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Abstract

In this paper we introduce two types of simulations
and five types of bisimulations for fuzzy social net-
works, and we study one of them – regular bisimula-
tions. We prove that if there exists at least one reg-
ular bisimulation between two fuzzy networks, then
there exists the greatest bisimulation of this type,
and we provide a procedure for testing the existence
of a regular bisimulation between two fuzzy net-
works, and computing the greatest one, whenever it
exists. We also establish a natural relationship be-
tween regular bisimulations and regular fuzzy equiv-
alences.

Keywords: Fuzzy social network, regular bisimu-
lation, regular fuzzy equivalence, uniform fuzzy re-
lation, fuzzy relation equation, residual of fuzzy re-
lations.

1. Introduction

Positional analysis is a branch of the social network
analysis whose main aim is to find structural sim-
ilarities between actors which have to reflect their
position or role in a network. These similarities were
first formalized by Lorrain and White [20] by the
concept of a structural equivalence, where two ac-
tors are considered to be structurally equivalent if
they have identical neighborhoods. In many cases
this concept has shown oneself to be too strong,
and White and Reitz [26] introduced the concept
of a regular equivalence as more appropriate for
modeling social positions. In this case, two actors
are considered to be regularly equivalent if they
are equally related to equivalent others. Afterwards,
regular equivalences were studied in numerous pa-
pers, e.g., in [1, 11, 12, 24].

Social relations are essentially vague so it is quite
natural that few authors initiated the study of so-
cial networks from the aspect of the theory of fuzzy
sets (cf. [5, 13, 14, 15, 17, 18, 19]). In the study of
fuzzy social networks conducted in the listed papers
positional analysis and regular fuzzy equivalences
had a central place. Regular fuzzy equivalences have
been first studied by Fan et al. [14, 15], where they
were called regular similarities, and from a similar
point of view they have been recently investigated
in [13]. From a different point of view regular fuzzy
equivalences have been studied in [5, 17, 18, 19], and
there it has been shown that the greatest regular
fuzzy equivalence on a fuzzy network can be com-
puted as the greatest solution to a particular system

of fuzzy relation equations. Such an approach has
previously been shown to be very efficient in solving
some fundamental problems of the theory of fuzzy
automata, such as the reduction of the number of
states and the problems of equivalence, simulation
and bisimulation (cf. [7, 8, 9, 10, 17, 25]).

As we have already said, the role of regular equiv-
alences is to establish some kind of structural simi-
larities between actors in a network as the basis for
partitioning a network into sets of actors which oc-
cupy the same social position. In the present paper
we discuss a somewhat different problem: How to
find the same kind of structural similarities between
actors from two different networks, as the basis for
identifying related positions in these networks? This
problem has already been discussed by Marx and
Masuch [21], who pointed to the concept of a bisim-
ulation that has been successfully used for similar
purposes in some related areas of computer science
and mathematics.

Bisimulations have been introduced by Milner in
[22] and Park in [23] in computer science, more pre-
cisely in concurrency theory. Roughly at the same
time they have been also discovered in some areas
of mathematics, e.g., in modal logic and set theory.
They are widely used to model equivalence between
various systems, as well as to reduce the number of
states of these systems, and are employed today in
many areas of computer science. A few papers dealt
with bisimulations in the context of social networks.
Marx and Masuch [21] have defined what we call
here a forward bisimulation between two networks,
and have equated regular equivalences with what
they have called in-out bisimulations. However, they
have dealt mainly with bisimulations that relate ac-
tors from the same network and have not conducted
a deeper study of bisimulations between different
networks. Forward bisimulations between two net-
works have been also mentioned in [13], but again,
they have not been deeply investigated. And finally,
Brynielsson et al. [4] have studied what we call for-
ward and backward simulations, but also as rela-
tions between the actors from the same network,
and they have not discussed simulations between
different networks.

In this paper we perform a deeper study of bisim-
ulations between two different fuzzy social networks.
We define two types of simulations and five types of
bisimulations, including the regular bisimulations,
which are the main subject of the paper. We prove
that if there exists at least one regular bisimulation
between two fuzzy networks, then there exists the

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 404



greatest bisimulation of this type (Theorem 3.1).
Then we provide a procedure by which both we
test the existence of a regular bisimulation between
two fuzzy networks, and compute the greatest one,
whenever it exists (Theorems 3.2 and 3.3).

In addition to bisimulations, another very impor-
tant concept that we use in our research is that of a
uniform fuzzy relation. Uniform fuzzy relation have
been introduced in [6], and the original intention
of the authors was to introduce them as a basis
for defining such concept of a fuzzy function which
would provide a correspondence between fuzzy func-
tions and fuzzy equivalence relations, analogous
to the correspondence between crisp functions and
crisp equivalence relations. This was done, but also,
it turned out that uniform fuzzy relations estab-
lish natural relationships between fuzzy partitions
of two sets, some kind of "uniformity" between these
fuzzy partitions. Roughly speaking, uniform fuzzy
relations can be conceived as fuzzy equivalence rela-
tions which relate elements of two possibly different
sets, and from this point of view, they can be very
successfully used in conjunction with bisimulations,
which have a complementary role. For this reason,
we consider uniform regular bisimulations between
two networks, and by Theorem 3.4 we show that any
uniform regular bisimulation determines a pair of
regular equivalences on these networks and a partic-
ular isomorphism between the corresponding quo-
tient fuzzy networks (i.e., an isomorphism between
the positions in these networks), and vice versa.

