
Modulo similarity in comparing histograms 
Pasi Luukka1  Mikael Collan1

1 School of Business and Management 

   

Lappeenranta University of Technology 
P.O. Box 20, FIN-53851 Lappeenranta, Finland 

pasi.luukka; mikael.collan@lut.fi 

Abstract 

Histograms are a tool for graphical representation of 
frequency data and thus helpful in creating a fast 
understanding of, e.g., contents of frequency data. 
Comparing histograms is topic of increasing importance 
due to an increase in the availability of data sets 
containing frequency information. Automatic data 
collection from “everywhere” has made collection of 
frequency data very common. As many different types 
of similarities exist, our focus is on Łukasiewicz logic-
based similarity and we present two new measures, the 
“modulo similarity” measure and the “maximum pair 
assignment compatibility” measure. These measures do 
not use PDF conversion, or vector-based approaches, in 
the comparison of histograms, but concentrate on the 
data samples used to form histograms. We illustrate the 
usefulness of these measures with numerical examples. 

Keywords: Histograms, comparison, Łukasiewicz 
logic, similarity, modulo similarity 

1. Introduction  

Histograms are used in a wide variety of applications 
and their usage is even likely to increase in the future, 
due to histograms being an intuitive and an easy to use 
way of visualizing frequency information. Histograms 
can be used in expanding data analysis capabilities and 
in visual presentation of big data related questions. One 
area of research related to histograms is the comparison 
of histograms. Comparison of histograms is by no 
means a trivial task, due to a wide variety of different 
types of histograms and the many possible ways of con-
structing methods of comparison.  
 
One common approach is to compute a distance be-
tween histograms by using one of many different dis-
tance measures [1]. Another way is to transform histo-
grams into a probability density functions (PDF) and to 
compare them to each other. This approach was one of 
the first ones introduced and is based on the assumption 
that a histogram created from measured values provides 
the basis for an empirical estimate of a PDF [2]. Com-
puting the distance between two PDFs can be regarded 
as an operation similar to computing a Bayesian proba-
bility.  Bhattacharyya distance (sometimes referred to 
as B-distance) is among the first created measures for 
the calculating the distance between two statistical pop-
ulations [3]. Later on also other distance measures have 
been applied to the comparison of PDFs, e.g., the K-L 

distance [4] that also was among the first ones to ap-
pear.  
 
In what can be called “vector type of approaches”, his-
tograms are treated as fixed-dimensional vectors, be-
tween which a distance is computed. The usually ap-
plied distances include the Euclidean and the Manhattan 
distances, or generalizations of these, like the Min-
kowski distance, see Bandemer & Näther [5] for a list-
ing of different types of distances and generalizations of 
standard Euclidean and Manhattan distances.  
 
Later on, also other methods for comparing histograms 
have been introduced, these include, e.g., approaches 
that consider the overlapping / non overlapping parts of 
histograms that is, intersectional approaches. These me-
thods also use distances, e.g., the earth mover’s distance 
[6] in the measurement of the non-overlapping parts – 
the idea in these approaches is that the distance is based 
on computing the minimal amount of work required to 
transform one histogram into the other by moving “dis-
tribution mass”.  
 
In this paper we examine how similarity measures can 
be used in the comparing histograms and our main fo-
cus is on Łukasiewicz logic [7] based similarity. In the 
same way as a fuzzy subset generalizes a classical sub-
set, the concept of similarity can be considered as a 
many-valued (MV) generalization of the classical no-
tion of equivalence [8]. Equivalence relation is a famili-
ar way to classify similar mathematical objects.  
 
