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Abstract

Interval-Valued Fuzzy Sets handle uncertainty and
vagueness effectively. These features are partic-
ularly useful for clustering. In this paper it is
showed the utility of Interval-Valued Fuzzy Sets for
clustering with no accurate information. An easy
method for clustering is proposed by generating
transitive closures under a pseudo-t-representable
t-norm. Clusters are computed from transitive clo-
sures by generating alpha-cuts. It is found that
some of these alpha-cuts are equivalence classes un-
der the pseudo-t-representable min. It is also found
that these transitive closures are closer to the orig-
inal interval-valued fuzzy relation that the classical
transitive closure under the t-norm [min,min]
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Transitivity

1. Introduction

Cluster analysis is one of the major techniques in
pattern recognition. The importance of clustering
in various areas such as taxonomy, medicine, geol-
ogy, business, engineering systems and image pro-
cessing, etc., is well documented is well documented
in [7, 8, 16]. The conventional (hard) clustering
methods restrict that each point of the data set be-
longs to exactly one cluster. Fuzzy set theory pro-
posed by Zadeh [20] in 1965 gave an idea of uncer-
tainty of belonging which was described by a mem-
bership function. The use of fuzzy sets provides
imprecise class membership information. Applica-
tions of fuzzy set theory in cluster analysis were
early proposed in the work of Bellman, Kalaba and
Zadeh [2] and Ruspini [18]. These papers open the
door of research in fuzzy clustering. Now fuzzy clus-
tering has been widely studied and applied in a va-
riety of substantive areas. These methods become
the important tools to cluster analysis.
Interval-valued fuzzy sets (IVFSs) were intro-

duced in the 60s by Grattan-Guinness [13], Jahn
[15], Sambuc [19] and Zadeh [21]. They are exten-
sions of classical fuzzy sets (FSs) where the mem-
bership value between 0 and 1 is replaced by an
interval in [0, 1]× [0, 1]. They easily allow to model
uncertainty and vagueness. Sometimes it is easier
for experts to give a membership interval than a
membership degree to describe a characteristic of
objects on a universe. IVFSs are a special case
of type-2 fuzzy sets that simplifies the calculations

while preserving their richness as well. Interval-
valued fuzzy relations (IVFRs) are fuzzy relations
which experts express the relation degree between
two objects by using interval numbers instead of nu-
meric values.

Transitivity is a fundamental notion in decision
theory. It is universally assumed in disciplines of de-
cision theory and accepted in a principle of rational-
ity for some kind of relations. A first task for deci-
sion science is the resolution of intransitivities when
the transitive property is violated [17]. The transi-
tive closure is a usual way to make transitive rela-
tion from an intransitive relation. The T -transitive
closure of fuzzy relations has been studied for FRs
by De Baets and De Meyer [1]. They showed that it
always exists and it is unique. Gonzalez-del-Campo
and Garmendia proposed an algorithm to compute
the transitive closure for an IVFRs under a t-norm
T [11].
In this paper, it is showed the utility of the

Interval-Valued Fuzzy Relations to clustering.
This paper is organized as follows. In Section 2

some preliminaries are showed. In Section 3 it is
exhibited how to use Interval-valued Fuzzy Rela-
tions for clustering. In Section 4 it is proposed an
application example of this method in which data
missing are processed. Finally, in Section 5 some
conclusions are presented.

2. Preliminaries

Definition 2.1. [4] Let (L,≤L) be the lattice of
intervals in [0,1] that satisfies:

1. L = {[x1, x2] ∈ [0, 1]2 with x1 ≤ x2}.
2. [x1, x2] ≤L [y1, y2] if and only if x1 ≤ y1 and

x2 ≤ y2

Also by definition:

[x1, x2] <L [y1, y2] ⇔ x1 < y1, x2 ≤ y2 or
x1 ≤ y1, x2 < y2
[x1, x2] =L [y1, y2]⇔ x1 = y1, x2 = y2.

Then, 0L =L [0, 0] and 1L =L [1, 1] are the small-
est and the greatest elements in L respectively.

For convenience, x = [x1, x2] and y = [y1, y2]
are sometimes written as x = [x, x] and y = [y, y]
respectively.

