
Fast String Searching Mechanism
Petr Hurtik, Petra Hodakova, Irina Perfilieva

University of Ostrava, Centre of Excellence IT4Innovations,
Institute for Research and Applications of Fuzzy Modeling,

30. dubna 22, 701 03 Ostrava 1, Czech Republic

Abstract

The goal of this study is to introduce a novel exact
string searching (i.e., matching) method based on
the fuzzy transform, or F-transform (FTSS). The
theoretical background of the F-transform, specif-
ically the Fs-transform, s ≥ 0, for functions of
one variable is reviewed, and a string searching al-
gorithm based on this theory is presented. The
algorithm is demonstrated with several examples.
The results are compared with those of three ex-
isting string searching algorithms: Knuth-Morris-
Pratt (KMP), Boyer-Moore (BM) and Rabin-Karp
(RK).

Keywords: Big data, Pattern searching, String
searching, F-transform, Fs-transform, Generalized
fuzzy partition

1. Introduction

As the computational power of computers (e.g.,
personal and servers) increases, the amount of
stored data similarly increases. On the one hand,
greater computational power allows higher pro-
cessing speeds. On the other hand, higher com-
putational speeds allow the processing of greater
amounts of data. In fact, the volume of data has
become so large that processing it has become prob-
lematic, and it has been named “big data”. The
term ”big data” is not defined by a crisp value of
size (see e.g., [3]). The size changes with time and
depends on many factors such as the cost of storage,
computational power, and the read/write speed.
Moreover, these factors change rapidly over time.
For example, Figures 1 and 2 illustrate the growth in
the single hard-disk storage capacity and the com-
putational power of computers in recent years.
There exist many different types of “big data”

and different reasons to process them. In general,
the common feature in processing big data is search-
ing through the data. Therefore, in this study, we
focus on search methods for big data sets. More
specifically, we focus on the task of string search-
ing.

Pattern searching can be separated into three
types of approaches. The first type is finding an
exact string match. For example, in the case of text
strings, if we search for the word pattern “salami”
in the given database, we obtain a positive an-
swer if and only if the database contains the ex-

act word “salami”. The second type is finding a
partial match and allows for minor typographical
errors. For example, the word pattern “salami” can
be matched with similar words such as “saLami”,
“slami”, “alami”. The third type is finding a seman-
tic match, that is, all words with the same meaning
as the pattern word. For example, the word pat-
tern “salami” can be matched with words such as
“ham” or “mortadela”. These different types of pat-
tern searching approaches can also be combined.

In this study, we focus on the first type of ap-
proach to pattern searching, the exact string match,
and we develop a fast string searching method based
on the fuzzy transform, or F-transform [8]. The
main advantage of using the F-transform is that
this technique gives us a simplified representation of
the original data with a significantly shorter length,
which simplifies the processing task. For refer-
ence, we also implement three well-known string
searching algorithms: Knuth-Morris-Pratt (KMP)
[5]; Boyer-Moore (BM) [6] and Rabin-Karp (RK)
[7]. These algorithms were published in 1977 (KMP
and BM) and 1987 (RK). We evaluate whether these
algorithms remain applicable to big data in the 21st

century. We present several examples with different
parameters, such as the length of the searched pat-
tern, and we compare the results obtained using the
four algorithms.

The paper is organized as follows: Section 2 for-
mulates the problem of string searching and reviews
the three common searching algorithms. In Section
3, we introduce a string searching method based on
the Fs-transform, s ≥ 0 and review several basic
concepts of the Fs-transform. The examples and
comparisons of the resulting search times are pre-
sented in Section 4. Conclusions and comments are
provided in Section 5.

2. Exact string searching problem

As mentioned previously, searching for an exact
string match is one type of pattern search. We are
given a database that contains one type of data, for
example, text, music, time series, or images. The
data are in the form of a set of strings of numbers
(symbols). We are also given a pattern, i.e., a short
string of symbols. The task is to search for the pat-
tern in the database in its exact form. A detailed
description is given in the following.

16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

© 2015. The authors - Published by Atlantis Press 412

Figure 1: The growth in the single hard-disk storage
capacity in recent years. Image was taken from [10].

Figure 2: The computational power of computers in
recent years. Image was taken from [4].