Jan Łukasiewicz [7] was the first researcher to syste-
matically investigate many-valued logics in the 1920's. 
Chang introduced MV algebras in 1958 [9], and pro-
vided a proof of completeness to Łukasiewicz logic. 
Łukasiewicz logic was generalized in 1979, by Jan Pa-
velka [10]. In 1999, Turunen showed that the arithmetic 
mean of many similarities [11] is still a fuzzy similarity, 
which is a property that holds only, when we use 
Łukasiewicz logic. This property also holds in the gene-
ralized form of Łukasiewicz logic that is, in 
Łukasiewicz-Pavelka logic. Similarity based on 
Łukasiewicz logic has been applied in a variety of ap-
plications: in classification it has been applied to a simi-
larity based classifier, see e.g. [12,13], in multi-criteria 
decision making (MCDM) problems it is has been ap-
plied to the TOPSIS method [14], in feature selection 
problems it has been applied to classification based 
problems [15] and MCDM based problems [16], and in 
control applications it has been applied to traffic signal 
control [17] and water reservoir control [18]. Further-
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more, it has been applied to defining athletes’ aerobic 
and anaerobic thresholds [19] and the maximal heart 
rate [20]. A survey of applications of the Łukasiewicz-
Pavelka logic has been written by Turunen [21]. 
 
The following section 2 continues by presenting differ-
ent types of similarities that can be applied to compar-
ing histograms. A new “modulo similarity” for circular 
modulo-type problems is introduced, and the axiomatic 
properties of the new modulo similarity measure are 
examined. We prove that modulo similarity satisfies all 
three axioms required of a “true” similarity measure. 
Modulo similarity is a totally new concept and the proof 
that the three axioms required of a similarity measure 
hold is a new contribution. In section 3, another new 
concept the “maximum pair assignment compatibility” 
is introduced. These new concepts are numerically illu-
strated with an example. Section 4 closes the paper with 
concluding remarks. 

2. Similarity of different types of histograms  

Let us first start with the definition of a histogram and 
then move onto different types of histograms, and how 
to define similarity between histograms. We begin with 
the definition of a histogram: 
 
Definition 1: Let x be a feature having m different val-
ues given in a set 𝑋 = {𝑥1, … , 𝑥𝑚}. Consider set of ele-
ments 𝐴 = {𝑎1, … ,𝑎𝑛}, where 𝑎𝑗 ∈ 𝑋. The histogram of 
the set A along with feature x is H(x,A) giving an or-
dered m-dimensional list consisting of the number of 
occurrences of the discrete values of x among ai. 
 
Here we focus in the comparison of histograms of the 
same measurement x, notation H(A) will be used in 
place of H(x,A) without loss of generality. If 𝐻𝑖(𝐴), 1 ≤
𝑖 ≤ 𝑚, denotes the number of elements of A that have 
values xi, then  𝐻(𝐴) = {𝐻1(𝐴),𝐻2(𝐴), … ,𝐻𝑚(𝐴)}, 
where 
 

𝐻𝑖(𝐴) = ∑ 𝑏𝑖𝑗 ,𝑤ℎ𝑒𝑟𝑒 𝑏𝑖𝑗 = �
1  𝑖𝑓  𝑎𝑗 = 𝑥𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�𝑛
𝑗=1           (1) 

 
Note: If Pi(A) denotes the probability of samples in the 
jth value, then 𝑃𝑖(𝐴) = 𝐻𝑖(𝐴)

𝑛
. This is also sometimes 

used as a histogram measure, and is well suited for si-
milarity measure-type comparison, since 𝑃𝑖(𝐴) ∈ [0,1]. 
We simply denote this type of variation as 𝐻𝑃𝑖(𝐴), 
formally: 
 

𝐻𝑃𝑖(𝐴) =
∑ 𝑏𝑖𝑗
𝑛
𝑗

𝑛
                          (2) 

𝑤ℎ𝑒𝑟𝑒 𝑏𝑖𝑗 = �
1  𝑖𝑓  𝑎𝑗 = 𝑥𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�  

 
Example: Consider n=10, m=6 and 
A={1,6,5,1,1,2,5,5,1,1}, H(A)={5,1,0,0,3,1}, and 
HP(A)={0.5,0.1,0,0,0.3,0.1}. If the ordering of the ele-
ments in the set A is not considered, then H(A) is a loss-
less representation of A, meaning that A can be fully 
reconstructed from H(A). 