Definition 2.2. [5] Let {[vi, wi]} be a set of inter-
vals on L. Then, the supremum (max) of {[vi, wi]}
is defined as follows:
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max{[vi, wi]} ≡ [sup{vi}, sup{wi}]

Definition 2.3. [4] An interval-valued fuzzy set A
on a universe X = {e1, . . . , en} is a mapping A :
X → L:

A = {(ei, [x1, x2]) | ei ∈ X, [x1, x2] ∈ L}

Definition 2.4. [4] Let X = {e1, . . . , en} be a uni-
verse and A and B two interval-valued fuzzy sets.
The equality between A and B is defined as: A =L B
if and only if A(ei) =L B(ei) ∀ei ∈ X.

Definition 2.5. [4] Let X = {e1, . . . , en} be a uni-
verse and A and B two interval-valued fuzzy sets.
The inclusion of A in to B is defined as: A ⊆L B
if and only if A(ei) ≤L B(ei) ∀ei ∈ X.

Let x =L [x1, x2] and y =L [y1, y2] be two inter-
vals on L.

Definition 2.6. [4] A t-norm T on L is a mono-
tone increasing, symmetric and associative opera-
tor, T : L2 → L, that satisfies: T (1L, [x1, x2]) =L

[x1, x2] for all [x1, x2] in L.

Definition 2.7. [4] A t-norm T on L is t-
representable in L if there are two t-norms: T1 and
T2 (T1, T2, in ([0,1],≤)) that satisfy:

T ([x1, x2], [y1, y2]) =L [T1(x1, y1), T2(x2, y2)]

where T1(v, w) ≤ T2(v, w) ∀v, w ∈ [0, 1].

Example 2.1. The following product t-norm T on
L is t-representable:

T ([x1, x2], [y1, y2]) =L [x1 ∗ y1, x2 ∗ y2]

Example 2.2. Two generalizations of the
Lukasiewicz t-norm [5] are the following:

• Tw([x1, x2], [y1, y2]) =L

[max(0, x1 + y1 − 1),max(0, x2 + y2 − 1)]
• TW ([x1, x2], [y1, y2]) =L

[max(0, x1 + y1 − 1),max(0, x1 + y2 − 1, x2 +
y1 − 1)]

Note that Tw is t-representable but TW is not t-
representable.

Example 2.3. The t-representable t-norm mini-
mum Tmin : L2 → L is defined as follows:

Tmin([x1, x2], [y1, y2]) =L [min(x1, y1),min(x2, y2)]

Definition 2.8. [6] A t-norm T on L is pseudo-t-
representable if there exists a t-norm T in ([0,1],≤)
that satisfies:

T ([x1, x2], [y1, y2]) =L

[T (x1, y1),max{T (x1, y2), T (x2, y1)}]

The t-norm T is called the representant of T .

Example 2.4. The pseudo-t-representable t-norm
minimum T∼min : L2 → L is defined as follows:

T∼min([x1, x2], [y1, y2]) =L

[min(x1, y1),max{min(x1, y2),min(x2, y1)}]

Definition 2.9. [3] Let X1 and X2 be two universes
of discourse. An interval-valued fuzzy relation R :
X1 ×X2 → L is a mapping:

R = {((a, b), [x, y]) | a ∈ X1, b ∈ X2, [x, y] ∈ L}

where x = R(a, b) and y = R(a, b).
Let X = {e1, . . . , en} be a universe with n ele-

ments.

Definition 2.10. [10] Let T be a t-norm on L and
let R interval-valued fuzzy relation on X. R is T -
transitive if:

T (R(ei, ek), R(ek, ej)) ≤L R(ei, ej)∀ei, ej , ek ∈ X

Definition 2.11. [9] An interval-valued fuzzy re-
lation R : X2 → L is a generalized T -indistin-
guishability if it is reflexive, symmetric and T -
transitive.

Definition 2.12. [9] Let P be a property of
IVFRs. Let R : X2 → L be an interval-valued
fuzzy relation on a finite universe X. The P clo-
sure of R is a IVFR RP : X2 → L that satisfies:

1. RP satisfies P .
2. R ⊆L RP .
3. If R ⊆L R′ and R′ satisfies P then RP ⊆L R′

.

Lemma 2.1. [9] Let R be an interval-valued fuzzy
relation in a universe X and let T be an arbitrary
t-norm on L. Then the T -transitive closure of R
always exists and it is unique.

Let R be an interval-valued fuzzy relation on
X = {e1, . . . , en}. For convenience, R(ei, ej) can
be written [R(ei, ej), R(ei, ej)] or [R,R].

Proposition 2.1. [9] If T is t-representable with
T1 and T2 (T = [T1, T2]) then an interval-valued
relation R : X2 → L is T -transitive if and only if
R is T1-transitive and R is T2-transitive.

