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Abstract

Opinion formation is well used to investigate a con-
sensus or several clusters among the opinions of a
group of interaction agents. This study proposes
several bounded confidence models to discuss the
uncertain opinion formation. In the proposed mod-
els, the agents’ various tolerances (zero-tolerance,
partial tolerance and complete tolerance) on the
uncertain opinions are firstly identified. Then, the
relevant communication regimes are given to deter-
mine the confidence set, and the updated opinions
are further calculated. Finally, we explore the influ-
ences of various types of agents and self-support on
the average number of clusters through simulation
analysis.
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1. Introduction

Opinion formation can be defined as a dynamic and
interactive process. In opinion formation, a group of
interaction agents represent their own initial opin-
ions (evaluations) about a same issue, and based on
some interaction rules, their opinions are continu-
ously updated as the time step increases. And a
consensus or a certain cluster among the opinion-
s is finally obtained. Previous studies have shown
that opinion formation plays an important role in
modeling and predicting the observations of group
of agents on the practical issue [1]. Thus, opinion
formation, especially the discussion on reaching a
consensus [2, 3, 4] has received increasing attention
in the field of decision analysis.

Some research works on opinion formation models
have been conducted, such as voter model [5], per-
suasiveness and supportiveness model [6], bounded
confidence model [7, 8] and Alexford model [9]. In
these existing models, using the bounded confidence
model to solve opinion formation has become one of
the hot research topics in recent years.

The bounded confidence model supposes individ-
uals are willing to communicate with peers who
have similar opinions and tend to ignore peers with
sufficiently different opinions [10]. The earliest re-
search result on bounded confidence model was p-
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resented by Deffuant and Weisbuch (DW model)[7],
and Hegselmann and Krause (2002) (HK model)[8].
Based on the DW model and HK model, sever-
al studies on bounded confidence model have been
founded: (i) The discrete opinion dynamics model
with the homogeneous bounded confidence [11, 12];
(ii) The discrete opinion dynamics model with the
heterogeneous bounded confidence [13, 14]; (iii) The
continuous opinion dynamics model with the ho-
mogenous bounded confidence [15, 16]; (iv) The
continuous opinion dynamics model with the het-
erogeneous bounded confidence [13, 17].

Previous studies have significant contributions to
opinion formation. In these studies, the bounded
confidence models are well used to determine the
confidence set, calculate the weight of agents and
update the opinions. In this study, we will extend
the bounded confidence model to discuss the uncer-
tain opinion formation. Compared with the previ-
ous studies on opinion formation, our proposal can
mainly fill two gaps:

(1) The existing researches on opinion formation,
such as [1] and [10], mainly focus on the crisp opin-
ion represented by the agents. In practical opinion
formation problem, due to the limitation of knowl-
edge and experience, it is common that some agents
will use uncertain opinion (often interval numbers)
to represent their fuzzy thinkings[18, 19].

(2) When representing crisp opinions, the agents
can directly identify their confidence sets and rep-
resent their updated opinions by referencing other
agents’ opinions. However, in the process of uncer-
tain opinion formation, some agents will often pro-
vide some individualized tolerances on the uncer-
tainty of their future opinions. For example, some-
one will hope that their representations are crisp
opinions all the time, but others will be regardless
of the uncertainty of their future opinions. Motivat-
ed by this consideration, this study proposes three
bounded confidence models for different types of a-
gents.

In order to do so, the rest of paper is organized
as follows. Section 2 provides a brief introduction
on the HK model and a notation description on our
proposal. Then, three bounded confidence models
considering the agents’ tolerances on the uncertain-
ty of opinions are proposed in Section 3. In Sec-
tion 4, we explore the influence of number of agents
and self-support on the average number of cluster-
s through simulation analysis. Finally, concluding
remarks are presented in Section 5.
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2. Preliminary and the research problem

The fundamental difference between the two classi-
cal bounded confidence models (DW and HK model-
s) is the number of agents that communicate, which
labels as the communication regime. In this paper,
without loss of generality, we adopt the original HK
model as the based model. If we adopt the original
DW model as the based model, a similar study can
be proposed. Therefore, in this section, we briefly
introduce the original HK model [8] and the research
problem, which are providing a well-grounded basis
for the proposed model.

2.1. Preliminary: the HK model

Consider a population of N agents, represented in
a set A = {A1, A2, . . . , AN }. A set of discrete time
T = {0, 1, . . . , M} is used to model the repeated
process of opinion process, where M is a big enough
integer number. Each agent Ai at time t has con-
tinuously varying opinion as xi(t) between zero and
one, and X(t) is the vector of opinions of all agents
at time t called opinion profile. Let ε be the homo-
geneous bounded confidence of all the agents, where
the agent only considers the opinions which differ
not more than ε from his/her opinion.