 
2.1. Different histogram types  

Histograms can be divided into three different types, in 
connection with computing histogram similarities: 1) 
nominal, 2) ordinal, and 3) modulo. In nominal 
histograms each variable has a “name” that is, the 
variable “make of a car” can take nominal values such 
as “Ford”, “Toyota”, “Skoda”, and so forth. Nominal 
type histograms can, e.g., consist of the frequency of 
cars manufactured by each car maker in a parking lot. 
In ordinal type histograms, the variables are (can be) 
ordered, e.g., the number of valves in a car can be 
quantified into 2 to 5 valves per cylinder, or the weight 
of the vehicle from 1 to 10 tons. In the third, modulo 
type histograms, the measured (or observed) variables 
form a circle in the same way as hours form a circle on 
a clock-face with arithmetic modulo 12, or a compass 
with degrees, arithmetic modulo 360. Graphical 
presentation of modulo-type histograms is available, 
e.g., in [1]. 

 
2.2. Similarity between samples of discrete mea-

surement results 

Given a set of samples, with each sample containing 
measured discrete values of a variable, a histogram 
represents the frequency of each discrete variable value 
measured. Considering three different types of mea-
surements, nominal, ordinal, and modulo, we present 
three different similarities between two measurements 
(samples) 𝑥𝑎, 𝑥𝑏 ∈ 𝑋. We normalize the sample values 
between unit intervals, by setting 𝑥𝑎𝑚 = 𝑥𝑎

𝑚
, 𝑥𝑏𝑚 = 𝑥𝑏

𝑚
, 

where m denotes the largest variable value, or “bin” 
value (e.g., m=360o in a compass). 
 
Nominal similarity: 

𝑆𝑛𝑜𝑚(𝑥𝑎𝑚, 𝑥𝑏𝑚) = �1  𝑖𝑓  𝑥𝑎𝑚 = 𝑥𝑏𝑚
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�               (3) 

 
Ordinal similarity:  
𝑆𝑜𝑟𝑑(𝑥𝑎𝑚, 𝑥𝑏𝑚) = 1 − |𝑥𝑎𝑚 − 𝑥𝑏𝑚|              (4) 
 
Modulo similarity: 

𝑆𝑚𝑜𝑑(𝑥𝑎𝑚, 𝑥𝑏𝑚) = �
1 − |𝑥𝑎𝑚 − 𝑥𝑏𝑚| 𝑖𝑓 |𝑥𝑎 − 𝑥𝑏| ≤ 𝑚

2
|𝑥𝑎𝑚 − 𝑥𝑏𝑚|              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

�  (5) 

 
In the first similarity measure, for the similarity of two 
nominal type sample values we either have a match, or 
we don´t, in line with classical equivalence. In the or-
dinal type similarity, the element values´ similarity is 
defined in the same way as the original Łukasiewicz 
similarity (see [1] and [2]). In the third case, with mod-
ulo similarity, the values form a circle, an issue that 
must be taken into consideration. For example, for the 
compass situation, the angular values between 0o to 
360o (355𝑜, 13𝑜) = �355

360
− 13

360
� = 0.95 ≠ 0.05 = 1 −

�355
360

− 13
360
� . 
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2.3. Similarity in the Łukasiewicz structure 

Since, in (4) and (5) we are using similarity based on 
Łukasiewicz logic, let us first briefly review axiomatic 
properties required for this similarity. Also note that our 
first equation for similarity (3) is same as the standard 
crisp equivalence relation. A Łukasiewicz similarity [2] 
measure needs to satisfy reflexivity, symmetricity, and 
transitivity conditions. We next first shortly introduce 
the Łukasiewicz logic and then go through the needed 
axioms, in order to examine, whether our new modulo 
similarity is a similarity in the mathematical sense. 
 
Definition 2: A lattice is partially ordered set in which 
𝑥 ∧ 𝑦 (infimum) and 𝑥 ∨ 𝑦(supremum) exists in L for all 
elements 𝑥,𝑦 ∈ 𝐿. A lattice is often denoted by 〈𝐿,≤,∧
,∨〉. 
 
Definition 3: A lattice is called residuated, if it contains 
the greatest element 1, and binary operations ⨀ (called 
multiplication) and → (called residuum) such that fol-
lowing conditions hold 

1. ⨀ is associative, commutative, and isotone. 
2. 𝑎⨀1 = 𝑎 for all elements 𝑎 ∈ 𝐿 and 
3. for all elements 𝑎, 𝑏, 𝑐 ∈ 𝐿, 𝑎⨀𝑏 ≤ 𝑏 if and 

only if 𝑎 ≤ 𝑏 → 𝑐 

Definition 4: Letting L be the real unit interval [0,1] 
endowed with the usual order relation, we may con-
struct the following usual residuated lattice: 
Łukasiewicz structure: 𝑎⨀𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1,0}, 
𝑎 → 𝑏 = 𝑚𝑖𝑛{1,1 − 𝑎 + 𝑏}. 
 