2. Preliminaries

2.1. Fuzzy sets and fuzzy relations

In the paper we use complete residuated lattices as
structures of membership values. A residuated lat-

tice is an algebra L = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element
0 and the greatest element 1,

(L2) (L,⊗, 1) is a commutative monoid with the unit
1,

(L3) ⊗ and → form an adjoint pair , i.e., they satisfy
the adjunction property: for all x, y, z ∈ L,

x⊗ y 6 z ⇔ x 6 y → z. (1)

If, additionally, (L,∧,∨, 0, 1) is a complete lattice,
then L is called a complete residuated lattice.

The operations ⊗ (called multiplication) and →
(called residuum) are intended for modeling the con-
junction and implication of the corresponding log-
ical calculus, and supremum (

∨

) and infimum (
∧

)
are intended for modeling the existential and gener-
al quantifier, respectively. An operation ↔ given by

x ↔ y = (x → y) ∧ (y → x), (2)

called biresiduum (or biimplication), is used for mo-
deling the equivalence of truth values. It can be eas-
ily shown that with respect to 6, ⊗ is isotonic in

both arguments, → is isotonic in the second and
antitonic in the first argument. For other properties
of complete residuated lattices we refer to [2, 3].

The most studied and applied structures of mem-
bership values, defined on the real unit interval [0, 1]
with x∧y = min(x, y) and x∨y = max(x, y), are the
Łukasiewicz structure (x⊗y = max(x+y−1, 0) and
x → y = min(1−x+y, 1)), the Gödel structure (x⊗y
= min(x, y), x → y = 1 if x 6 y and x → y = y
otherwise), and the Goguen or product structure

(x ⊗ y = x · y, x → y = 1 if x 6 y and x → y
= y/x otherwise). Another important set of truth
values is the set {a0, a1, . . . , an}, 0 = a0 < · · · <
an = 1, with ak ⊗ al = amax(k+l−n,0), ak → al =
amin(n−k+l,n). A special case of the latter algebras
is the two-element Boolean algebra of classical logic
with the support {0, 1}. The only adjoint pair on
this Boolean algebra consists of the classical con-
junction and implication operations. This structure
of truth values is called the Boolean structure.

In the sequel L will be a complete residuated
lattice. A fuzzy subset of a set A over L, or sim-
ply a fuzzy subset of A, is any mapping from A
into L. Ordinary crisp subsets of A are considered
as fuzzy subsets of A taking membership values in
the set {0, 1} ⊆ L. Let f and g be two fuzzy sub-
sets of A. The equality of f and g is defined as
the usual equality of mappings, i.e., f = g if and
only if f(x) = g(x), for every x ∈ A. The inclusion

f 6 g is also defined pointwise: f 6 g if and only
if f(x) 6 g(x), for every x ∈ A. Endowed with this
partial order the set LA of all fuzzy subsets of A
forms a complete lattice, in which the meet (inter-
section)

∧

i∈I fi and the join (union)
∨

i∈I fi of an
arbitrary family {fi}i∈I of fuzzy subsets of A are
mappings from A into L defined by
(

∧

i∈I

fi

)

(x) =
∧

i∈I

fi(x),

(

∨

i∈I

fi

)

(x) =
∨

i∈I

fi(x),

for all x ∈ A.
A fuzzy relation between sets A and B (in this

order) is any fuzzy subset of A×B, and the equal-
ity, inclusion (ordering), joins and meets of fuzzy
relations are defined as for fuzzy sets. The set of all
fuzzy relations between A and B will be denoted by
LA×B. In particular, a fuzzy relation on a set A is
any fuzzy subset of A × A, and the set of all fuzzy
relations on A is denoted by LA×A. The reverse or
inverse of a fuzzy relation ϕ ∈ LA×B is a fuzzy re-
lation ϕ−1 ∈ LB×A defined by ϕ−1(b, a) = ϕ(a, b),
for all a ∈ A and b ∈ B.

For non-empty sets A, B and C, and fuzzy rela-
tions ϕ ∈ LA×B and ψ ∈ LB×C , their composition is
a fuzzy relation ϕ ◦ ψ ∈ LA×C defined by

(ϕ ◦ ψ)(a, c) =
∨

b∈B

ϕ(a, b) ⊗ ψ(b, c), (3)

for all a ∈ A and c ∈ C. Moreover, for a fuzzy rela-
tion ϕ ∈ LA×B and fuzzy sets f ∈ LA and g ∈ LB,
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we define a fuzzy set f ◦ ϕ ∈ LB by

(f ◦ ϕ)(b) =
∨

a∈A

f(a) ⊗ ϕ(a, b),

for each b ∈ B, and a fuzzy set ϕ ◦ g ∈ LA by

(ϕ ◦ g)(a) =
∨

b∈b

ϕ(a, b) ⊗ g(b),

for each a ∈ A. In both cases, the operation ◦ is
called the composition of a fuzzy relation and a
fuzzy set. It is easy to verify that f ◦ ϕ = ϕ−1 ◦ f
and ϕ◦g = g◦ϕ−1. For fuzzy sets f, g ∈ LA a scalar
f ◦ g ∈ L is defined by

f ◦ g =
∨

a∈A

f(a) ⊗ g(a).