Proposition 2.2. [9] Let R be an interval-valued
relation on a finite universe X with cardinality n
and let T be a t-norm on L. For simplicity R(ei, ej)
is written as R(i, j). The T -transitive closure of R,
RT , can be computed using the following algorithm:

for ( k =1;k<n ; k++)
for ( i =1; i<n ; i++)

for ( j =1; j<n ; j++)
R( i , j )=Max(R( i , j ) ,T(R( i , k ) ,R( k , j ) ) ;

Definition 2.13. [12] Let R be an interval-valued
relation R : X2 → L. The α1, α2 cut of R, Rα1,α2 ,
is a crisp relation defined for all α1, α2 in [0,1] as
follows:

Rα1,α2(ei, ej) =
{

1 R(ei, ej) ≥L [α1, α2];
0, otherwise.
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Definition 2.14. [14] Let AX the set of interval-
valued fuzzy sets on X = {e1, . . . , en}. The Ham-
ming distance d between M and N (M,N ∈ AX) is
defined by:

d(M,N) =
∑
|M(ei)−N(ei) | + |M(ei)−N(ei) |

for all ei in X.

3. Clustering with Interval-valued Fuzzy
Relations

Let us consider a set of n objects X = {e1, . . . , en}.
These objects have characteristics and they can be
classified according to their degree of similarity.
Fuzzy Sets allows to process this information and
generate a matrix of similarity. However, it is some-
times not possible to know the degree of similarity
between two objects. Then, it is necessary to handle
information with vagueness. Interval-valued Fuzzy
Relations can do that effectively.
In this paper, it is proposed a method of clus-

tering using Interval-valued Fuzzy Relations. This
methods has the following steps:

1. Creation of an interval-valued fuzzy relation R
that represents the similarity between each pair
of objects.

2. Imposition of transitivity computing the tran-
sitive closure of this interval-valued fuzzy rela-
tion.

3. Generation of the clusters.

Creation of an interval-valued fuzzy relation R.
Traditionally, clustering processes use distance

measures to compute the clusters. However, in
many times it is not possible to know the dis-
tance or the similarity between two objects with
absolute precision (for example: data missing). In
such cases it is always possible to compute lower
and higher bounds. According to the features of
the objects, two functions are used to compute
these bounds to perform the degree of similarity
between each pair of objects. This way, it is pos-
sible to compute its similarity degree and the un-
certainty of these measures. Let Cmin and Cmax
be the lower and higher bounds respectively. Then
R(ei, ej) = [Cmin(ei, ej), Cmax(ei, ej)]

Imposition of transitivity.
Transitivity is imposed as a principle of rational-

ity. The similarity degree between two objects is
used to determine if they belong to the same cluster
or not. It not desirable two objects with no relation
and they have relation with another element. If this
happens it is necessary to modify the matrix of sim-
ilarity matrix. Even more, it is necessary to change
very little the relation R.

Cluster generation.
The clusters are obtained by computing the

α1, α2 cuts of R. The obtained clusters must be a
set of equivalence classes so it is not possible to use

any T -norm. Traditionally, it is used the T -norm
minimum (T = [min,min]) to impose the transi-
tivity. This t-norm is the only one that generate
alpha-cuts witch are all equivalence classes. We
think this probably is not the better to impose Tmin-
transitivity due the fact Tmin is the highest T -norm
[12] because this way R can be ”overmodified”.

In this paper it is propose another T -norm
(T∼min) that allows to obtain Interval-Valued Fuzzy
Relations closer to the the original interval-valued
relation.

Lemma 3.1. Let T∼min and Tmin be two t-norms
on L. Then:

T∼min([x1, x2], [y1, y2]) ≤L Tmin([x1, x2], [y1, y2])

for all [x1, x2], [y1, y2] on L

Proof. According Examples 2.3 and 2.4:

• Tmin([x1, x2], [y1, y2]) =L

=L [min(x1, y1),min(x2, y2)]
• T∼min([x1, x2], [y1, y2]) =L

=L [min(x1, y1),max{min(x1, y2),min(x2, y1)}]

It is only necessary to prove:

max{min(x1, y2),min(x2, y1)} ≤ min(x2, y2)

• min(x1, y2) ≤ min(x2, y2) due to x1 ≤ x2.
• min(x2, y1) ≤ min(x2, y2) due to y1 ≤ y2.

so max{min(x1, y2),min(x2, y1)} ≤ min(x2, y2)

In general, for any T -transitive interval-valued
fuzzy relation its α1, α2-cuts are not equivalence
classes. Next lemma shows it is possible to find
some α1, α2-cuts for the t-norm T∼min witch gener-
ate equivalence classes.