Definition 5: Let L be a residuated lattice and X is a 
non empty set. L-valued binary relation S, defined in X 
is a similarity, if it fulfills the following conditions (Tu-
runen, 1999): 

1. ∀𝑥 ∈ 𝑋: 𝑆(𝑥, 𝑥) = 1 
2. ∀𝑥1, 𝑥2,∈ 𝑋: 𝑆(𝑥1, 𝑥2) = 𝑆(𝑥2, 𝑥1) 
3. ∀𝑥1, 𝑥2, 𝑥3,∈ 𝑋: 𝑆(𝑥1, 𝑥2)⨀𝑆(𝑥2, 𝑥3) ≤

𝑆(𝑥1, 𝑥3) 

Notice that in case we let L be the two element set 
{0,1}, similarity coincides with the usual equivalence 
relation. In Łukasiewicz-logic equivalence relation (or 
similarity relation) is defined as 1 − max{𝑥1, 𝑥2} +
𝑚𝑖𝑛{𝑥1, 𝑥2}, or equivalently as 𝑆(𝑥1, 𝑥2) = 1 −
|𝑥1 − 𝑥2| (see [2]). 
 
2.4. Axiomatic properties of modulo similarity 

We prove that modulo similarity is transitive (condition 
3 in definition 5) and then continue by proving that it is 
also reflexive and symmetric (conditions 1 and 2 in de-
finition 5). 
 
Theorem 1. 𝑆𝑚𝑜𝑑 satisfies the transitivity property  
 
Proof: Since we know that ∀𝑥1, 𝑥2,∈ 𝑋: 𝑆(𝑥1, 𝑥2) =
1 − |𝑥1 − 𝑥2| satisfies condition 3 (see e.g. [2]) the 
proof reduces to a study of the cases, where also |𝑥1 −

so |𝑥1 − 𝑥2| > 𝑚
2

 is applied. Here we have three possi-
ble different cases: 

1) |𝑥1 − 𝑥2| > 𝑚
2

 

2) |𝑥1 − 𝑥2| > 𝑚
2

 and |𝑥1 − 𝑥3| > 𝑚
2

 

3) |𝑥1 − 𝑥3| > 𝑚
2

 

For 1) we have 𝑥1 ≤ 𝑥3 ≤ 𝑥2  and 
 𝑆(𝑥1, 𝑥2)⨀𝑆(𝑥2, 𝑥3) ≤ 𝑆(𝑥1, 𝑥3) 
⇔𝑚𝑎𝑥 ��𝑥1

𝑚
− 𝑥2

𝑚
� + 1 − �𝑥2

𝑚
− 𝑥3

𝑚
� − 1,0� ≤ 1 −

�𝑥1
𝑚
− 𝑥3

𝑚
�  

⇔𝑚𝑎𝑥 ��𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� ≤ 1 − �𝑥1

𝑚
− 𝑥3

𝑚
�  

Now 𝑚𝑎𝑥 ��𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� = �𝑥1

𝑚
− 𝑥2

𝑚
� −

�𝑥2
𝑚
− 𝑥3

𝑚
� due to 𝑥1 ≤ 𝑥3 ≤ 𝑥2 so we get 

𝑚𝑎𝑥 ��𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� ≤ 1 − �𝑥1

𝑚
− 𝑥3

𝑚
�  

 
⇔ �𝑥1

𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� ≤ 1 − �𝑥1

𝑚
− 𝑥3

𝑚
�  

⇔ �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� + �𝑥1

𝑚
− 𝑥3

𝑚
� ≤ 1  

⇔𝑚𝑎𝑥 �𝑥1
𝑚

, 𝑥2
𝑚
� − 𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥2
𝑚
� − �𝑚𝑎𝑥 �𝑥2