When the underlying sets are finite, fuzzy relations
and fuzzy sets can be respectively interpreted as
matrices and vectors with entries in L, the composi-
tion of fuzzy relations can be interpreted as the ma-
trix product, compositions of a fuzzy relation and a
fuzzy set as matrix-vector products, and the compo-
sition of two fuzzy sets as the scalar (dot) product
of vectors. It is easy to check that the composition
of fuzzy relations is associative and distributive over
unions (joins) of fuzzy relations. Furthermore, for all
f ∈ LA, g ∈ LB and ϕ ∈ LA×B we have

(f ◦ ϕ) ◦ g = f ◦ (ϕ ◦ g),

and both sides in the above equality will be denoted
simply by f ◦ ϕ ◦ g without using the parentheses.

Let A, B and C be non-empty sets, λ ∈ LA×B,
µ ∈ LB×C and η ∈ LA×C . The right residual of η by
λ is a fuzzy relation λ\η ∈ LB×C defined by

(λ\η)(b, c) =
∧

a∈A

λ(a, b) → η(a, c), (4)

for all (b, c) ∈ B×C, and the left residual of η by µ
is a fuzzy relation η/µ ∈ LA×B defined by

(η/µ)(a, b) =
∧

c∈C

µ(b, c) → η(a, c), (5)

for all (a, b) ∈ A × B. It is not hard to verify that
the following residuation property (in some sources
called the adjunction property) holds for arbitrary
λ ∈ LA×B, µ ∈ LB×C and η ∈ LA×C :

λ ◦ µ 6 η ⇔ µ 6 λ\η ⇔ λ 6 η/µ. (6)

For fuzzy sets f ∈ LA and g ∈ LB the right residual

of g by f is a fuzzy relation f\g ∈ LA×B defined by

(f\g)(a, b) = f(a) → g(b), (7)

for all (a, b) ∈ A×B, and the left residual of g by f
is a fuzzy relation g/f ∈ LB×A defined by

(g/f)(b, a) = f(a) → g(b), (8)

for all (b, a) ∈ B×A. It is clear that g/f = (f\g)−1.
For all ϕ ∈ LA×B, ψ ∈ LB×A, f ∈ LA and g ∈ LB

the following residuation properties hold:

f ◦ϕ 6 g ⇔ ϕ 6 f\g, ψ ◦ f 6 g ⇔ ψ 6 g/f. (9)

A fuzzy relation α ∈ LA×A is reflexive if ∆A 6 α
(where ∆A is the crisp equality on A), symmetric if
α−1 6 α, and transitive if α ◦ α 6 α. A reflexive,
symmetric and transitive fuzzy relation is called a
fuzzy equivalence, and a reflexive and transitive
fuzzy relation is called a fuzzy quasi-order . Note
that if α is a fuzzy quasi-order, then α◦α = α. For a
fuzzy equivalence α ∈ LA×A and an element a ∈ A,
the fuzzy set αa ∈ LA defined by αa(b) = α(a, b),
for each b ∈ A, is called the equivalence class of α
determined by a, and a is called the representative

of the equivalence class αa. The set of all equiva-
lence classes of α is denoted by A/α and called the
quotient set (or factor set) of A with respect to α.

Hereinafter, N denotes the set of natural numbers
(without zero). A partially ordered set P is said
to satisfy the descending chain condition, shortly
DCC , if each descending sequence of elements of P
stabilizes, i.e., if {ak}k∈N is a sequence of elements
of P such that ak+1 6 ak, for each k ∈ N, then
there exists n ∈ N such that an = an+m, for each
m ∈ N.

For more information on fuzzy sets and fuzzy re-
lations we refer to [2, 3].

2.2. Uniform fuzzy relations

Given non-empty sets A and B and a fuzzy relation
ϕ ∈ LA×B. A fuzzy equivalence EϕA on A defined by

EϕA(a, a′) =
∧

b∈B

ϕ(a, b) ↔ ϕ(a′, b),

for all a, a′ ∈ A, is called the kernel of ϕ, and a fuzzy
equivalence EϕB on B defined by

EϕB(b, b′) =
∧

a∈A

ϕ(a, b) ↔ ϕ(a, b′),

for all b, b′ ∈ B, is called the co-kernel of ϕ. If for
each a ∈ A there is b ∈ B such that ϕ(a, b) = 1, then
ϕ is called an L-function. Note that ϕ is an L-func-
tion if and only if there is a function ψ : A → B such
that ϕ(a, ψ(a)) = 1, for every a ∈ A. A function ψ
with this property is called a crisp description of ϕ.
The set of all such functions is denoted by CR(ϕ). If
for every b ∈ B there is a ∈ A such that ϕ(a, b) = 1,
then ϕ is called a surjective fuzzy relation.

