
An Interval Valued K-Nearest Neighbors
Classifier

Joaquín Derrac1 Francisco Chiclana2 Salvador García3 Francisco Herrera3

1Affectv: Affectv Limited, 33-34 Alfred Place, London, WC1E 7DP, United Kingdom.
2Faculty of Technology, De Montfort University, Leicester LE1 9BH, United Kingdom.

3Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain.

Abstract

The K-Nearest Neighbors (k-NN) classifier has be-
come a well-known, successful method for pattern
classification tasks. In recent years, many enhance-
ments to the original algorithm have been proposed.
Fuzzy sets theory has been the basis of several
proposed models towards the enhancement of the
nearest neighbors rule, being the Fuzzy K-Nearest
Neighbors (FuzzyKNN) classifier the most notable
procedure in the field.

In this work we present a new approach to the
nearest neighbor classifier based on the use of in-
terval valued fuzzy sets. The use and implemen-
tation of interval values facilitates the membership
of the instances and the computation of the votes
in a more flexible way than the original FuzzyKNN
method, thus improving its adaptability to differ-
ent supervised learning problems. An experimental
study, contrasted by the application of nonparamet-
ric statistical procedures, is carried out to ascertain
whether the Interval Valued K-Nearest Neighbor
(IV-KNN) classifier proposed here is significantly
more accurate than k-NN, FuzzyKNN and other
fuzzy nearest neighbor classifiers. We conclude that
the IV-KNN is indeed significantly more accurate
than the rest of classifiers analyzed.

Keywords: Fuzzy Nearest Neighbor, Interval Val-
ued Fuzzy Sets, Supervised Learning, Classifica-
tion.

1. Introduction

The k Nearest Neighbors classifier (k-NN) [1] is one
of the most popular supervised learning methods.
It is a nonparametric method which does not rely
on building a model during the training phase, and
whose classification rule is based on a given similar-
ity function between the training instances and the
test instance to be classified. k-NN has become one
of the top ten algorithms in data mining [2], being
an integral part of many applications of machine
learning in various domains [3, 4].

Despite its usefulness, the k-NN classifier also
presents several drawbacks which have been the fo-
cus of much research effort by the research commu-
nity. Many researches have proposed different tech-
niques to address such drawbacks, among which it is

worth mentioning: the use of data reduction [5, 6],
the development of methods for the automatic se-
lection of the parameter k [7], the design of new sim-
ilarity measures [8, 9], the introduction of weights
for adapting the influence of instances and features
[10, 11] or the definition of fast approximate ver-
sions of the nearest neighbor rule [12, 13].

The implementation of fuzzy sets for represent-
ing the degree of membership of each instance to
the classes of the problem, known as the Fuzzy K-
Nearest Neighbor (FuzzyKNN) classifier, has been
shown an improvement of k-NN [14]. This fuzzy
approach overcomes the drawback associated to the
k-NN classifier , by which equal importance is given
to every instance in the decision rule, regardless of
its typicalness as a class prototype and the distance
between it and the pattern to be classified. Indeed,
fuzzy memberships enable FuzzyKNN to achieve
higher accuracy rates in most classification prob-
lems. This is also the reason why it has been the
preferred choice in several applications in medicine
[15, 16], economy [17], bioinformatics [18], industry
[19] and many other fields.

The present research contribution extends the
FuzzyKNN classifier via the implementation of in-
terval values [20] to represent the membership of
each instance to the classes and the votes cast by
each neighbor in the decision rule. The new Inter-
val Valued k-Nearest Neighbors (IV-KNN) classifier
overcomes a drawback associated to the FuzzyKNN,
by which two particular parameters are to be fixed
in advanced, and it provides a higher degree of flex-
ibility throughout the whole decision process.

An experimental study is carried out to compare
the performances of these and some advanced fuzzy
nearest neighbor classifiers. In this study, their clas-
sification accuracy is tested over several well-known
classification problems. The results are contrasted
using nonparametric statistical procedures, able to
safely confirm the conclusions drawn from the re-
sults.