The process of solving the opinion dynamics prob-
lem by means of the HK model [8] includes three
steps:

(1) Determination of the confidence set. Let
I(Ai, xi(t)) be the confidence set of agent Ai at
time t. For any agent Aj , if Aj ∈ I(Ai, xi(t)),
then the opinion xj(t) is considered by the agent
Ai. I(Ai, xi(t)) is determined by

I(Ai, xi(t)) = {Aj ∈ A | |xi(t) − xj(t)| < ε} (1)

(2) Calculation of the weight. Let wij(t) be the
weight of agent Ai assigns to agent Aj , wij(t) ≥
0 ,

∑N
j=1 wij(t) = 1. Using the confidence set

I(Ai, xi(t)), we can calculate the weight wij(t), i.e.,

wij(t) =
{

1/|I(Ai, X(t))|, Aj ∈ I(Ai, X(t))
0, Aj /∈ I(Ai, X(t)) (2)

(3) Evolution of the opinions. The evolution of
the opinions in the original HK model is modeled
as a weighted arithmetic mean of opinions in the
confidence set, i.e.,

xi(t + 1) =
∑N

j=1
wij(t)xj(t) (3)

2.2. The research problem

Different from only the crisp representations of a-
gents in the existing model, we consider the case
that the agents present both the crisp and uncer-
tain opinions in this paper. Therefore, the opin-
ions of xi(t) can be described as follows:(1) Crisp
opinion. 0 ≤ xi(t) ≤ 1; (2) Uncertain opinion.
xi(t) = [xL

i (t), xU
i (t)], 0 ≤ xL

i (t) ≤ xU
i (t) ≤ 1.

For notation simplicity, let AC and AI be two
subsets of A, representing the agents whose initial
opinions are presented as crisp and uncertain opin-
ions, respectively, AC ∪ AI = A and AC

∩
AI = ∅.

Furthermore, we also consider the agents’ toler-
ances on the uncertainty of opinions. The notations
on three types of agents are further described as:
(1) zero tolerance agent set AC1: the set of agents
who can’t tolerate the uncertainty of opinion all the
time; (2) partial tolerance agent set AI1: the set of
agents who can tolerate their own uncertain opinion
but can’t tolerate the uncertainty of opinion of oth-
ers; (3) complete tolerance agent set AI2 and AC2:
the set of agents in AC and AI who are regardless
of the uncertainty of opinions all the time.

Based on the above notations, the aim of our pro-
posal is to how to propose the new bounded confi-
dence models to discuss the uncertain opinion for-
mation.

3. The proposed model

In this section, inspired by the original HK model,
we propose the new bounded confidence models, in
which the agents’ tolerances on the uncertainty of
opinions are considered.

3.1. Determine the confidence set

Let d(xi(t), xj(t)) be the difference between the
opinions of agents Ai and Aj at time t, where

d(xi(t), xj(t)) =
√

(xL
i

(t)−xL
j

(t))2+(xU
i

(t)−xU
j

(t))2

2
The confidence set of agents can be determined

by dividing into the following two cases.
Case A. For the agents in the set AC1 and AI1,

when communicating with the agent in the AI , the
communication regime can be described by the fol-
lowing processes.

(1) Communication. It refers to that the agent
Ai will communicate with all the agents in AI ;

(2) Selective estimation. If d(xi(t), xj(t)) < ε,
then agent Ai will estimate a crisp opinion fij(t) on
the uncertain opinion of agent Aj . Otherwise, a-
gent Ai will discard the opinion xj(t). Here fij(t) ∈
[xL

j (t), xU
j (t)].

(3) Selective adoption. If d(xi(t), fij(t)) < ε,
then agent Ai will adopt the opinion fij(t). Other-
wise, agent Ai will discard the opinion fij(t).

Case B. For the communication regime among
agents except case A, only the process of commu-
nication and selective adoption is considered. If
d(xi(t), xj(t)) < ε, agent Ai will directly adopt the
crisp or uncertain opinion xj(t).

Based on cases A and B,

I(Ai, X(t)) =
{

I1 ∪ I2, Ai ∈ AI1 ∪ AC1

I3, otherwise
(4)

where I1 = {Aj ∈ AI1|d(xi(t), fij(t)) ≤ ε}, I2 = {
Aj ∈ AC1|d(xi(t), xj(t)) ≤ ε} and I3 = {Aj ∈ A|d(
xi(t), xj(t)) ≤ ε}, d(xi(t), xj(t)) and d(xi(t), fij(t))
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in case A and case B are determined by using the
distance measure for interval numbers and crisp
numbers, respectively.