If ϕ ◦ ϕ−1 ◦ ϕ 6 ϕ, then we call ϕ a partial fuzzy

function, and a partial fuzzy function which is a sur-
jective L-function we call a uniform fuzzy relation.

Let A and B be non-empty sets and ϕ ∈ LA×B a
uniform fuzzy relation, and let α = EϕA and β = EϕB.
Then a function ϕ̄ : A/α → B/β defined by

ϕ̄(αa) = βψ(a), for any a ∈ A and ψ ∈ CR(ϕ),
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is well-defined (it does not depend on the choice of
a ∈ A and ψ ∈ CR(ϕ)) and it is a bijective function
with

(ϕ̄)−1 = ϕ−1.

Note that the function ϕ̄ establishes some kind of
"uniformity" between the equivalence classes of the
kernel and the co-kernel of ϕ, and from this reason
uniform fuzzy relations obtained in [6] this name.

2.3. Fuzzy networks

A fuzzy social network is considered here as a triple
N = (A, {Ri}i∈I , {pj}j∈J), where A is a non-empty
set, whose members are called actors, {Ri}i∈I is a
collection of fuzzy relations on A, and {pj}j∈J is a
collection of fuzzy subsets of A. We assume that all
sets A, I and J , fuzzy relations Ri and fuzzy sets pj
are non-empty. The membership degree of an actor
to a fuzzy set pj is understood as the degree to
which this actor has a certain attribute associated to
pj . For the sake of simplicity, we will say just ‘fuzzy
network’ instead of ‘fuzzy social network’.

Two fuzzy networks N = (A, {Ri}i∈I , {pj}j∈J)
and N ′ = (A′, {R′

i}i∈I , {p
′
j}j∈J ) are called isomor-

phic if there exists a bijective function φ : A → A′

such that Ri(a, b) = R′
i(φ(a), φ(b)), for all a, b ∈ A

and i ∈ I, and pj(a) = p′
j(φ(a)), for all a ∈ A and

j ∈ J .
Let N =(A, {Ri}i∈I , {pj}j∈J ) be a fuzzy network

and α ∈ LA×A a fuzzy equivalence, and let A/α be
the corresponding factor set. For each i ∈ I and each
j ∈ J we define a fuzzy relation R̄i ∈ L(A/α)×(A/α)

and a fuzzy set p̄j ∈ LA/α by

(i) R̄i(αa, αb) = (α ◦ Ri ◦ α)(a, b) = αa ◦ Ri ◦ αb,
for all a, b ∈ A,

(ii) p̄j(αa) = (α ◦ pj)(a) = αa ◦ pj , for all a ∈ A.

It is clear that all R̄i and p̄j are well-defined, in the
sense that they do not depend on the choice of
representatives of the equivalence classes of α, and
N/α= (A/α, {R̄i}i∈I , {p̄j}j∈J) is also a fuzzy net-
work called the quotient (or factor) fuzzy network of
N with respect to α. It is worth noting that a quo-
tient fuzzy network with respect to α is also known
as the blockmodel or blockomodel image of N corre-
sponding to α (cf. [1, 11, 12, 21]).

3. Regular bisimulations

Given fuzzy networks N = (A, {Ri}i∈I , {pj}j∈J)
and N ′ = (A′, {R′

i}i∈I , {p
′
j}j∈J), and a non-empty

fuzzy relation ϕ ∈ LA×A′

. If ϕ satisfies

pj 6 ϕ ◦ p′
j, for each j ∈ J, (10)

pj ◦ ϕ 6 p′
j, for each j ∈ J, (11)

ϕ−1 ◦Ri 6 R′
i ◦ ϕ−1, for each i ∈ I, (12)

then it is called a forward simulation between N and
N ′, and if it satisfies (10), (11) and

Ri ◦ ϕ 6 ϕ ◦R′

i, for each i ∈ I, (13)

a b
ϕ

a′

Ri

b′

ϕ

R′

i

a b
ϕ

a′

Ri

b′

ϕ

R′

i

Figure 1: Forward simulation (the condition (12), on
the left) and backward simulation (the condition (13),
on the right).

then it is called a backward simulation between N
and N ′. Using these two types of simulation, we de-
fine four types of bisimulation. If both ϕ and ϕ−1

are forward simulations then ϕ is called a forward

bisimulation between N and N ′, if ϕ and ϕ−1 are
backward simulations then ϕ is a backward bisimu-

lation, if ϕ is a forward and ϕ−1 a backward simula-
tion then ϕ is a forward-backward bisimulation, and
if ϕ is a backward and ϕ−1 a forward simulation
then ϕ is a backward-forward bisimulation. Finally,
if ϕ and ϕ−1 are both forward and backward bisim-
ulations, then ϕ is called a regular bisimulation. In
other words, ϕ is a regular bisimulation if it satisfies

pj = ϕ ◦ p′
j , for each j ∈ J, (14)

p′
j = ϕ−1 ◦ pj, for each j ∈ J, (15)

Ri ◦ ϕ = ϕ ◦R′
i, for each i ∈ I, (16)

ϕ−1 ◦Ri = R′
i ◦ ϕ−1, for each i ∈ I. (17)

The meaning of simulations and bisimulations
can be well explained in the case when N and
N ′ are crisp (Boolean-valued) networks. The con-
dition (11) means that if an actor a ∈ A has a
certain attribute and it is simulated by some ac-
tor b ∈ B, then b has the same attribute, whereas
the condition (10) means that any actor a ∈ A hav-
ing a certain attribute can be simulated by an actor
b ∈ B with the same attribute. The meaning of the
conditions (12) and (13) is shown in Fig. 1.