The rest of this contribution is organized as fol-
lows: Section 2 describes the k-NN and FuzzyKNN
classifiers, highlighting the enhancements to the for-
mer introduced by the latter. Section 3 presents
the IV-KNN, as a natural extension of FuzzyKNN
and k-NN. Section 4 is devoted to the experimen-
tal study performed and the analysis of its results.
Lastly, Section 5 concludes the contribution.
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2. K nearest neighbors and fuzzy K nearest
neighbors classifiers

The k-NN and FuzzyKNN classifiers require the
measuring of the similarity of a new query instance
(the new instance to be classified) to the instances
stored in the training set. On the next step, a set of
k nearest neighbors is found. Every neighbor casts a
vote on the class to which the query instance should
be assigned. Finally, a class is assigned to the query
instance by combining these votes.

The above procedure can be formally defined as
follows: Let X be a training set, composed by N
instances X = x0, x1, . . . , xN which belong to C
classes. Each instance xi = xi

0, xi
1, . . . , xi

M , xi
ω is

characterized by M input attributes and one out-
put attribute ω (ω ∈ C). For a new query instance
Q, a nearest neighbor classifier finds its k nearest
neighbors in X, using a particular similarity func-
tion. Next, the class of Q is predicted as the ag-
gregation of the class attributes ω of the k nearest
neighbors.

Initially, training instances of k-NN are labeled
using a hard scheme: The membership U of an in-
stance x to each class of C is given by an array
of values in {0, 1}, where Uω(x) = 1 and Uc(x) =
0, c ∈ C, c ̸= ω. In this scheme each instance be-
longs completely to one class and does not belong
to any of the rest.

In the case of FuzzyKNN, the above scheme is
extended into a softer scheme: Memberships are
quantified in [0, 1], and obtained using the following
membership function

Uc(x) =

{
0.51 + (nnc/kInit) ∗ 0.49 if c = ω

(nnc/kInit) ∗ 0.49 otherwise
(1)

where nnc are the number of instances belonging to
class c found among the kInit 1 neighbors of x.

This fuzzy scheme causes that instances close to
the center of the classes will still keep the origi-
nal crisp memberships in {0, 1} but instances close
to the decision boundaries will spread half of their
membership between the neighbors’ classes.

Once a query instance Q has been presented, its
k nearest neighbors are searched in the training
set. Although many different similarity functions
can be considered for this task, the preferred choice
in nearest neighbor classification is to define it via
the Euclidean distance, which should suit for most
of classification problems if the training data is nor-
malized in the domain [0, 1]. Throughout the rest
of the contribution we will follow this methodology:
the Euclidean distance is used and the attributes
are normalized.

Once the k nearest neighbors have been deter-
mined, the final output of the classifier is obtained
by aggregating the votes cast by its neighbors. In

1kInit is usually set to an integer value between [3, 9]

the case of k-NN, the votes are obtained by sim-
ply adding the memberships of the k neighbors. In
the case of FuzzyKNN, the Euclidean norm and the
memberships are weighted to produce a final vote
for each class and neighbor, using Equation (2).

V (kj , c) = Uc(kj) · 1/(∥Q − kj∥)2/(m−1)∑k
i=1 1/(∥Q − ki∥)2/(m−1)

(2)

where kj is the j-th nearest neighbor (kj ∈ k) and
m, m > 1 is a parameter (generally m = 2). The
votes of each neighbor are finally added to obtain
the final classification, as in the case of k-NN.

Thus, both classifiers obtain their final output as
a majority vote of the classes of the k nearest neigh-
bors. However, in the case of FuzzyKNN, the use
of the soft labeling scheme and the weighted votes
allows to achieve a more robust classification [21],
specially for instances located next to the decision
boundaries, whose crisp classification would be un-
clear.

