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Abstract

In some cases, the relationship between an object
set X and an attribute set Y is set up by means
of a fuzzy context sequence. A particular case of
this situation appears when we want to study the
evolution in time of a fuzzy context.
In this work, we deepen in the study of these situ-
ations. First we recover the fuzzy context sequence
definition and the main results. After that, with
the aid of WOWA operators and the L-fuzzy con-
cept analysis, we propose a study of the sequences
establishing tendencies and we compare the results
with the previous obtained. Therefore, the L-fuzzy
concept analysis can be interpreted as a tool for
trend estimation.
Finally, we illustrate all the results by means of an
example.

Keywords: L-fuzzy concept analysis, fuzzy context
sequences, WOWA operators.

1. Introduction

The L-fuzzy Concept Analysis obtain the informa-
tion from a L-fuzzy context by means of the L-
fuzzy concepts. These L-fuzzy contexts are tuples
(L, X, Y, R), with L a complete lattice, X and Y sets
of objects and attributes, and R ∈ LX×Y a L-fuzzy
relation between the objects and the attributes.

In some situations, we have several relations
between the object set X and the attribute set
Y, making up what we are going to say a fuzzy
context sequence. When this sequence represents
an evolution in time, we can be more ambitious and
try to predict future tendencies besides studying
past behaviors. The study of this fuzzy context
sequences will be the main target of this work.

We take as starting point a sequence formed by
the L-fuzzy contexts (L, X, Y, Ri), i = {1, . . . , n},
with n ∈ N, where X and Y are the sets of ob-
jects and attributes respectively, L = [0, 1] and
Ri ∈ LX×Y represents the ith relation between the
objects of X and the attributes of Y .

The final goal is the study of the fuzzy context
sequences when they represent the evolution in time

of the fuzzy contexts.

In this case, it will be of special interest the study
of the evolution of the attributes by means of the
search of patterns. Works in this line to analyze the
course of time in a Formal context can be found in
[18, 24, 25].

In [24, 25] K.E. Wolff defines the Temporal Con-
cept Analysis where a Conceptual Time System is
introduced such that the state and phase spaces
are defined as concept lattices which represent the
meaning of the states with respect to the chosen
time description. On the other hand, the authors
define the hidden evolution patterns in [18, 21] using
temporal matching in the case of Formal Concept
Analysis.

In [1], we showed a study of these fuzzy context
sequences using OWA operators. In this work, we
are going to improve those results using WOWA op-
erators [22]. In this case, L-fuzzy concept analysis
can be interpreted as a tool for trend estimation.

The rest of the paper is organized as follows:
Section 2 recover the main results of the L-fuzzy
Concept Analysis. In Section 3 the fuzzy context
sequences are analyzed. Then, in Section 4, the
evolution in time of these contexts is tackled using
WOWA operators. Finally, the conclusions and fu-
ture work are detailed in Section 5. Furthermore,
an interesting example can be found throughout the
paper.

2. L-fuzzy concept analysis

The Formal Concept Analysis of R. Wille [23] ex-
tracts information from a binary table that repre-
sents a Formal context (X, Y, R) with X and Y fi-
nite sets of objects and attributes respectively and
R ⊆ X × Y . The hidden information consists of
pairs (A, B) with A ⊆ X and B ⊆ Y , called For-
mal concepts, verifying A∗ = B and B∗ = A, where
(·)∗ is the derivation operator that associates the at-
tributes related to the elements of A with every ob-
ject set A, and the objects related to the attributes
of B with every attribute set B. These Formal Con-
cepts can be interpreted as a group of objects A that
shares the attributes of B.

In previous works [6, 7] we have defined the L-
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fuzzy contexts (L, X, Y, R), with L a complete lat-
tice, X and Y sets of objects and attributes respec-
tively and R ∈ LX×Y a fuzzy relation between the
objects and the attributes. This is an extension of
Wille’s Formal contexts to the fuzzy case when we
want to study the relations between the objects and
the attributes with values in a complete lattice L,
instead of binary values.