In this paper our attention will be entirely focus-
ed on the most restrictive type of bisimulations, on
regular bisimulations.

First we prove the following theorem.

Theorem 3.1 Let N and N ′ be fuzzy networks

such that there exists at least one regular bisimula-

tion between N and N ′. Then there exists the great-

est regular bisimulation between N and N ′.

In addition, the greatest regular bisimulation be-

tween N and N ′ is a partial fuzzy function.

Proof. If the family of all regular bisimulations be-
tween N and N ′ is non-empty, it is easy to check
that the union of this family is also a regular bisim-
ulation, and it is the greatest regular bisimulation
between N and N ′.

Next, if ϕ is the greatest regular bisimulation be-
tween N and N ′, then ϕ ◦ ϕ−1 ◦ ϕ is also a regular
bisimulaton between N and N ′, and we conclude
that ϕ ◦ϕ−1 ◦ϕ 6 ϕ. Therefore, ϕ is a partial fuzzy
function.
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The second theorem provides a method for testing
the existence of a regular bisimulation between two
fuzzy networks.

Theorem 3.2 Let N = (A, {Ri}i∈I , {pj}j∈J) and

N ′ = (A′, {R′
i}i∈I , {p

′
j}j∈J ) be fuzzy networks.

Then there is the greatest fuzzy relation ϕ∈LA×A′

which satisfies (16), (17) and

ϕ ◦ p′

j 6 pj , ϕ−1 ◦ pj 6 p′

j , for all j ∈ J. (18)

If, in addition, ϕ satisfies

pj 6 ϕ ◦ p′

j , p′

j 6 ϕ−1 ◦ pj , for all j ∈ J, (19)

then it is the greatest regular bisimulation between

N and N ′.

Otherwise, if ϕ does not satisfy (19), then there is

no any regular bisimulation between N and N ′.

Proof. Evidently, the family of all fuzzy relations
between A and A′ satisfying (16), (17) and (18) is
non-empty, because it contains the empty relation
between A and A′. By the same arguments used in
the proof of Theorem 3.1 we obtain that the union
ϕ of all members of this family is the greatest fuzzy
relation between A and A′ which satisfies (16), (17)
and (18).

If ϕ satisfies (19), then ϕ is a regular bisimula-
tion, and since any regular bisimulation between N
and N ′ must satisfy (16), (17) and (18), and ϕ is
the greatest fuzzy relation between A and A′ which
satisfies these conditions, we conclude that ϕ is the
greatest regular bisimulation between N and N ′.

Suppose that there exists a regular bisimulation
ψ between N and N ′. Then ψ satisfies (16), (17)
and (18), whence ψ 6 ϕ, and consequently,

pj = ψ ◦ p′

j 6 ϕ ◦ p′

j

and
p′

j = ψ−1 ◦ pj 6 ϕ−1 ◦ pj ,

for every j ∈ J , which means that ϕ satisfies (19).
Therefore, if ϕ does not satisfy (19), then there is no
any regular bisimulation between N and N ′.

Note that in the general case the fuzzy relation ϕ
from the previous theorem may be empty. However,
if ϕ satisfies (19), then it must be non-empty.

For fuzzy networks N = (A, {Ri}i∈I , {pj}j∈J)
and N ′ = (A′, {R′

i}i∈I , {p
′
j}j∈J ), by L(N ,N ′) we

denote the subalgebra of L generated by all mem-
bership values taken by fuzzy relations and fuzzy
sets from the families {Ri}i∈I , {R′

i}i∈I , {pj}j∈J and
{p′
j}j∈J .
Now we prove a theorem which provides a proce-

dure for testing the existence of a regular bisimu-
lation between two fuzzy networks and computing
the greatest one, in the case when it exists.

Theorem 3.3 Let N = (A, {Ri}i∈I , {pj}j∈J ) and

N ′ = (A′, {R′
i}i∈I , {p

′
j}j∈J) be fuzzy networks, and

let {ϕk}k∈N be a sequence of fuzzy relations between

A and A′ defined inductively as follows:

ϕ1 =
∧

j∈J

(pj\p′

j) ∧ (pj/p′

j),

ϕk+1 = ϕk ∧
∧

i∈I

(

[Ri\(ϕk ◦R′

i)] ∧ [(Ri ◦ ϕk)/R′

i]

∧ [(R′

i ◦ ϕ−1
k )/Ri]−1 ∧ [R′

i\(ϕ−1
k ◦Ri)]−1

)

,

for each k ∈ N. Then the following is true:

(a) the sequence {ϕk}k∈N is decreasing;

(b) if there is n ∈ N such that ϕn+1 = ϕn, then

(b1) ϕn is the greatest regular fuzzy relation be-

tween A and A′ satisfying (16), (17) and

(18);
(b2) if ϕn satisfies (19), then it is the greatest

regular bisimulation between N and N ′;

(b3) if ϕn does not satisfy (19), there is no any

regular bisimulation between N and N ′;

(c) if A and A′ are finite sets and the subalgebra

L(N ,N ′) satisfies DCC, then {ϕk}k∈N is a fi-

nite sequence and there exists n ∈ N such that

ϕn+1 = ϕn.