3. K nearest neighbors classifier based on
interval valued fuzzy sets

IV-KNN is proposed as an improvement of
FuzzyKNN. By introducing interval valued fuzzy
sets, the membership values of every instance in
the training set is represented as an array of in-
tervals, depicting a more flexible representation of
the typicalness of the instances to every class of the
problem. Intervals are also considered in the com-
putation of the votes cast by each of the k nearest
neighbors in the decision rule. Using this approach
we aim at reducing the sensitivity of the original
FuzzyKNN classifier to the kInit and m parameters,
alleviating the necessity of tunning their values for
each specific problem.

3.1. Computation of memberships to the
classes

In FuzzyKNN, the definition of the memberships
of the training instances is governed by Equation
(1). It is designed so that the class to which an
instance originally belongs obtains more than half
(0.51) of the total membership, whereas the rest is
shared among the rest of the classes of the prob-
lem. By searching for the kInit nearest instances,
local information about the relative neighborhood
of the instance is considered. Therefore, this set up
encloses both expert knowledge (the ω classes al-
ready assigned int he original data) and structural
knowledge, obtaining with this mixture a more ac-
curate representation of the true nature of the in-
stance than with the k-NN classifier [21].

However, a drawback of this approach is that
kInit must be fixed in advance. Some rules of
thumb may be considered when aiming for a proper
set up, such as not setting it to an extremely low
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Table 1: Data sets considered in the study
Data set #Ins. #At. #Cl. Data set #Ins. #At. #Cl.
Appendicitis 106 7 2 Penbased 10992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 539 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7
Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2
Ecoli 336 7 8 Spambase 4597 57 2
Glass 214 9 7 Spectfheart 267 44 2
Haberman 306 3 2 Tae 151 5 3
Hayes-roth 160 4 3 Texture 5500 40 11
Heart 270 13 2 Thyroid 7200 21 3
Hepatitis 80 19 2 Titanic 2201 3 2
Ionosphere 351 33 2 Twonorm 7400 20 2
Iris 150 4 3 Vehicle 946 18 4
Led7Digit 500 7 10 Vowel 990 13 11
Mammographic 830 5 2 Wdbc 569 30 2
Marketing 6876 13 9 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11
Movement 360 90 15 Winequality-white 4898 11 11
New Thyroid 215 5 3 Wisconsin 683 9 2
Page-blocks 5472 10 5 Yeast 1484 8 10

value - with kInit = 1 or kInit = 2 very few neigh-
bors are included, and hence most of the local struc-
tural information about the data is lost - or not
setting it to a very high value - which would make
memberships approximately equal to the global dis-
tribution of classes in the training data, and thus
discarding again the local information. Beyond this,
any fixed value of kInit could potentially be se-
lected.

We argument that the use of interval values fuzzy
sets to represent membership to classes could pro-
vide an alternative and efficient solution to the
above drawback, and therefore making the fixation
of an specific value of kInit superfluous. Indeed, the
use of interval values for membership could accom-
modate the use of different values of kInit at once.
That is, Equation 1 can be parametrized with kInit

Uc(x, kInit) =

{
0.51 + (nnc/kInit) ∗ 0.49 if c = ω

(nnc/kInit) ∗ 0.49 otherwise
(3)

and then the membership of a training instance x
to a class c can be represented as an interval

Uc(x) = [min [Uc(x, kInit)] , max [Uc(x, kInit)]]
(4)

with kInit being any value of a particular set of
values. Following the same recommendations that
in the case of FuzzyKNN, we could consider that
kInit could be any of the integer values in [3,9].

Following this scheme, a more flexible and accu-

rate representation of the training instances is ob-
tained:

• Instances located at the center of their respec-
tive classes, surrounded only by instances of
its same class, will maintain full membership
to it ([1.0, 1.0]) and null membership to the
rest of classes ([0.0, 0.0]). This is equivalent to
FuzzyKNN and k-NN.

• Instances located near the boundaries between
classes, surrounded by instances of the same
class, but also by some instances of other
classes, will get their memberships modified as
follows:

– The lower value of the membership to ω,
min[Uw(x, kInit)], can be regarded as a
measure of how relevant and how many
neighboring instances with a class differ-
ent to ω are. The higher the number
of these neighboring instances and closer
to the training instance they will be, the
closer to 0.51 this lower value will be.