3.2. Obtain the updated opinions

After obtaining the confidence set I(Ai, xi(t)), the
weight wij(t) can also be determined by using Eq.
(2). Likewise, the updated opinions are modeled
as a weighted arithmetic mean of opinions in the
confidence set. Since Urbig et al. [12] have stated
that an agent may assign a weight of µ to the own
opinion in opinion dynamics, we also incorporate
the self-support µ into our evolution of the opinions.

For Ai ∈ AC1, the new opinions xi(t + 1) can be
determined as:

xi(t + 1) = µxi(t) + (1 − µ)(
∑

Aj∈I(Ai,X(t))∩AC

(5)

wij(t)xj(t) +
∑

Aj∈I(Ai,X(t))∩AI

wij(t)fij(t))

For Ai ∈ AI1, the new opinions xi(t+1) = [xL
i (t+

1), xU
i (t + 1)] can be determined as:

xL
i (t + 1) = µxL

i (t) + (1 − µ)(
∑

Aj∈I(Ai,X(t))∩AC

(6)

wij(t)xj(t) +
∑

Aj∈I(Ai,X(t))∩AI

wij(t)fij(t))

xU
i (t + 1) = µxU

i (t) + (1 − µ)(
∑

Aj∈I(Ai,X(t))∩AC

(7)

wij(t)xj(t) +
∑

Aj∈I(Ai,X(t))∩AI

wij(t)fij(t))

For Ai ∈ AC2 ∪ AI2, the updated opinions xi(t +
1) = [xL

i (t + 1), xU
i (t + 1)] can be determined as:

xL
i (t + 1) = µxL

i (t) + (1 − µ)
∑

Aj∈I(Ai,X(t))

(8)

wij(t)xL
j (t)

xU
i (t + 1) = µxL

i (t) + (1 − µ)
∑

Aj∈I(Ai,X(t))

(9)

wij(t)xU
j (t)

4. Simulation analysis

In this section, through simulation experiments, we
mainly investigate the influences of two factors on
the average numbers of clusters, i.e., the number of
agents in the sets AC1, AI1, AC2 and AI2, and the
self-support.

4.1. The influences of the number of agents

Let αC1, αI1, αC2 and αI2 be the relevant ratios
of the number of agents in the sets AC1, AI1, AC2

and AI2, respectively, αC1 + αI1 + αC2 + αI2 = 1,
αC1, αI1, αC2, αI2 ≥ 0. In the following, the influ-
ences of ratios αC1 and αI1 are first analyzed.

We study here the populations of 500, 1000, 1500
and 2000 agents and vary the values of αC1 and
αI1, while keeping the self support µ=0, αC2=0 and
αI2=0. When setting different values of αC1 and
αI1 (αC1 + αI1=1), we respectively run 200 times
simulation to obtain the average number of cluster-
s. Figure 1 plots the average number of clusters
with different αC1, population sizes and the bound-
ed confidences ε=0.1, ε=0.15 and ε=0.2.

ε=0.1

ε=0.15

ε=0.2

Figure 1: The average number of clusters with dif-
ferent ratios αC1.

From Figure 1, we have the following observations:
(1) The number of clusters increases for an in-

creasing ratio αC1 and an decreasing ratio αI1 while
about a specific threshold it decreases again.
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(2) In this case for only involving the agents in the
sets AC1 and AI1, the number of clusters decreases
as the bounded confidence increases. And the larger
the number of agents is, the smaller the number of
clusters is.

Also suppose that αC1=0 and αI1=0, we explore
the influence of ratios αC2 and αI2 on the aver-
age number of clusters. Figure 2 plots the average
number of clusters with different αC2, population
sizes and the bounded confidences ε=0.1, ε=0.15
and ε=0.2.

ε=0.1

ε=0.15

ε=0.2

Figure 2: The average number of clusters under d-
ifferent ratios αC2.

From Figure 2, we have the following observation-
s:

(1) The average number of clusters fluctuates for
an increasing ratio αC2 and an decreasing ratio αI2.
Meanwhile, the average number of clusters with the
ratios αC2 and αI2 is significantly smaller than that
in the same ratios αC1 and αI1.

(2) In this case for only involving the agents in the
sets AC2 and AI2, the number of clusters decreases
as the bounded confidence increases. And the larger
the number of agents is, the smaller the number of
clusters is.