In our case, to work with these L-fuzzy contexts,
we have defined the derivation operators 1 and 2
given by means of these expressions:

∀A ∈ LX , ∀B ∈ LY

A1(y) = inf
x∈X

{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the
lattice (L, ≤).

The information stored in the context is visual-
ized by means of the L-fuzzy concepts that are pairs
(M, M1) ∈ LX × LY with M ∈ fix(ϕ), set of fixed
points of the operator ϕ, being defined from the
derivation operators 1 and 2 as ϕ(M) = (M1)2 =
M12. These pairs, whose first and second compo-
nents are said to be the fuzzy extension and inten-
sion respectively, represent a group of objects that
share a group of attributes in a fuzzy way.

Using the usual order relation between fuzzy sets,
that is,

∀M, N ∈ LX , M ≤ N ⇐⇒ M(x) ≤ N(x), ∀x ∈ X

we define the set L = {(M, M1)/M ∈ fix(ϕ)} with
the order relation � defined as:

∀(M, M1), (N, N1) ∈ L,

(M, M1) � (N, N1) if M ≤ N( or N1 ≤ M1)

As ϕ is an order preserving operator, by the the-
orem of Tarski [20], the set fix(ϕ) is a complete
lattice and then (L, �) is also a complete lattice
that is said to be [6, 7] the L-fuzzy concept lattice.

On the other hand, given A ∈ LX , (or B ∈ LY )
we can obtain the associated L-fuzzy concept
applying twice the derivation operators. In the case
of using a residuated implication, as we do in this
work, the associated L-fuzzy concept is (A12, A1)
(or (B2, B21)).

Other important papers that generalize the
Formal Concepts Analysis using residuated impli-
cation operators are due to R. Belohlavek [4, 5] and
S. Pollandt [19]. Moreover, extensions of Formal
Concept Analysis to the interval-valued case are
in [2, 12, 13] and to the fuzzy property-oriented
and multi-adjoint concept lattices framework in
[15, 16, 17].

3. Fuzzy context sequences

In this section we are going to recover the fuzzy
context sequences definition [1].

Definition 1 A fuzzy context sequence is a se-
quence of tuples (L, X, Y, Ri), i = {1, . . . , n}, with
L = [0, 1], X and Y sets of objects and attributes
respectively and Ri ∈ LX×Y , ∀i = {1, . . . , n}, with
n ∈ N.

In the case of wanting to define a new fuzzy con-
text that summarizes the information gathered in
the sequence, we must aggregate the observations
of the relations Ri. To this end, we could use the
average of the values (with or without weight), ob-
tain an interval-valued L-fuzzy context using the
minimum and the maximum of the observations, or
work with multivalued contexts. We have developed
these ideas in previous works [8, 9].

The use of weighted averages [10, 11] to summa-
rize the information stored in the different relations
allows us to associate different weights with the L-
fuzzy contexts highlighting some of them. Thus, the
new relation R is defined as:

R(x, y) =

n
∑

i=1

wi · Ri(x, y), ∀x ∈ X, y ∈ Y

verifying, as is required by the definition, that
n
∑

i=1

wi = 1, i = {1, . . . , n}.

However, it is possible that some observations of
a L-fuzzy context of the sequence be interesting
whereas others not so much. For instance, as we
studied in [3], the methods used for obtaining the
fuzzy concepts do not give good results when we
have very small values in some relations.

On the other hand, to study similar situations by
means of multivalued contexts in [8] we used mul-
tisets and expertons. In that case, all the observa-
tions were analyzed globally without the study of
temporality.

Let us see the following example.

Example 1 Let (L, X, Y, Ri), i = {1, . . . , n}, be a
fuzzy context sequence that represents the sales
of sports articles (X) in some establishments (Y )
throughout a period of time, and we want to study
the places where the main sales hold taking into ac-
count that there are seasonal sporting goods (for
instance skies, bathing suits) and of a certain zone
(selling skies in Colorado is more possible than in
Florida).