– The upper value of the membership to ω,
max[Uw(x, kInit)], is a direct measure of
how far the first neighbor not belonging
to ω is. It will be 1.0 if it is not among
the first nearest neighbors (according with
the set up for kInit chosen), and slightly
lower if it is, being the specific value again
dependent of the number and position of
the neighboring instances not belonging to
ω.

– The lower value of the membership to the
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Table 2: Results obtained
Data sets IV-KNN FuzzyKNN IF-KNN IT2KNN k-NN
Appendicitis 87.00 87.91 87.91 87.91 87.91
Balance 88.64 88.63 83.84 88.80 88.48
Banana 89.30 89.19 89.40 89.51 89.58
Bands 70.08 71.31 71.02 69.51 69.75
Bupa 64.05 62.50 59.73 65.21 62.53
Cleveland 57.31 55.97 55.58 56.97 56.92
Dermatology 96.34 96.33 96.90 96.34 96.34
Ecoli 82.76 82.46 82.17 82.45 82.45
Glass 72.61 72.57 69.99 72.11 66.83
Haberman 68.61 67.34 71.55 68.96 69.90
Hayes-roth 65.63 65.63 50.00 63.75 28.75
Heart 80.00 80.37 79.26 78.52 79.26
Hepatitis 84.67 83.42 82.51 84.67 89.19
Ionosphere 84.32 84.04 84.90 84.32 84.03
Iris 94.67 96.00 94.00 95.33 96.00
Led7Digit 71.40 71.60 69.80 71.40 43.40
Mammographic 79.28 80.37 80.49 79.54 81.71
Marketing 30.92 30.79 30.11 30.81 29.51
Monk-2 84.46 89.69 96.29 82.50 89.16
Movement 82.22 82.22 80.56 81.11 72.50
New thyroid 93.98 93.98 94.44 93.98 92.58
Page-blocks 96.05 95.91 95.81 95.87 95.47
Penbased 99.17 99.24 99.33 99.14 99.13
Phoneme 90.01 89.36 88.45 89.65 87.75
Pima 73.32 72.93 74.10 73.58 72.93
Ring 59.86 60.77 64.38 58.84 67.46
Satimage 90.29 90.55 90.68 90.12 90.52
Segment 96.28 96.36 95.80 96.15 94.81
Sonar 83.10 81.64 82.10 82.14 80.21
Spambase 91.28 91.15 90.17 90.93 89.34
Spectfheart 76.05 74.23 72.72 77.55 77.58
Tae 67.00 66.29 51.08 67.00 45.08
Texture 98.40 98.53 98.62 98.35 98.31
Thyroid 93.97 93.97 93.92 93.94 93.99
Titanic 78.06 75.69 73.65 78.15 76.24
Twonorm 97.01 97.01 96.49 97.04 97.07
Vehicle 71.64 70.81 70.45 71.16 72.34
Vowel 97.78 97.47 97.47 97.07 88.69
Wdbc 97.36 96.65 96.31 97.18 97.18
Wine 96.60 96.01 95.49 97.19 96.63
Winequality-red 69.04 67.98 59.66 68.73 55.29
Winequality-white 68.60 67.52 57.35 68.38 50.92
Wisconsin 96.96 97.25 96.53 96.96 97.25
Yeast 59.71 58.89 56.88 59.91 57.49
Best (out of 44) 15 9 10 7 11
Average 81.27 81.10 79.72 81.11 78.15
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rest of classes will be 0.0, except if one of
the first nearest neighbors belongs to that
class. The upper value can be regarded
as a relative measure of the presence of
this class among the neighborhood of the
training instance, never greater than 0.49.

• Instances badly identified (possibly noise), sur-
rounding only by instances of other classes, will
get only half membership to ω ([0.51, 0.51])
whereas the membership to the rest of classes
will be a representation of the true nature of
the instances.