𝑚
, 𝑥3
𝑚
� −

𝑚𝑖𝑛 �𝑥2
𝑚

, 𝑥3
𝑚
�� + 𝑚𝑎𝑥 �𝑥1

𝑚
, 𝑥3
𝑚
� − 𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥3
𝑚
� ≤ 1  

since we know that  𝑥1 ≤ 𝑥3 ≤ 𝑥2 , we get 
⇔ 𝑥2

𝑚
− 𝑥1

𝑚
− �𝑥2

𝑚
− 𝑥3

𝑚
� + 𝑥3

𝑚
− 𝑥1

𝑚
≤ 1  

⇔ −2𝑥1
𝑚

+ 2𝑥3
𝑚
≤ 1  

⇔ 2
𝑚

(𝑥3 − 𝑥1) ≤ 1  
and (𝑥3 − 𝑥1) ≤ 0 < 1∎ 
 
In case  |𝑥1 − 𝑥2| ≥ 𝑚

2
 and |𝑥1 − 𝑥3| ≥ 𝑚

2
  we have two 

possible cases: 𝑥1 ≤ 𝑥2 ≤ 𝑥3 and 𝑥1 ≤ 𝑥3 ≤ 𝑥2. In case 
𝑥1 ≤ 𝑥2 ≤ 𝑥3, we have 
𝑆(𝑥1, 𝑥2)⨀𝑆(𝑥2, 𝑥3) ≤ 𝑆(𝑥1, 𝑥3)  
⇔𝑚𝑎𝑥 ��𝑥1

𝑚
− 𝑥2

𝑚
� + 1 − �𝑥2

𝑚
− 𝑥3

𝑚
� − 1,0� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  

⇔𝑚𝑎𝑥 ��𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  

Case �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� < 0 is not possible, since  

|𝑥1 − 𝑥2| ≥ 𝑚
2

 and |𝑥1 − 𝑥3| ≥ 𝑚
2

. This leads to having 

�𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  

⇔ �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� − �𝑥1

𝑚
− 𝑥3

𝑚
� ≤ 0  

⇔𝑚𝑎𝑥 �𝑥1
𝑚

, 𝑥2
𝑚
� − 𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥2
𝑚
� − �𝑚𝑎𝑥 �𝑥2

𝑚
, 𝑥3
𝑚
� −

𝑚𝑖𝑛 �𝑥2
𝑚

, 𝑥3
𝑚
�� − �𝑚𝑎𝑥 �𝑥1

𝑚
, 𝑥3
𝑚
� −𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥3
𝑚
�� ≤ 0  

⇔ 𝑥2
𝑚
− 𝑥1

𝑚
+ 𝑥2

𝑚
− 𝑥3

𝑚
− 𝑥3

𝑚
+ 𝑥1

𝑚
≤ 0  

⇔ 2
𝑚

(𝑥2 − 𝑥3) ≤ 0  
Since 𝑥2 ≤ 𝑥3, 𝑥2 − 𝑥3 ≤ 0, and we get 0≤ 0∎ 
 
In case that we have 𝑥1 ≤ 𝑥3 ≤ 𝑥2, we get 

𝑆(𝑥1, 𝑥2)⨀𝑆(𝑥2, 𝑥3) ≤ 𝑆(𝑥1, 𝑥3) 
⇔𝑚𝑎𝑥 ��

𝑥1
𝑚
−
𝑥2
𝑚
� + 1 − �

𝑥2
𝑚
−
𝑥3
𝑚
� − 1,0� ≤ �

𝑥1
𝑚
−
𝑥3
𝑚
� 

 
⇔𝑚𝑎𝑥 ��𝑥1

𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  
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Case �𝑥1

𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� < 0 gives 0 ≤ �𝑥1

𝑚
− 𝑥3

𝑚
� 

which is obviously valid. In case �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� >

0, we have 
�𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  

⇔𝑚𝑎𝑥 �𝑥1
𝑚

, 𝑥2
𝑚
� − 𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥2
𝑚
� − �𝑚𝑎𝑥 �𝑥2