To analyze this situation, in [1] we use the
OWA[14, 26] operators with the most of the weights
near the largest values. In this way, we give more
relevance to the largest observations, independently
of the moment when they have taken place and, on
the other hand, we would avoid some small values
in the resulting relations (that can give problems
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in the calculation of the L-fuzzy concepts as it has
already been studied in [3]).

These are the definitions of these operators given
by Yager [26]:

Definition 2 A mapping Fw from Ln −→ L, where
L = [0, 1], is called an OWA operator of dimension
n if associated with Fw is a weighting n-tuple w =
(w1, w2 . . . wn) such that wi ∈[0,1] and

∑

1≤i≤n

wi = 1,

where Fw(a1, a2, . . . an) = w1.b1+w2.b2+· · ·+wn.bn,
with bi the ith largest element in the collection
a1, a2, . . . an.

We applied these OWA operators to the fuzzy
contexts to study the values that stand out in the
fuzzy concepts and to analyze tendencies when the
sequence represents the evolution in time.

Returning to the initial situation and using these
OWA operators, in [1] we give the following defini-
tion that summarizes the information stored in the
fuzzy context sequence:

Definition 3 Let (L, X, Y, Ri), i = {1, . . . , n}, be
the fuzzy context sequence and Fw an OWA aggre-
gation operator. We can define a L-fuzzy relation
RFw

that aggregates the information of the different
L-fuzzy contexts, in the case that we want to study
the largest values, by means of this expression:

RFw
(x, y) =Fw(R1(x, y), R2(x, y) . . . Rn(x, y)) =

=w1.b1 + w2.b2 + · · · + wn.bn,

∀x ∈ X, y ∈ Y

where w = (w1, w2, . . . wn) is the weighting tuple
associated with Fw.

Fixed instant h and using different weighting vec-
tors, we have two relevant particular cases. In the
first one we have the minimum of the relation values
between each object and each attribute from instant
h and in the second one, the average of these obser-
vations:

Let (L, X, Y, Ri), i = {1, . . . , n}, be a fuzzy con-
text sequence with L = [0, 1], X and Y sets of ob-
jects and attributes respectively and Ri ∈ LX×Y .

Relevant case 1 Fixed instant h, we define a L-
fuzzy relation Rh

Fw
using an OWA operator Fw with

a weighting tuple w of dimension k = n−h+1, with
wk = 1 and wi = 0, ∀i 6= k:

Rh
Fw

(x, y) =Fw(Rh(x, y), Rh+1(x, y) . . . Rn(x, y)) =

min
j≥h

{Rj(x, y)}, ∀x ∈ X, y ∈ Y.

Relevant case 2 Fixed instant h, we define a L-
fuzzy relation Rh

Fŵ
using an OWA operator Fŵ with

a weighting tuple ŵ of dimension k = n−h+1 with
ŵi = 1/k, ∀i:

Rh
Fŵ

(x, y) =Fŵ(Rh(x, y), Rh+1(x, y) . . . Rn(x, y)) =
n
∑

j=h

Rj(x, y)

k
, ∀x ∈ X, y ∈ Y.

Example 2 The fuzzy context sequence
(L, X, Y, Ri), i = {1, . . . , 5}, represents the sports
articles sales X = {x1, x2, x3} in some establish-
ments Y = {y1, y2, y3} during a period of time.
In the following relations Ri that have values in
L = [0, 1], the percentage of product sales in each
establishment based on the stock during the last 5
months are gathered.

R1 =

(

0. 7 1 0. 8
0 0. 1 0. 1
0 0. 1 0

)

R2 =

(

1 0. 8 1
0. 2 0. 4 0. 1
0 0 0. 2

)

R3 =

(

1 1 1
0. 6 0. 5 0. 7
0 0. 1 0. 2

)

R4 =

(

0. 5 0. 4 0. 6
0. 1 0. 5 0. 3
0. 6 0. 8 0. 8

)

R5 =

(

0. 1 0 0
0 0. 1 0

0. 8 1 0. 9

)

If we want to study tendencies of the sequence,
we can consider a value h and analyze the L-fuzzy
concepts.