3.2. Interval valued voting procedure

The votes cast by each neighbor in the computa-
tion of the decision rule (Equation 2) can also be
represented by intervals. In this expression, the pa-
rameter m can be used for varying the influence of
the neighbors, depending on the specific value cho-
sen.

If m = 2, the vote of each neighbor is weighted
by the reciprocal of the squared Manhattan dis-
tance. As m increases, distances between the dif-
ferent neighbors will be evenly weighted, and thus
the relative distances will have less effect in the de-
termination of the votes (with m = 3 the weight
becomes the reciprocal of the Euclidean distance).
Similarly, if m is decreased, the relative distances
will have a greater effect, reducing the contribution
of the furthest instances (as m approaches to 1).

Although the choice recommended in [21] was to
simply let m = 2, it is possible to consider this
parameter in a more flexible way, by introducing
intervals. This allows to consider a range of possible
values of m instead of a single one, resulting in a
more general voting mechanism.

To represent this, Equation 2 becomes:

V (kj , c) = Uc(kj) · D(kj) (5)

where

D(kj) = [min(D(kj , ma), D(kj , mb)),
max(D(kj , ma), D(kj , mb))] (6)

D(kj , m) = 1/(∥Q − kj∥)2/(m−1)∑k
i=1 1/(∥Q − ki∥)2/(m−1)

(7)

and ma, mb are the minimum and maximum values
chosen for the parameter m. Note that since the
elements of Equation 5 are intervals, their product
must be computed as

[a1, a2] ∗ [b1, b2] = [a1 ∗ b1, a2 ∗ b2] (8)

Table 3: Parameters configuration of the algorithms
Algorithm Parameters
IV-KNN k value: 7, kInit: (3,9), m: [1.5,2]
IF-KNN k value: 3, µa: 0.6, µr: 0.3, νa: 0.4, νr: 0.7
IT2KNN k value: 7, kInit: {1,3,5,7,9}, m: 2
FuzzyKNN k value: 5, kInit: 3, m: 2
k-NN k value: 7

3.3. Combination of votes

After the votes have been computed, the final clas-
sification is obtained as the class with the maximum
vote overall. In the case of IV-KNN, the votes to
every class are computed as

V (c) =
k∑

j=1
V (kj , c) (9)

where the addition of two intervals is obtained by

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2] (10)

After votes for every class have been added, every
interval is converted to a single value (the center
of the interval). The final classification is obtained
as the class whose highest center of interval. In
the case of a tie, then only the contribution of the
first nearest neighbor is considered to discriminate
between the tied classes 2.

4. Experimental study

An experimental study has been carried out to com-
pare the performances of the IV-KNN and several
fuzzy nearest neighbor algorithms. The classic k-
NN classifier has been also included in the compar-
ison as a baseline.

The experiment has been conducted over 44 clas-
sification data sets, available at the KEEL-Dataset
repository3 [22, 23]. Table 1 summarizes following
characteristics: number of instances (#Ins.), num-
ber of attributes (#At.) and number of classes
(#Cl.). None of the data sets includes missing val-
ues, and no nominal (discrete) attributes has been
considered. Attributes’ values have been normal-
ized in [0, 1] and a 10-folds cross validation proce-
dure has been followed throughout the experiments.

Besides FuzzyKNN and k-NN, we have chosen
to compare IV-KNN with two representative fuzzy
nearest neighbor classifiers:

• IF-KNN: This classifier, proposed in [24], is
an implementation of intuitionistic fuzzy sets

2This is inspired on one of the possible tie-break proce-
dures for k-NN, where the class of the first nearest neighbor
is used to break ties. Note, however, that in the case of
FuzzyKNN and IV-KNN such ties are very unlikely to hap-
pen

3http://www.keel.es/datasets.php
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for nearest neighbor classification. In IF-KNN,
Intuitionistic fuzzy sets are incorporated into
the voting rule, where votes are weighted using
the concepts of membership and nonmember-
ship to a certain class: If the membership of a
voting instance is above a lower threshold (µa)
and the nonmembership below a higher thresh-
old (νa), the vote is considered as positive. On
the other hand, if the nonmembership of a vot-
ing instance is above a lower threshold (νr) and
the membership is below a positive threshold
(µr), the vote is considered as negative. Oth-
erwise, the vote is null.