Further, let αC and αI be the relevant ratios of
agents in the sets AC and AI , respectively, αC =
αC1 + αC2 and αI = αI1 + αI2. Suppose that
αC1 = αC2 and αI1 = αI2, we explore the influ-
ence of ratios αC and αI on the average number
of clusters. Figure 3 plots the average number of
clusters with different αC , population sizes and the
bounded confidences ε=0.1, ε=0.15, and ε=0.2.

ε=0.1

ε=0.15

ε=0.2

Figure 3: The average number of clusters with dif-
ferent ratios αC .

From Figure 3, we have the following observations:
(1) The average number of clusters fluctuates for

an increasing ratio αC and an decreasing ratio αI .
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This can be attributed to the role of ratios αC2 and
αI2.

(2) The more average number of clusters is ob-
tained under the existence of four types of agents.
Also, the larger the number of agents, the smaller
the number of clusters.

4.2. The influences of the self-support

Consider an example with a fixed initial opinion
profile X(0) of 500 agents, ε=0.05, and three stages
for the parameter µ.

ε=0.05, µ=0

ε=0.05, µ=0.35

ε=0.05, µ=0.75

Figure 4: Example for one opinion profile X(0),
ε=0.05 and µ=0,0.35,0.75.

Figure 4 plots the variation of the number of clus-
ters. And the red and blue lines in Figure 4 denote
the evolution of upper and lower bounds of uncer-
tain opinions, respectively. From Figure 4, we can

see that increasing µ from 0 to 0.35 take the num-
ber of clusters from 13 to 8, but increasing µ further
from 0.35 to 0.75 take the number of clusters from
8 to 11.

In the following, we consider 200 fixed initial
opinion profiles of 500 agents for µ, ε=0.1, and nine
stages for the parameter µ. By setting different val-
ues of αC1(αI1 = 1 − αC1), αC2 (αI2 = 1 − αC2)
and (αC1 = αC2 and αI1 = αI2), we explore the
influence of µ and αC1, αC2 , αC on the average
number of clusters, respectively.

Figure 5: The average number of clusters under d-
ifferent ratios αC1, αC2, αC and self-supports µ

From Figure 5, we obtain the following observa-
tions:

(1) The average number of clusters fluctuates
for an increasing ratio αC1 and an increasing self-
support µ. And the similar results are obtained by
increasing αC2 and αC , respectively.

(2) The variations for the average number of clus-
ters is smallest when setting different values of αC2

and µ, and the variations for the average number of
clusters is biggest when setting different values of
αC and µ.

Then, we explore the influence of µ and different
population size N on the average number of clusters.
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We study here the populations of 500, 1000, 1500
and 2000 agents and varying µ from 0.1 to 0.9, while
keeping αC1=αC2=αC=0.5. We use the fixed N
initial opinions when varying µ in one simulation.
We singly run the simulation 200 times.

αC1 = 0.5

αC2 = 0.5

αC = 0.5

Figure 6: The average number of clusters with dif-
ferent population sizes N and self-supports µ

From Figure 6, we have the following observation-
s:

(1) The average number of clusters fluctuates for
a fixed ratio αC1, a fixed population size N and an
increasing self-support µ. And the similar results
are obtained under a fixed ratio αC2 and αC , re-
spectively.

(2) The average number of clusters decreases for
a fixed ratio αC1, a fixed self-support µ and an in-
creasing population size N . And the similar results
are obtained under a fixed ratio αC2 and αC , re-
spectively.

5. Conclusions

This paper discusses the uncertain opinion forma-
tion based on the bounded confidence model. The
main contributions presented are as follows:

(1) The uncertain opinions presented by some a-
gents are incorporated into the process of opinion
formation. Furthermore, we also consider the a-
gents’ various tolerances (zero-tolerance, partial tol-
erance and complete tolerance) on the uncertainty
of opinions to discuss the uncertain opinion forma-
tion.

(2) According to the agents’ various tolerances
and their providing opinions, the relevant commu-
nication regimes are given to determine the confi-
dence set. And the weights of agents assigned by
each agent is determined. Further, several bounded
confidence models are proposed.

(3) We design the simulation experiments to ex-
plore the influences of the ratios of agents and self-
support on the average number of clusters.

In terms of future research, two directions have
been identified. First, the proposed bounded confi-
dence models can be extended to discuss the fuzzy
opinion formations, such as linguistic variable[20],
intuitionistic fuzzy numbers[21], and hesitant fuzzy
set[22, 23]. Second, since the homogeneous bound-
ed confidence is used to determine the confidence
set, which limits the open-minded degree of some
agents, in future research, generalizing the homoge-
neous bounded confidence into heterogeneous ones
should be considered.
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