For instance, if h = 4, using Relevant case 1 we
have the L-fuzzy relation:

R4
Fw

=





0. 1 0 0
0 0. 1 0

0. 6 0. 8 0. 8





and, taking as L-fuzzy context (L, X, Y, R4
Fw

) and
using the Lukasiewicz implication to obtain the L-
fuzzy concepts associated with the crisp singletons,
we have the following results:

{x1} −→ ({x1/1, x2/0. 9, x3/1}, {y1/0. 1, y2/0, y3/0})

{x2} −→ ({x1/0. 9, x2/1, x3/1}, {y1/0, y2/0. 1, y3/0})

{x3} −→ ({x1/0. 2, x2/0. 2, x3/1}, {y1/0. 6, y2/0. 8, y3/0. 8})

However, if we use Relevant case 2, we obtain:

R4
Fŵ

=





0. 3 0. 2 0. 3
0. 05 0. 3 0. 15
0. 7 0. 9 0. 85





and, taking as L-fuzzy context (L, X, Y, R4
Fŵ

):

{x1} −→ ({x1/1, x2/0. 75, x3/1}, {y1/0. 3, y2/0. 2, y3/0. 2})

{x2} −→ ({x1/0. 9, x2/1, x3/1}, {y1/0. 05, y2/0. 3, y3/0. 15})

{x3} −→ ({x1/0. 3, x2/0. 3, x3/1}, {y1/0. 7, y2/0. 9, y3/0. 85})

In both cases, we can say that the future tendency
is that only article x3 will have good sales in all the
establishments whereas x1 and x2 will not be sold
much and always associated with x3, the first one
in the establishment y1 essentially, and the second
one in y2.

We can observe that in all the cases the member-
ship degrees of the attributes using the average are
greater than using the minimum.
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Obviously, the smaller is the value of h, the safer
will be the prediction that we do.

However, there is a problem in the definition of
Rh

Fw
and Rh

Fŵ
: all the values from instant h are con-

sidered equally valid. But, if we are analyzing the
evolution in time, the closest to the current instant
values should be the most important ones.

On the other hand, the values previous to instant
h are not taken into account. For instance, in Ex-
ample 2 can be seen that x1 has not high sales in
any establishment, however, if we look at the evo-
lution in time of x1 then we can see that sales in
all the establishments have been good except in the
two last months. The WOWA operators allow us to
perform this assessment.

4. Evolution in time of the fuzzy context

sequence

In order to study the evolution in time of these se-
quences, we are going to use WOWA operators [22].

The Weighted OWA operators (WOWA) were de-
fined by Torra [22] and combine the advantages of
the OWA operators and the ones of the weighted
mean. These operators consider two weighting vec-
tors: w = (w1, w2, . . . wn) corresponding to the
relevance of the values (OWA operator) and p =
(p1, p2 . . . pn) corresponding to the relevance of the
sources or experts. In the case of fuzzy context se-
quences that evolve in time, we will use p to assign
a weight for each L-fuzzy context depending on the
distance to the present time.

As particular cases, if wi = 1/n, ∀i then we have
the weighted mean with p and if pi = 1/n, ∀i, an
OWA operator with w.

This is the definition [22]:

Definition 4 Let p, w be weighting vectors of
dimension n, p = (p1, p2, . . . pn) and w =
(w1, w2, . . . wn) such that pi, wi ∈ [0, 1] and

∑

i

pi =
∑

i

wi = 1.