Lemma 3.2. Let T∼min be pseudo-t-representable
t-norm minimum T∼min : L2 → L defined in Exam-
ple 2.4. Let R be a T∼min-transitive interval-valued
fuzzy relation on X2 → L. Then Rα,α is a equiva-
lence relation for all [α, α] in L.

Proof. It is necessary to prove that Rα,α(ei, ek) = 1
and Rα,α(ek, ej) = 1 implies Rα,α(ei, ej) = 1.
For convenience, R(ei, ej) is written as Rij .

Then, the previous expression can be rewritten as
follows:

if Rik ≥L [α, α] and Rkj ≥L [α, α] then Rij ≥L
[α, α] or equivalently:

• if Rik ≥ α and Rkj then Rij ≥ α and
• if Rik ≥ α and Rkj then Rij ≥ α

Due to the fact of R is T∼min-transitive it is ver-
ified:

• min{Rik, Rkj} < Rij (Condition 1) and
• max{min{Rik, Rkj},min{Rik, Rkj}} < Rij
(Condition 2)
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Then:

• If Rik ≥ α and Rkj ≥ α then min{Rik, Rkj} ≥
α and Rij ≥ α by Condition 1.
• If Rik ≥ α and Rkj ≥ α then min{Rik, Rkj} ≥
α.
In similar way it can be proved
min{Rik, Rkj} ≥ α.
So max{min{Rik, Rkj},min{Rik, Rkj}} ≥ α

and Rij ≥ α by Condition 2.

Conclusion:
Rij ≥ α and Rij ≥ α so Rα,α(ei, ej) = 1

This way, if the interval-valued fuzzy relation that
represents the similarity degree between objects is
not transitive, then it is better to impose the transi-
tivity under T∼min instead of Tmin because the final
interval-valued fuzzy relation will be closer to the
original relation.
In order to computing the distance between

Interval-Valued Fuzzy Relations a measure of dis-
tance based on the Hamming distance is defined.

Definition 3.1. Let RX the set of interval-valued
fuzzy relations on X = {e1, . . . , en}. The distance
d between R and S (R,S ∈ RX) is defined by:

d(R,S) =
∑
∀i,j | R(ei, ej)− S(ei, ej) | + |

R(ei, ej)− S(ei, ej) |

4. An illustrative example

Let q = {q1, . . . , qm} be a set of boolean questions
about a topic. Each question is composed of s items.
Let qa and qb be the answers from two people. It is
possible to compute the distance between qa and qb
using next expression:

d(qa, qb) = dr

s

where dr is the number of different items.
It is also possible to obtain an expression to mea-

sure the similarity degree:

S(qa, qb) = 1− d(qa, qb) = 1− dr

s

However, in many cases people do not answer all
questions. This way our data always have miss-
ing data and the previous expressions are not ap-
plicable. Then, it is necessary to compute an upper
bound and a lower bound to express the similarity
degree between qa and qb.

To compute Cmin(qa, qb) it is supposed the miss-
ing data in qa does not have the same value than
in qb and viceversa. To compute Cmax(qa, qb) it is
supposed the missing data in qa have the same value
than in qb.
Let qa = {a1, . . . , as} and qb = {b1, . . . , bs} be

two answers with s items. The mapping md let us

know the number of missing data. It is defined as
follows:

md(ai, bi) =
{

1, if ai or bi is a missing data;
0, othercase.

then, the number of missing data is defined as fol-
lows:

Nmd(qa, qb) =
s∑

k=1
md(ak, bk)

Let Cmin and Cmax be these bounds defined as
following:

Cmin(qa, qb) = 1− dr +Nmd(qa, qb)
s

Cmax(qa, qb) = 1− dr

s

Example 4.1. Let qa and qb be two answers with
8 items:

qa = (yes, yes, yes,−, no, yes,−, no)
qb = (no,−, yes,−, yes, no,−, no)

Then dr(qa, qb) = 3 and Nmd(qa, qb) = 3 so
Cmin(qa, qb) = 1 − 6/8 = 0.25 and Cmax(qa, qb) =
1 − 3/8 = 0.625. The similarity degree is
[0.25, 0.625].