Proof. (a) It is clear that {ϕk}k∈N is a decreasing se-
quence.

(b) First we note that for an arbitrary fuzzy rela-
tion ϕ ∈ LA×A′

we have that ϕ 6 ϕ1 if and only if

ϕ 6 pj\p
′

j and ϕ 6 pj/p
′

j

for each j ∈ J , which is equivalent to

ϕ−1 ◦ pj = pj ◦ ϕ 6 p′

j and ϕ ◦ p′

j 6 pj ,

for each j ∈ J . This means that ϕ satisfies the condi-
tion (18) if and only if ϕ 6 ϕ1, and ϕ1 is the greatest
fuzzy relation between A and A′ which satisfies (18).
Consequently, ϕk satisfies (18) for every k ∈ N.

Assume now that ϕn+1 = ϕn for some n ∈ N. For
each i ∈ I, by ϕn = ϕn+1 6 Ri\(ϕn ◦R′

i) it follows
Ri ◦ ϕn 6 ϕn ◦ R′

i, and in a similar way we obtain
that ϕn ◦ R′

i 6 Ri ◦ ϕn, ϕ−1
n ◦ Ri 6 R′

i ◦ ϕ−1
n and

R′
i ◦ ϕ−1

n 6 ϕ−1
n ◦ Ri. Therefore, ϕn satisfies (16),

(17) and (18).
Let ϕ ∈ LA×A′

be an arbitrary fuzzy relation sat-
isfying (16), (17) and (18). Then ϕ 6 ϕ1, since ϕ1

is the greatest fuzzy relation satisfying (18). Sup-
pose that ϕ 6 ϕk, for some k ∈ N. Then for each
i ∈ I we have that

Ri ◦ ϕ = ϕ ◦R′

i 6 ϕk ◦R′

i,

whence it follows

ϕ 6 Ri\(ϕk ◦R′

i).

In the same way we obtain that ϕ 6 (Ri ◦ ϕk)/R′
i,

ϕ 6 [(R′
i ◦ ϕ−1

k )/Ri]−1 and ϕ 6 [R′
i\(ϕ−1

k ◦ Ri)]−1,
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which means that ϕ 6 ϕk+1. Now, by induction we
conclude that ϕ 6 ϕk, for every k ∈ N, and conse-
quently, ϕ 6 ϕn. Therefore, we have proved that ϕn
is the greatest fuzzy relation between A and A′ sat-
isfying (16), (17) and (18).

The assertions (b2) and (b3) follow immediately
by Theorem 3.2.

(c) Let A and A′ be finite sets and the subalgebra
L(N ,N ′) satisfy DCC. For all pairs (a, a′) ∈ A×A′,
we have that {ϕk(a, a′)}k∈N is a descending se-
quence in L(N ,N ′). By the hypothesis, this se-
quence stabilizes, and since there are finitely many
such sequences, we conclude that there is n ∈ N such
that all these sequences stabilize after n steps. Thus,
the sequence {ϕk}k∈N is finite and ϕn+1 = ϕn for
n ∈ N whose existence has been established above.

This completes the proof of the theorem.

The previous theorem provides a procedure to
test whether there is a regular bisimulation be-
tween two fuzzy networks, and in the case that it
exists, the same procedure computes the greatest
one. The procedure builds a descending sequence
of fuzzy relations, in the way shown in Theorem
3.3, and whenever a new member of the sequence is
computed, the procedure checks whether it is equal
to the previously computed members. The proce-
dure terminates as soon as we find the first pair of
equal consecutive members of the sequence, and in
this case, the last computed member is the greatest
fuzzy relation satisfying conditions (16), (17) and
(18). Then, the procedure checks whether this fuzzy
relation satisfies (19). If it satisfies that condition,
then it is the greatest regular bisimulation between
the given fuzzy networks. Otherwise, if it does not
satisfy (19), then there is no any regular bisimula-
tion between these fuzzy networks.

However, the proposed procedure do not neces-
sarily terminate in a finite number of steps. The
termination of the procedure depends on the under-
lying structure of membership values and on the
membership values taken by the fuzzy relations and
fuzzy sets that determine the considered fuzzy net-
works. Theorem 3.3 provides a sufficient condition
for the termination of the procedure in a finite num-
ber of steps, when the subalgebra L(N ,N ′) satisfies
the descending chain condition. For instance, this
condition is satisfied if L is a locally finite algebra,
that is, if every finitely generated subalgebra of L
is finite. The most known locally finite structures
are the Boolean structure and the Gödel structure.
For more information on local finiteness in t-norm
based structures we refer to the recent paper [16].