𝑚
, 𝑥3
𝑚
� −

𝑚𝑖𝑛 �𝑥2
𝑚

, 𝑥3
𝑚
�� − �𝑚𝑎𝑥 �𝑥1

𝑚
, 𝑥3
𝑚
� −𝑚𝑖𝑛 �𝑥1

𝑚
, 𝑥3
𝑚
�� ≤ 0  

⇔ 𝑥2
𝑚
− 𝑥1

𝑚
− 𝑥2

𝑚
+ 𝑥3

𝑚
− 𝑥3

𝑚
+ 𝑥1

𝑚
≤ 0  

⇔ 0 ≤ 0∎  
 
In the last case we have  |𝑥1 − 𝑥3| ≥ 𝑚

2
 and now 

𝑥1 ≤ 𝑥2 ≤ 𝑥3, which gives us 
𝑆(𝑥1, 𝑥2)⨀𝑆(𝑥2, 𝑥3) ≤ 𝑆(𝑥1, 𝑥3)  
⇔𝑚𝑎𝑥 �1 − �𝑥1

𝑚
− 𝑥2

𝑚
� + 1 − �𝑥2

𝑚
− 𝑥3

𝑚
� − 1,0� ≤

�𝑥1
𝑚
− 𝑥3

𝑚
�   

⇔𝑚𝑎𝑥 �1 − �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� , 0� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�   

in case 1 − �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� < 0 we again get 

0 ≤ �𝑥1
𝑚
− 𝑥3

𝑚
� =  𝑆(𝑥1, 𝑥3) ∈ [0,1] giving 0 ≤ [0,1] 

in case 1 − �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� > 0 we have 

1 − �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� ≤ �𝑥1

𝑚
− 𝑥3

𝑚
�  

⇔ 1 − �𝑥1
𝑚
− 𝑥2

𝑚
� − �𝑥2

𝑚
− 𝑥3

𝑚
� − �𝑥1

𝑚
− 𝑥3

𝑚
� ≤ 0  

⇔ 1 − �𝑥2
𝑚
− 𝑥1

𝑚
� − �𝑥3

𝑚
− 𝑥2

𝑚
� − �𝑥3

𝑚
− 𝑥1

𝑚
� ≤ 0  

⇔ 1 − 2 �𝑥3
𝑚
− 𝑥1

𝑚
� ≤ 0  

⇔ �𝑥3
𝑚
− 𝑥1

𝑚
� ≤ 1

2
 , which is valid, since we have 

|𝑥1 − 𝑥3| ≥ 𝑚
2

 and  𝑥1 ≤ 𝑥2 ≤ 𝑥3 
Since there are no other cases this concludes the proof∎ 
 
Theorem 2 Modulo similarity Smod satisfies reflexivity 
and symmetricity 
 
Proof:  𝑆𝑚𝑜𝑑(𝑥𝑎, 𝑥𝑎) = 1 − |𝑥𝑎 − 𝑥𝑎| = 1 − 0 = 1∎ 
 
if |𝑥𝑎 − 𝑥𝑏| ≤ 𝑚

2
 we have 

 
𝑆𝑚𝑜𝑑(𝑥𝑎, 𝑥𝑏) = 1 − |𝑥𝑎 − 𝑥𝑏| = 1 − |𝑥𝑏 − 𝑥𝑎| =
𝑆𝑚𝑜𝑑(𝑥𝑏, 𝑥𝑎)  
 
If |𝑥𝑎 − 𝑥𝑏| > 𝑚

2
 we have 

 
𝑆𝑚𝑜𝑑(𝑥𝑎, 𝑥𝑏) = |𝑥𝑎 − 𝑥𝑏| = |𝑥𝑏 − 𝑥𝑎| =
𝑆𝑚𝑜𝑑(𝑥𝑏, 𝑥𝑎)∎  
 
Because all three axioms hold we conclude that modulo 
similarity is a similarity measure in the sense defined by 
Łukasiewicz [10] and Zadeh [8]. 