In this case, a mapping Fpw : R
n −→ R is

a Weighted Ordered Weighted Averaging (WOWA)
operator of dimension n if

Fpw(a1, . . . , an) =
∑

i

ωiaσ(i)

where {σ(1), . . . , σ(n)} is a permutation of
{1, . . . , n} such that aσ(i−1) ≥ aσ(i) for all
i = {2, . . . , n} (i.e., aσ(i) is the ith largest element
in the collection a1, . . . , an), and the weight ωi is
defined as

ωi = w∗(
∑

j≤i

pσ(j)) − w∗(
∑

j<i

pσ(j))

with w∗ a monotone increasing function that inter-
polates the points (i/n,

∑

j≤i wj) together with the

point (0,0). w∗ is required to be a straight line when
the points can be interpolated in this way.

4.1. Relations obtained setting an instant h
and using WOWA operators

We can perform a comparative study using different
instants h as the one done in the previous section.
The following results show that relations defined in
Section 3 can be obtained as a particular case when
we use WOWA operators:

Proposition 1 Fixed instant h, consider k = n −
h + 1 and any weighting vector p,

a) Consider w = (w1, w2, . . . wn) such that:

wi =

{

1 if i = k

0 in other case

If we take as interpolation function w∗ such
that

w∗(z) =

{

0 if z < 1

1 in other case

Then, RFpw
(x, y) = Rh

Fw
(x, y), ∀x ∈ X, ∀y ∈ Y,

is the minimum of the k considered observa-
tions.

b) If ŵ such that wi = 1/k, ∀i, we can take as
interpolation function ŵ∗ such that ŵ∗(z) =
z, ∀z ∈ [0, 1].
Then, RFpŵ

(x, y) = Rh
Fp

(x, y), ∀x ∈ X, ∀y ∈ Y,
is the weighting mean with a weighting vector
p.

Proof 1 a) If we take as interpolation function
w∗ then, we obtain ωi = 0, ∀i < k and ωk = 1.
Then, RFpw

(x, y) =
∑

i

ωiRσxy(i)(x, y) =

Rh
Fw

(x, y), ∀x ∈ X, ∀y ∈ Y, is the minimum of
the k considered observations.

b) If we take as interpolation function
ŵ∗ such that ŵ∗(z) = z, ∀z ∈ [0, 1],
and σxy is the permutation that or-
ders (Rh(x, y), Rh+1(x, y), . . . Rn(x, y)),
∀x ∈ X, ∀y ∈ Y. Hence, ωi = pσxy(i), ∀i ≤
k, ∀x ∈ X, ∀y ∈ Y.
Then, RFpŵ

(x, y) =
∑

i

ωiRσxy(i)(x, y) =

Rh
Fpσxy(i)

(x, y), ∀x ∈ X, ∀y ∈ Y, is the weighting

mean with a weighting vector p.

We have to take into account that for any w, the
use of weighting vectors p of dimension n with null
values up to the instant h does not go well since
the values of p are reordered with permutation σ.

On the other hand, considering the fuzzy context
sequence (L, X, Y, Ri), i = {1, . . . , n}, an interesting
result is obtained fixing different instants:
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Proposition 2 Consider k < l. We can take the
weighting vectors wk and wl such that:

wα
i =

{

1 if i = α

0 in other case

If we take as interpolation functions respectively

wα∗(z) =

{

0 if z < α/n

1 in other case

the WOWA operators Fwk and Fwl can be taken and
we can prove that RF

wk
≤ RF

wl
.

Proof 2 In the conditions of the theorem ωk
i ≤

ωl
i, ∀i = {1, . . . , n}. So, RF

wk
≤ RF

wl
.

4.2. Aggregating the fuzzy context sequence

using WOWA operators

As we have said in the study of previous section,
we establish an instant h from which we look at the
observations and the values of previous contexts are
not taken into account. By this reason, in some
situations the obtained results can be improved.

If we take h close to n and come back to the
example, it seems that there is no x1 sales in any
establishment. However, if we look at the context
sequence, we see that it has been. On the other
hand, if h is close to 1, we are considering values
which happened a long time ago and may not have
as much relevance as the recent ones for the study
of trends.