Assume that I, A and B are finite sets and the
subalgebra L(N ,N ′) satisfies DCC. Let c⊗, c∨, c→

and c∧ are computational costs of the operations ⊗,
∨, → and ∧ in L, and |I|, |A| and |B| the numbers
of elements of I, A and B. It can be shown that any
single step in our procedure can be realized in time
O(|I| · |A| · |B| · (|A| + |B|) · (c⊗ + c∨ + c→ + c∧)).
Values of the corresponding entries of {ϕk}k∈N form

|A| · |B| descending chains of elements of L(N ,N ′),
so there is l ∈ N such that the number of different
elements in each of these chains is less than or equal
to l. Thus, the number of steps in our procedure is
O(l · |A| · |B|) and the total computation time for
the whole procedure is

O(l · |I| · |A|2 · |B|2 · (|A|+ |B|) · (c⊗ + c∨ + c→ + c∧)).

Note that the number l is a characteristic of the se-
quence {ϕk}k∈N and in general it is not a character-
istic of the algebra L(N ,N ′). However, sometimes
the number of different elements in all descending
chains in L(N ,N ′) may have an upper bound l. For
example, if L(N ,N ′) is finite, then we can assume
that l is its number of elements. In particular, if L is
the Gödel structure, then the only values that can
be taken by fuzzy relations {ϕk}k∈N are 1 and those
taken by fuzzy sets and relations that determine N
and N ′, so the number of these values is finite. If this
number is denoted by j, then the total computation
time of the procedure is O(j·|I|·|A|2·|B|2·(|A|+|B|))
(here the operations ⊗, ∨, → and ∧ can be per-
formed in constant time). If L is the Boolean struc-
ture, then j = 2 and the procedure works in time
O(|I| · |A|2 · |B|2 · (|A| + |B|)).

According to Theorem 3.1, if there exists at least
one regular bisimulation between two fuzzy net-
works, then there exists the greatest one, and it is a
partial fuzzy function. However, if we want to estab-
lish some kind of structural similarity between two
fuzzy networks, it is necessary that every actor of
the first network is similar to some actor of the sec-
ond one, and vice versa. In other words, those reg-
ular bisimulations which are surjective L-functions
are especially interesting. It is easy to check that
if there is a regular bisimulation between two fuzzy
networks which is a surjective L-function, then the
greatest one also has this property, i.e., it is a uni-
form fuzzy function. Consequently, we find that it is
very interesting to study those regular bisimulations
which are uniform fuzzy relations.

The next theorem shows that a uniform regu-
lar bisimulation between two fuzzy networks deter-
mines a pair of regular equivalences on these net-
works and an isomorphism between the correspond-
ing quotient fuzzy networks (i.e., an isomorphism
between the positions or roles in these networks),
and vice versa.

Theorem 3.4 Let N = (A, {Ri}i∈I , {pj}j∈J ) and

N ′ = (A′, {R′
i}i∈I , {p

′
j}j∈J ) be fuzzy networks and

let ϕ ∈ LA×A′

be a uniform fuzzy relation. Then ϕ is

a regular bisimulation between N and N ′ if and only

if the following conditions hold:

(i) the kernel of ϕ is a regular equivalence on N ;

(ii) the cokernel of ϕ is a regular equivalence on

N ′;

(iii) ϕ̄ is an isomorphism of quotient networks

N/EϕA and N ′/EϕA′ .
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Proof. Let EϕA = α and EϕA′ = α′. By Theorem 4.2
[7] it follows that α = ϕ◦ϕ−1 and α′ = ϕ−1 ◦ϕ, and
for all ψ ∈ CR(ϕ), a, b ∈ A and a′ ∈ A′ we have

ϕ(a, ψ(b)) = α(a, b) and ϕ(a, a′) = α′(ψ(a), a′)).

Suppose that ϕ is a regular bisimulation. Then for
each i ∈ I we have that

α ◦Ri = ϕ ◦ ϕ−1 ◦Ri = ϕ ◦R′

i ◦ ϕ−1

= Ri ◦ ϕ ◦ ϕ−1 = Ri ◦ α,

and for each j ∈ J we have that

pj ◦ α = pj ◦ ϕ ◦ ϕ−1
6 p′

j ◦ ϕ−1
6 pj 6 pj ◦ α,

whence pj ◦α = pj . Thus, α is a regular equivalence
on N . In the same way we show that α′ is a regular
bisimulation on N ′.

Next, for arbitrary i ∈ I, a, b ∈ A and ψ ∈ CR(ϕ)
we have that

R̄′

i(ϕ̄(αa), ϕ̄(αb)) = R̄′

i(α
′

ψ(a), α
′

ψ(b))

= (α′ ◦R′

i ◦ α′)(ψ(a), ψ(b))

= (ϕ−1 ◦Ri ◦ ϕ)(ψ(a), ψ(b))

=
∨

c,d∈A

ϕ−1(ψ(a), c) ⊗Ri(c, d) ⊗ ϕ(d, ψ(b))

=
∨

c,d∈A

α(a, c) ⊗Ri(c, d) ⊗ α(d, b)

= (α ◦Ri ◦ α)(a, b)

= R̄i(αa, αb).