• IT2KNN: This classifier, proposed in [25],
uses type-2 interval fuzzy sets to represent the
membership to the classes of the training in-
stances. In this way, several values for the pa-
rameter kInit can be considered, obtaining the
final membership degree as a combination of
the initial values considered. The algorithm is
similar to FuzzyKNN with respect to the rest
of phases.

Table 3 shows the parameters configuration se-
lected for each algorithm. The parameter k is cho-
sen for each algorithm in the {3,5,7,9} range 4, se-
lecting the best performing value. For IV-KNN, the
initial intervals for kInit and m have been deter-
mined according to preliminary experiments. The
rest of parameters have been set up following the
recommendations given by the authors of each tech-
nique. The Euclidean distance has been used as
similarity measure in all the experiments.

Table 2 shows the accuracy results obtained. For
each data set, the best results obtained have been
highlighted in bold. This table also includes the
number of times that every method achieves the
best result for a data set, and the average accu-
racy over the 44 datasets. These results has been
contrasted by using a nonparametric statistical pro-
cedure [26], namely the Wilcoxon Signed-Ranks test
[27]. Table 4 shows the results of the test, includ-
ing the ranks obtained in each comparison (R+ and
R−) and the p-value associated.

Considering the results shown at Tables 2 and 4,
we can make the following analysis:

• IV-KNN effectively improves the accuracy with
respect to the k-NN classifier improving its ac-
curacy by more than a 3% on average.

• The best results of the experiments are ob-
tained by IV-KNN, which achieves the best av-
erage accuracy result and the best performance
in a higher number of data sets.

• IV-KNN improves statistically the results of all
the comparison algorithms. As Table 4 shows,

4Note that k=1 has been excluded since both IV-KNN
and FuzzyKNN would become the 1-NN rule. Also, no higher
values of k have been chosen because all classifiers would
degenerate to a majority classifier, discarding the locality
capabilities of nearest neighbor algorithms

Table 4: Results of the Wilcoxon test
Comparison R+ R− p-value
IV-KNN vs FuzzyKNN 636.5 309.5 0.04833
IV-KNN vs IF-KNN 744.0 246.0 0.00308
IV-KNN vs IT2KNN 616.0 330.0 0.08536
IV-KNN vs k-NN 674.0 272.0 0.01441

the p-values reported for all the comparisons is
always lower than 0.1, which means that all the
differences found are significant.

These results show us that IV-KNN is a very com-
petitive fuzzy nearest neighbor classifier. The use
of interval values for defining memberships and for
computing the neighbors’ votes produces better re-
sults than those using FuzzyKNN in its original def-
inition. Furthermore, IV-KNN also achieves an ac-
curacy improvement over the IF-KNN and IT2KNN
classifiers.

5. Concluding Remarks

In this contribution we have proposed a new inter-
val valued nearest neighbor classifier. Interval val-
ued fuzzy sets are selected as an appropriate tool for
representing the instances’ memberships to the dif-
ferent classes of the problem. They also enable our
classifier to represent several votes as a single inter-
val, thus giving more flexibility to the decision rule
computation, and ultimately, improving the gener-
alization capabilities of the nearest neighbor rule.
Indeed, this has also been corroborated experimen-
tally and it can be concluded that IV-KNN is sig-
nificantly more accurate than FuzzyKNN the classic
k-NN k-NN classifier, and other two advanced fuzzy
nearest neighbor classifiers.

As future work, we could apply evolution-
ary search techniques to the model as a self-
optimization procedure for setting up the required
parameters: the one applied in the definition of the
membership function, and the other is used in the
computation of the voting rule.
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