3. Similarities in comparing histograms 

The similarity between any two histograms can be giv-
en in terms of sample value similarities. Given two 
samples of n elements, A and B we approach this prob-

lem by considering maximum compatibility of pair as-
signments between the two samples. The problem is to 
determine the best one-to-one assignment between the 
two samples, such that the mean of all similarities be-
tween two individual elements in a pair is maximized. 
Maximum pair compatibility is a new concept and a 
new contribution and therefore we first start with a de-
finition and then clarify its usefulness together with 
modulo similarity. Given m elements 𝑎𝑖 ∈ 𝐴, and m 
elements 𝑏𝑖 ∈ 𝐵, we define the maximum pair assign-
ment compatibility as: 
 
Definition 6: Given 𝐴 = {𝑎1, … ,𝑎𝑛} and 𝐵 =
{𝑏1, … , 𝑏𝑛} and bin number value m. Normalized values 
for A and B are 𝐴𝑚 = {𝑎1,…,𝑎𝑛}

𝑚
,  𝐵𝑚 = {𝑏1,…,𝑏𝑛}

𝑚
, and 

maximum pair assignment compatibility 
 
𝑆(𝐴𝑚,𝐵𝑚) = 1

𝑛

𝑚𝑎𝑥
𝐴,𝐵�∑ 𝑠(𝑎𝑖 , 𝑏𝑗)𝑛

𝑖,𝑗=1 �              (6) 
 
where S and s are designated as Snom and snom, Sord and 
sord and Smod and smod respectively. 
 
Example:  Consider the following three samples with 
m=8 and n=10: A={1,1,1,1,2,3,7,7,7,8}, 
B={1,2,2,2,2,3,7,7,7,8} , C={1,1,2,3,7,7,7,8,8,8}. Cor-
responding histograms would be 
H(A)={4,1,1,0,0,0,3,1}, H(B)={1,4,1,0,0,0,3,1} and 
H(C)={2,1,1,0,0,0,3,3}. Now, applying maximum pair 
assignment similarity to these cases we get 𝐴𝑚 =
𝐴
𝑚

,𝐵𝑚 = 𝐵
𝑚

, 𝐶𝑚 = 𝐶
𝑚

, and 𝑆𝑛𝑜𝑚(𝐴𝑚,𝐶𝑚) = 0.8, 
𝑆𝑜𝑟𝑑(𝐴𝑚,𝐶𝑚) = 0.825,  𝑆𝑚𝑜𝑑(𝐴𝑚,𝐶𝑚) = 0.975. A 
summary of the results by maximum pair similarity as-
signment is visible in Table 1. 
 
Pairs: 𝑆𝑛𝑜𝑚 𝑆𝑜𝑟𝑑 𝑆𝑚𝑜𝑑 
A,B 0.7 0.963 0.963 
A,C 0.8 0.825 0.975 
B,C 0.7 0.838 0.938 
Table 1: Maximum pair similarity assignments. 
 

 
Figure 1: Similarities between H(A) and H(C), when 
modulo similarity is applied. With ordinal similarity the 
pair wise similarities would be the same, but the values 
“0.875” would be “0.125”. With nominal similarity 
they would be” 0”. 
 
The procedure is illustrated in Figure 1. Note that if we 
deal with the modulo type histograms without acknowl-
edging the modulo type and by using an ordinal type 
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histogram, we would have the result that the pair A,B is 
the closest match. but when we use the more suitable 
modulo similarity to find the maximum pair similarity 
we get the result that the pair A, C is the closest match.  

4. Conclusions 

In this paper we have presented a new similarity meas-
ure, the “modulo similarity”. We have proven that it 
fulfills the three axioms, reflexivity, symmetricity, and 
transitivity, required by a “true” similarity measure in 
the Łukasiewicz structure. We have shown its useful-
ness by applying it in comparison of histograms togeth-
er with a new concept “maximum pair assignment 
compatibility” measure for histograms.  We have dem-
onstrated that using modulo similarity with modulo-
type histograms results in distinctly different results 
than using, e.g., ordinal similarity, which is an impor-
tant observation from the point of view of practical ap-
plication.   

There has been very little in terms of academic research 
into this type of problems so far. Histograms are an in-
teresting way of visualizing, e.g., frequency information 
and modulo histograms a rather new way of presenting 
histograms. 

Future research into this topic will include testing his-
tograms with multiple concentrations of frequency 
(multiple peaks) and research into how the new me-
thods may be used together with the histogram ranking 
method [14] to compare the results from different pa-
rametric MCDM decision-support methods.  