Let q = {q1, . . . , q6} be a set of answers to one
question with six items. The character ’-’ means
that the person did not answer for the correspond-
ing item.

q1 ’y’ ’y’ ’y’ ’-’ ’n’ ’y’
q2 ’n’ ’n’ ’n’ ’n’ ’y’ ’n’
q3 ’y’ ’y’ ’y’ ’-’ ’n’ ’y’
q4 ’y’ ’y’ ’y’ ’n’ ’y’ ’n’
q5 ’y’ ’-’ ’n’ ’-’ ’y’ ’n’
q6 ’n’ ’y’ ’-’ ’-’ ’n’ ’-’

4.1. Creation of an interval-valued fuzzy
relation R.

It is possible to apply the previous bounds (Cmin
and Cmax) to compute the similarity interval be-
tween two responses. Let R be the matrix of simi-
larity intervals, then:

R (1, 1) (0, 0.4) (0.8, 1) (0.5, 0.8) (0.2, 0.6) (0.3, 0.9)
(0, 0.4) (1, 1) (0, 0.4) (0.5, 0.6) (0.5, 0.9) (0.2, 0.8)
(0.8, 1) (0.0, 0.4) (1, 1) (0.5, 0.8) (0.2, 0.6) (0.3, 0.9)

(0.5, 0.8) (0.5, 0.6) (0.5, 0.8) (1, 1) (0.5, 0.9) (0.2, 0.8)
(0.2, 0.6) (0.5, 0.9) (0.2, 0.6) (0.5, 0.9) (1, 1) (0, 0.8)
(0.3, 0.9) (0.2, 0.8) (0.3, 0.9) (0.2, 0.8) (0, 0.8) (1, 1)



4.2. Imposition of transitivity.

Transitivity is imposed by generating transitive clo-
sures under t-norms. First, the transitive closure
under Tmin is showed:

RTmin
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 (1, 1) (0.5, 0.8) (0.8, 1) (0.5, 0.8) (0.5, 0.8) (0.3, 0.9)
(0.5, 0.8) (1, 1) (0.5, 0.8) (0.5, 0.9) (0.5, 0.9) (0.3, 0.8)

(0.8, 1) (0.5, 0.8) (1, 1) (0.5, 0.8) (0.5, 0.8) (0.3, 0.9)
(0.5, 0.8) (0.5, 0.9) (0.5, 0.8) (1, 1) (0.5, 0.9) (0.3, 0.8)
(0.5, 0.8) (0.5, 0.9) (0.5, 0.8) (0.5, 0.9) (1, 1) (0.3, 0.8)
(0.3, 0.9) (0.3, 0.8) (0.3, 0.9) (0.3, 0.8) (0.3, 0.8) (1, 1)


Finally, the transitive closure under T∼min is

showed:

RT∼min

 (1, 1) (0.5, 0.5) (0.8, 1) (0.5, 0.8) (0.5, 0.6) (0.3, 0.9)
(0.5, 0.5) (1, 1) (0.5, 0.5) (0.5, 0.6) (0.5, 0.9) (0.3, 0.8)

(0.8, 1) (0.5, 0.5) (1, 1) (0.5, 0.8) (0.5, 0.6) (0.3, 0.9)
(0.5, 0.8) (0.5, 0.6) (0.5, 0.8) (1, 1) (0.5, 0.9) (0.3, 0.8)
(0.5, 0.6) (0.5, 0.9) (0.5, 0.6) (0.5, 0.9) (1, 1) (0.3, 0.8)
(0.3, 0.9) (0.3, 0.8) (0.3, 0.9) (0.3, 0.8) (0.3, 0.8) (1, 1)


It is possible to compute the distances between

interval-valued fuzzy relations using the distance
given in Definition 3.1:

d(R,RT∼min) = 6.3 < d(R,RTmin) = 8.3

so RT∼min is closer than RTmin to R.

4.3. Cluster generation.

Next, two alpha-cuts for R are showed with α = 0.5
and α = 0.8

RT∼min
0.5,0.5 =


1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
0 0 0 0 0 1


There exist two clusters:

• C1 = {q1, q2, q3, q4, q5}
• C2 = {q6}

RT∼min
0.8,0.8 =


1 0 1 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


There exist five clusters:

• C1 = {q1, q3}
• C2 = {q2}
• C3 = {q4}
• C4 = {q5}
• C5 = {q6}

5. Conclusions

It is shown that IVFRs are useful to clustering
with no accurate information.
A measure of distance between IVFRs is given.
It is found some alpha-cuts are equivalence rela-

tions for pseudo-t-representable t-norms.
It is studied how to compute the T-transitive

closure using a t-norm T∼min. This way the T-
transitive closure is closer to the original relation
than the T-transitive closure using the t-norm Tmin.
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