combinations of the
implicative model R̂ and the BK-subproduct infer-
ence ▹) should be preferred, one should first of all
check whether the interpolativity is preserved also
in this case. The answer to this question is provided
by the following theorems that collect results from
[23, 26].

Theorem 2 Let all Ai, i ∈ Nn, be normal. Then
Ř (R̂) is a solution of (13) with @ = ◦ (@ = ▹) if
and only if the condition∨

u∈U

(Ai(u) ∗ Aj(u)) ≤
∧

v∈V

(Bi(v) ↔ Bj(v)) (14)

holds for any i, j ∈ Nn.

Due to the monotonicity of images, namely:

A@R1 ⊆ A@R2, @ ∈ {◦,▹}

for any R1, R2 ∈ F(U × V ) such that R1 ⊆ R2, we
can state the following corollary.

Corollary 1 Let R1, R2 ∈ F(U × V ) be two solu-
tions of system (13) with @ = ◦ (@ = ▹). Then
any R ∈ F(U × V ), such that R1 ⊆ R ⊆ R2, is a
solution of this system, too.
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3.1. Interpolativity in Case of the Original
Perception-based Logical Deduction

The interpolativity of the PbLD turns into an in-
vestigation of the following problem:
Given LD and the antecedent Ai ∈ F(U) of the i-
th rule, i = 1, . . . , n, it should hold that after the
application of rP bLD:

rP bLD : PLD(Ai), LD
C

,

the conclusion C is equal to the consequent Bi ∈
F(V ) of this i-th rule.7

In the rest of the paper, we suppose that all lin-
guistic descriptions LD fulfill the following condi-
tion:

(∀i ∈ Nn)(∀j ∈ Nn)((i ̸= j) ⇒ (Ai ̸= Aj)) (15)

Further, let LD be given. Let Ai, i ∈ Nn, be one
of the antecedent fuzzy sets of LD. Then we will
denote by Ci the result of rP bLD (11) for A0 = Ai.

Lemma 1 Let LD be a linguistic description, let
i ∈ Nn. If @ = ◦ then PLD(Ai) = {i} if and only if
for all j ∈ Nn such that j ̸= i,

a) either Ai and Aj have different atomic evalua-
tive expressions (e.g., very small and more or
less medium);

b) or Ai ≤LE Aj.

Sketch of the proof: According to (10),

PLD(Ai) = {j ∈ Nn | Aj(Ai) > 0 & (∀k ∈ Nn)
((Ak ≤Ai Aj) ⇒ (Ak = Aj))}

and Ai(Ai) = 1 for @ = ◦.
For any j ∈ Nn such that a) holds, due to the

partition axiom, we get Aj(Ai) < 1 = Ai(Ai) from
which we get j ̸∈ PLD(Ai).

For any j ∈ Nn such that b) holds, Aj(Ai) = 1
but Aj ̸≤Ai

Ai from which we get j ̸∈ PLD(Ai).
If a) or b) holds for any j ̸= i then PLD(Ai) = {i}.

The opposite implication is obvious. �

Corollary 2 If @ = ◦ and a) or b) from Lemma 1
holds for all i ∈ Nn, then the interpolativity is pre-
served.

Although Corollary 2 states a positive result in
a sense of sufficient conditions for the preservation
of the interpolativity, one has to note the price we
pay for it, particularly, how much restrictive the
assumptions are, which may be seen also from the
following Lemma and mainly from its Corollary.

7Note the difference compared to (13), where a single
fuzzy relation has to be a solution of the whole system, while
here, not all rules are fired and each equation is solved sepa-
rately.

Lemma 2 If @ = ◦ and there are i, j ∈ Nn, such
that i ̸= j and Aj ≤LE Ai (cf. conditions a) and b)
of Lemma 1) and, at the same time, the correspond-
ing Bi and Bj are not equal, then the interpolativity
is NOT preserved.

Sketch of the proof: Let us fix some arbitrary i.
The proof splits into two possibilities. First, assume
that Aj is the least antecedent fuzzy set with respect
to ≤Ai . Then PLD(Ai) = {j} and

Ci(v) =
∨

u∈U

Ai(u) ∗ (Aj(u) → Bj(v))

and we need to check whether Ci = Bi, i.e., that
Ci(v) ≤ Bi(v) and Ci(v) ≥ Bi(v) holds for all v ∈
V . The first inequality holds if and only if

∨
u∈U

(Ai(u) ∗ (Aj(u) → Bj(v))) ≤ Bi(v),

which by adjunction turns into

Aj(u) → Bj(v) ≤ Ai(u) → Bi(v), ∀u ∈ U. (16)

Inequality (16) has to be preserved for all u and
thus, it has to be preserved also for such u ∈ U
for which Ai(u) = 1 and Aj(u) < 1. However, for
such u, the following inequality would have to be
preserved

Aj(u) → Bj(v) ≤ Bi(v)

which is not possible in the underlying Łukasiewicz
algebra where the inequality turns into

1 − Aj(u) + Bj(v) ≤ Bi(v)

and the left-hand side of the equation is strictly
greater than 0 for arbitrary v ∈ V which is not
the case of the right-hand side.

The second possibility is that there exists k ∈ Nn

such that Ak it is the least antecedent with respect
to ≤Ai and thus, Ak ≤Ai Aj . Then either Bk ̸= Bi

and the proof goes as above for the first case, or
Bk = Bi ̸= Bj . Then, the interpolativity would
be preserved for i, however, for j, we would obtain
PLD(Aj) = {k} and, using the same technique, we
would get Cj(v) ̸≤ Bj(v) for some v ∈ V and thus,
Cj ̸= Bj . �

Corollary 3 Let @ = ◦. Then the interpolativity
is preserved if and only if for all i, j ∈ Nn such that
Aj ≤LE Ai, the corresponding consequents Bi, Bj are
equal.