References 

[1] S-.H. Cha and S.N. Srihari, On measuring the dis-
tance between histograms, Pattern Recognition 
35:1355-1370, 2002. 

[2]  R.O. Duda and P.E. Hart, Pattern Classification 
and Scene Analysis, 1st Edition, Wiley, New York, 
1973. 

[3]  T. Kailath, The divergence and Bhattacharyya dis-
tance measures in signal selection, IEEE Trans. 
Commun. Technol. COM-15, 1:52–60, 1967. 

[4] S. Kullback and R.A. Leibler, On information and 
sufficiency, Ann. Math. Statist. 22:79-86, 1951. 

[5]  H. Bandemer and W. Näther, Fuzzy data analysis, 
Kluwer academic publishers, Dordrecht, 1992. 

[6]  Y. Rubner, Tomasi, C., and L.J. Guibas, A metric 
for distributions with applications to image data 
base, proceedings of the International Conference 
on Computer Vision, pages 59-66,  IEEE, 1998. 

[7]  J. Łukasiewicz, Selected Works, North-Holland 
Publishing co., Amsterdam, 1970. 

[8]  L. Zadeh, Similarity Relations and Fuzzy Order-
ings. Inform Sci, 3, 1971. 

[9]  C.C. Chang, Algebraic analysis of many-valued 
logics, Trans. Amer. Math. Soc., 88:467-490, 1958. 

[10] J. Pavelka. On Fuzzy logic I, II, III. Zeitschr f. 
math. Logik und Grundlagen d. Math., 25:45-52; 
119.134; 447-464, 1979. 

[11] E. Turunen, Mathematics behind Fuzzy Logic. 
Advances in Soft Computing, Physica-Verlag, Hei-
delberg, 1999. 

[12] P. Luukka, K. Saastamoinen, and V. Könönen,  
A classifier based on the maximal fuzzy similarity 
in the generalized Łukasiewicz-structure.  In pro-
ceedings of the FUZZ-IEEE 2001 conference, Mel-
bourne, Australia. 

[13] P. Luukka and T. Leppälampi, Similarity clas-
sifier with generalized mean applied to medical da-
ta. Computers in Biology and Medicine, 36:1026–
1040. 

[14]  P. Luukka and M. Collan, Histogram ranking 
with generalized similarity-based TOPSIS applied 
to patent ranking, Int. J. Operational Research, In 
press. 

[15] P. Luukka, Feature selection using fuzzy en-
tropy measures with similarity classifier. Expert 
Systems with Applications, 38:4600-4607, 2011. 

[16]  S. Bray, L. Caggiani,  M. Dell’Orco, and M. 
Ottomanelli, Feature selection based on fuzzy en-
tropy for data envelopment analysis applied to 
transport systems, Transportation Research Proce-
dia, 3:602-610, 2014. 

[17] J. Niittymäki and E. Turunen, Traffic signal 
control on similarity logic reasoning. Fuzzy Sets 
and Systems, 133:109-131, 2003. 

[18]  T. Dubrovin, A. Jolma, and E. Turunen, 

[19]  K. Saastamoinen, J. Ketola, and E. Turunen, 
Defining Athletes´ Aerobic and Anaerobic Thre-
sholds by Using Similarity Measures and Differen-
tial Evolution, proceedings of the 2004 IEEE Int. 
Conference of Systems, Man and Cybernetics, 
1331-1335, IEEE, 2004.  

Fuzzy model for real-time reservoir operation. 
Journal of Water Resources Planning and Man-
agement 128:66-73, 2002. 

[20] A. Mänttäri, P. Luukka, and E. Turunen, Pre-
dicting maximal heart rate from the UKK 2 km 
walk test results: soft computing and linear regres-
sion methods, proceedings of the 8th annual con-
gress of the European College of Sports Science, 
pages 9-12, Austria, 2003. 

[21]  E. Turunen, Survey of Theory and Applica-
tions of Łukasiewicz-Pavelka Fuzzy Logic. in Lec-
tures on Soft Computing and Fuzzy Logic. Advances 
in Soft Computing, 313-337, Physica-Verlag, Hei-
delberg, 2001.  
 

 
 

397


	pasi.luukka; mikael.collan@lut.fi