Also, for each j ∈ J by (10) and (11) it follows

ϕ−1 ◦ pj 6 ϕ−1 ◦ ϕ ◦ p′

j = α′ ◦ p′

j = p′

j 6 ϕ−1 ◦ pj ,

so ϕ−1 ◦ pj = α′ ◦ p′
j , and for all j ∈ J , a ∈ A and

ψ ∈ CR(ϕ) we obtain that

p̄′

j(ϕ̄(αa)) = p̄′

j(α
′

ψ(a)) = (α′ ◦ p′

j)(ψ(a))

= (ϕ−1 ◦ pj)(ψ(a))

=
∨

b∈A

ϕ−1(ψ(a), b)) ⊗ pj(b)

=
∨

b∈A

α(a, b)) ⊗ pj(b)

= (α ◦ pj)(a) = p̄j(αa).

Therefore, ϕ̄ is an isomorphism of quotient networks
N/EϕA and N ′/EϕA′ .

Conversely, assume that (i), (ii) and (iii) hold.
For all j ∈ J , a ∈ A and ψ ∈ CR(ϕ) we have that

pj(a) = (pj ◦ α)(a) = p̄j(αa) = p̄′

j(ϕ̄(αa))

= p̄′

j(α
′

ψ(a)) = (p′

j ◦ α′)(ψ(a))

=
∨

a′∈A′

p′

j(a
′) ⊗ α′(a′, ψ(a))

=
∨

a′∈A′

p′

j(a
′) ⊗ ϕ(a, a′) = (ϕ ◦ p′

j)(a),

so pj = ϕ◦p′
j = p′

j◦ϕ
−1. In the same way, using ϕ−1

instead of ϕ, we obtain that p′
j = ϕ−1 ◦ pj = pj ◦ϕ.

On the other hand, using the fact that α and α′

are regular fuzzy equivalences on N and N ′, respec-
tively, ϕ = ϕ ◦ ϕ−1 ◦ ϕ = α ◦ ϕ = ϕ ◦ α′, α ◦ α = α
and α′ ◦ α′ = α′, for an arbitrary i ∈ I we obtain

Ri ◦ ϕ = Ri ◦ α ◦ α ◦ ϕ = α ◦Ri ◦ α ◦ ϕ,

and similarly,

α′ ◦R′

i ◦ α′ = α′ ◦R′

i.

Moreover, for all a, b ∈ A and ψ ∈ CR(ϕ) we obtain

(α ◦Ri ◦ α)(a, b) = R̄i(αa, αb)

= R̄′

i(ϕ̄(αa), ϕ̄(αb)) = R̄′

i(α
′

ψ(a), α
′

ψ(b))

= (α′ ◦R′

i ◦ α′)(ψ(a), ψ(b)).

Now, for arbitrary a ∈ A, a′ ∈ A′ and ψ ∈ CR(ϕ)
we have that

(Ri ◦ ϕ)(a, a′) = (α ◦Ri ◦ α ◦ ϕ)(a, a′)

=
∨

b∈A

(α ◦Ri ◦ α)(a, b) ⊗ ϕ(b, a′)

=
∨

b∈A

(α′ ◦R′

i ◦ α′)(ψ(a), ψ(b)) ⊗ α′(ψ(b), a′)

6
∨

b′∈A′

(α′ ◦R′

i ◦ α′)(ψ(a), b′) ⊗ α′(b′, a′)

= (α′ ◦R′

i ◦ α′ ◦ α′)(ψ(a), a′)

= (α′ ◦R′

i)(ψ(a), a′)

=
∨

c′∈A′

α′(ψ(a), c′) ⊗R′

i(c
′, a′)

=
∨

c′∈A′

ϕ(a, c′) ⊗R′

i(c
′, a′)

= (ϕ ◦R′

i)(a, a
′),

and thus, Ri ◦ ϕ 6 ϕ ◦ R′
i. In a similar way, using

ϕ−1 and (ϕ̄)−1 instead of ϕ and ϕ̄, we prove the
opposite inequality. Hence, Ri ◦ϕ = ϕ ◦R′

i. Also, in
a similar way we prove that ϕ−1 ◦Ri = R′

i ◦ ϕ−1.
Therefore, we have proved that ϕ is a regular bi-

simulation between networks N and N ′.

4. Concluding remarks

In this paper we have defined two types of simula-
tions and five types of bisimulations for fuzzy social
networks, but due to limitations in the length of the
paper, we have discussed only one of them – regular
bisimulations. In our further research we intend to
perform a deeper study of all types of simulations
and bisimulations. This is particularly important if
we have in mind an example provided by Bryniels-
son et al. [4], which shows that the so-called simula-
tion equivalences can identify social positions that
cannot be identified by means of regular equiva-
lences. Consequently, which type of equivalence re-
lations or bisimulations is interesting to consider de-
pends on the problem at hand, and it is necessary
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to consider several different types of these relations
for given networks, in order to understand them it
completely.
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