One may see that ◦ is not very appropriate here.
The reason is that the local perception chooses nar-
rower antecedents, not the most similar ones. For
example, if we had antecedents very small and small
in our LD, and the observation was the wider one
(small in our case), the local perception would fire
only the rule with the antecedent very small which
is very unintuitive and makes the interpolativity
problematic. Now, let us focus on @ = ▹.
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Lemma 3 Let i ∈ Nn. If @ = ▹, then PLD(Ai) =
{i} for all i ∈ Nn.

Sketch of the proof: Clearly Ai(Ai) = 1. Con-
sider j ∈ Nn such that Ai = ⟨hedge⟩iA′, Aj =
⟨hedge⟩jA′′, where A′ and A′′ are atomic evalua-
tive expressions. Then, there exist two possibilities:

First, let either A′ ̸= A′′ or let A′ = A′′ and
Aj ≤LE Ai. Then

Aj(Ai) =
∧

u∈U

(Ai(u) → Aj(u)) < 1.

Second, let A′ = A′′ and Ai ≤LE Aj . Then

Aj(Ai) =
∧

u∈U

(Ai(u) → Aj(u)) = 1

but, due to the order Ai ≤LE Aj , j ̸∈ PLD(Ai).
Therefore, PLD(Ai) = {i} in both cases. �

Corollary 4 If @ = ▹ then the interpolativity is
preserved.

Sketch of the proof: Due to Lemma 3 we have
PLD(Ai) = {i} for any i ∈ Nn. Then the proof
continues as follows:

Ci(v) =
∧

u∈U

(Ai(u) → (Ai(u) → Bi(v)))

= 1 → Bi(v) = Bi(v).

�

3.2. Interpolativity in Case of the Balancing
Perception-based Logical Deduction

In Section 3.1, we have shown that the case of @ =
◦ does lead to restrictive assumptions, if we want
to keep the interpolation property. Moreover, we
have also shown somewhat unintuitive behavior of
the inference mechanism in this setting. Of course,
this undesirable behavior is preserved also for the
balancing variant of the PbLD. Therefore, in this
section, we will focus only on the case of @ = ▹.

Lemma 4 If @ = ▹ then the interpolativity can be
guaranteed if and only if∨

u∈U

(Aj(u) ∗ Ai(u)) ≤
∧

v∈V

(Bi(v) → Bj(v)) (17)

for all i ∈ Nn and for all j ∈ PLD(Ai).

Sketch of the proof: Let us fix any i ∈ Nn. The
corresponding fuzzy relational equation:

Ai ▹ R = Bi (18)

is always solvable as (14) in the case of a single
equation turns into∨

u∈U

(Ai(u) ∗ Ai(u)) ≤
∧

v∈V

(Bi(v) ↔ Bi(v))

which always holds. Thus, according to Theorem 2,
R̂i(u, v) = Ai(u) → Bi(v) is a solution of the equa-
tion (18) and, according to Theorem 1, the least
solution of this equation is Ři(u, v) = Ai(u)∗Bi(v).

In order to prove that R̂Ai defined as

R̂Ai(u, v) =
∧

j∈PLD(Ai)

(Aj(u) → Bj(v))

is a solution of the equation (18), it is sufficient to
prove that it lies between Ři and R̂i (c.f. Corol-
lary 1).

Since i ∈ PLD(Ai), then obviously R̂Ai
⊆ R̂i

holds. As Ři is the least solution, R̂Ai will become a
solution if and only if the second inclusion Ři ⊆ R̂Ai

is preserved. The inclusion can be expanded as fol-
lows

Ai(u) ∗ Bi(v) ≤
∧

j∈PLD(Ai)

(Aj(u) → Bj(v)) ∀u∀v

and will be preserved if and only if for all j ∈
PLD(Ai) the following inequality will be preserved

Ai(u) ∗ Bi(v) ≤ Aj(u) → Bj(v) ∀u∀v

which, using adjunction, associativity of ∗ and again
adjunction, turns to be equivalent to the preserva-
tion of inequality (17). �

4. Concluding Remarks

The results should be seen as follows. The com-
bination of the implicative rules and the BK-
subproduct, which may be very promising from
practical aspects [9] but is less preferable form the
interpolativity point of view, may be successfully
employed, if one uses a specific inference mechanism
(PbLD) and specific model of meaning of evaluative
expressions (the theory of evaluative linguistic ex-
pressions). The use of this model of evaluative ex-
pressions would be impossible in the standard fuzzy
relational approach due to the full inclusion of the
corresponding fuzzy sets for evaluative expressions
with the same atomic expression.

The balancing PbLD represents a sort of compro-
mise between the original PbLD and the standard
fuzzy relational model R̂, where the perception is
applied only on the subsets of antecedents (rules)
with the same type of expression. Then, all the
fired rules are used together as in the traditional
way when using R̂. Thus, the interpolativity is not
that easily guaranteed as in the case of the original
PbLD. However, it still may be preserved even in
the case of BK-subproduct, which is not very often
possible when using R̂. Note that the inequality
(17) is less restrictive than the well-known inequal-
ity (14) valid for standard fuzzy relational inference
schemes. The reason is that less rules are fired and
moreover, mainly, for each input, we “build” a dif-
ferent fuzzy relation and thus, we do not need to
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build a single one that would comply with all in-
puts/antecedents.

Thus, one does not get a single “winner” among
the models of implicative fuzzy rules and infer-
ence mechanisms. However, a wider choice is given
at disposal with theoretical results providing users
with information saying when a possible setting will
(or will not) work correctly.
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