The use of WOWA operators will allow to per-
form a proper treatment of the sequence better than
the proposed in the previous section. We can define
a L-fuzzy relation RFpw

that aggregates the infor-
mation of the different fuzzy contexts, by means of
this expression:

Definition 5 Let (L, X, Y, Ri), i = {1, . . . , n, } be
the fuzzy context sequence and Fpw an WOWA
aggregation operator with p = (p1, p2, . . . pn) and
w = (w1, w2, . . . wn) such that pi, wi ∈ [0, 1] and
∑

i

pi =
∑

i

wi = 1. Then,

RFpw
(x, y) =Fpw(R1(x, y), . . . Rn(x, y)) =

∑

i

ωxyi
Rσxy(i)(x, y)

where for every (x, y) we have σxy =
{σxy(1), . . . , σxy(n)} a permutation of {1, . . . , n}
such that Rσxy(i−1)(x, y) ≥ Rσxy(i)(x, y) for all
i = {2, . . . , n}, and the weighting vector ωxy defined
in Definition 4.

We are defining a single RFpw
combining all the

contexts of the sequence with two tables of weights.
We consider interesting to use the weighting vector
p to give more relevance to the most recently con-
texts. On the other hand, we will take as a vector

of weights w one that will allow to highlight mem-
bership degrees close to 1 since we want to study
the largest values.

Relevant case 3 We define RFpw
using p and w

such that

pi =
2i

n(1 + n)
, wi =

2(n − i + 1)

n(1 + n)
, ∀i = {1, . . . , n}

Example 3 In our example n = 5 and we
have p = (1/15, 2/15, 3/15, 4/15, 5/15) and w =
(5/15, 4/15, 3/15, 2/15, 1/15).

We will use the following function to interpolate
(0, 0), ( 1

5 , 5
15 ), ( 2

5 , 9
15 ), ( 3

5 , 12
15 ), ( 4

5 , 14
15 ), (1, 1) :

w∗(x) =































5
3 x if 0 ≤ x < 1

5
4
3 x + 1

15 if 1
5 ≤ x < 2

5

x + 1
5 if 2

5 ≤ x < 3
5

2
3 x + 2

5 if 3
5 ≤ x < 4

5
1
3 x + 2

3 if 4
5 ≤ x ≤ 1

Using this function, we obtain a vector ωxy for
each pair object-attribute(x, y) such that following
definition given in the last relevant case, we obtain:

RFpw
=





0. 71 0. 67 0. 62
0. 26 0. 41 0. 35
0. 58 0. 76 0. 73





In this case, the L-fuzzy concepts obtained from
the basic points are:

{x1} −→ ({x1/1, x2/0. 55, x3/0. 87}, {y1/0. 71, y2/0. 67, y3/0. 62})

{x2} −→ ({x1/1, x2/1, x3/1}, {y1/0. 26, y2/0. 41, y3/0. 35})

{x3} −→ ({x1/0. 89, x2/0. 62, x3/1}, {y1/0. 58, y2/0. 75, y3/0. 73})

We can say that the membership degrees of the
attributes in the L-fuzzy concepts associated with
x1 are greater than the ones obtained using R4

Fw

and R4
Fŵ

since the observations of the first contexts
(high values) are taken into account in this case.
However, the membership degrees of x3 have de-
creased slightly (also by the influence of the first
contexts).

The obtained results using WOWA operators can
be better than the previous ones because take into
account all the contexts of the sequence.

5. Conclusions and future work

In this work, we have used WOWA operators to
study fuzzy context sequences. When these se-
quences represent the evolution in time of a L-fuzzy
context, this study can be interpreted as a tenden-
cies estimation.

To do this, we have studied the derived informa-
tion by means of the L-fuzzy concepts. Although
WOWA operators have a bad behavior in some con-
crete cases, in the fuzzy context sequences can im-
prove the previous results obtained.
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These fuzzy contexts that evolve with time can be
generalize when L is a complete lattice. Our aim is
the study of this situation with appropriate WOWA
operators.
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