2.1. Problem description

Formally, we define o as a string of symbols repre-
sented by o : T → Σ, where T = {1, . . . , tmax} is
a set of positions of symbols and Σ is a predefined
alphabet of symbols. More specifically, we define
two types of strings o:

1. long string database oD : TD → Σ where TD =
{1, ..., tDmax},

2. short string pattern oP : TP → Σ where TP =
{1, ..., tPmax},

such that tPmax ≤ tDmax.
If there is a match, we say that an occurrence of

oP in oD is true at a position s ∈ TD if (s+ tPmax−
1) ≤ tDmax, and the following holds:

∀j ∈ TP : oD
s+j−1 = oP

j ,

where oD
s+j−1 and oP

j denote the symbols at the
(s + j − 1)-th and j-th positions in oD and oP , re-
spectively. Otherwise, we say that an occurrence of
oP in oD is false.
The problem is to find all occurrences of the pat-

tern oP in the database oD. In the following, we
will refer to this problem as string searching.
In the naive approach, a sliding comparison is per-

formed between the pattern oP and the database
oD. For this comparison, the following measure of

closeness is used:

Cl(oD, oP) =
|T P |∑
j=0
|o(t+ j)− oP (j)|, t ∈ TD. (1)

The complexity of the naive approach is then
O(tDmax · tPmax − tPmax). This method is very com-
putationally complex and therefore time consum-
ing. In general, the naive approach (also called
the “brute force” approach) represents the worst
case (the slowest solution) from the perspective of
the time complexity of string searching algorithms.
One study[2] showed that searching by the naive ap-
proach can be very time consuming. For example,
searching for a sound pattern with tPmax = 6.4 s in
a database of sound recordings with tDmax = 13200 s
required approximately 11 hours. Therefore, we
seek a faster method for data processing problems
such as this.

In the following section, we review three standard
string searching algorithms.

2.2. Reference algorithms

In this section, we briefly describe the basic prin-
ciples of three commonly used string searching al-
gorithms. These algorithms were developed at
roughly the same time as the first personal com-
puters, when computers were not in common use.
Computers at that time were intended for commer-
cial/professional use and lacked "user-friendly" in-
terfaces. Currently, the amount of data is increas-
ing rapidly, and thus, the problem of big data is
attracting increasing attention.

All of the algorithms presented in the following
consist of two parts: preprocessing and searching.
We note that the preprocessing step depends on the
pattern form, i.e., any change in the pattern influ-
ences the preprocessing step and its computation
time. Therefore, preprocessing must be performed
separately for each pattern.

2.2.1. Knuth-Morris-Pratt (KMP) algorithm

This algorithm was developed independently by
Knuth, Morris and Pratt and published jointly in
1977; see [5]. The principle of the algorithm is that
each symbol in a database has to be inspected only
once. A shift table is created in the preprocessing
step. The preprocessing time is tPmax. Each value in
the shift table characterizes the length of the max-
imal proper prefix of that part of the pattern that
is the suffix. For example, if the pattern AAABC is
searched for in the database AAACBAFVAC..., af-
ter first matching AAA, the search continues with
C, not B. For this position, the value in the shift
table is 2, and the comparison with the database
continues at AFVAC.... The time required for con-
structing the shift table is O(tPmax). The complexity
of the main string search is O(tDmax).

413

2.2.2. Boyer-Moore (BM) algorithm

Similar to the KMP algorithm, the BM algorithm
(cf. [6]) preprocesses the data with a shift table
known as the good suffix shift. The preprocess-
ing step includes the creation of a bad character
shift table. Unlike the KMP and RK algorithms,
the BM algorithm processes from right to left. The
time complexity of this algorithm is O(tDmax +tPmax),
but the worst-case complexity is equal to that of
the naive approach. Usually, the complexity is sub-
linear, and the original study [6] showed that the
BM algorithm works faster for lengthier alphabets.

2.2.3. Rabin-Karp (RK) algorithm

The third algorithm [7] was published in 1987. The
main principle of this algorithm is to use hash val-
ues. Before computing the hash values, the symbols
are converted to numbers using ASCII, UTF-8, or
a similar character set. The preprocessing step con-
sists of computing the hash values of the pattern,
which has complexity O(tPmax). The complexity of
the main string searching step is O(tDmax).

3. Proposed approach - string searching
based on the F-transform

The main principle of our approach is to apply the
F-transform to the string pattern oP and to the data
string oD. In doing so, we obtain simplified repre-
sentations with much shorter lengths. Then, rather
than comparing oP with oD, we compare only the
F-transform components of oP and oD. Specifically,
rather than comparing O(tDmax · tPmax− tPmax) combi-
nations, we compare only O(tD

max

h ·
tP

max

h −
tP

max

h) com-
binations. Therefore, this approach significantly re-
duces the computational complexity. We would like
to emphasize that our approach can be applied to
many types of data such as time series, text, DNA
sequences, or SETI project data.
In the following sections, we review the formal

definition of the Fs-transform, s ≥ 0, and then, we
describe the proposed algorithm based on this the-
ory in more detail.

3.1. Fs-transform, s ≥ 0, for functions of one
variable

In this section, we assume that the reader is familiar
with the main concept of the ordinary F-transform
[8]. The F-transform with constant components can
be extended to the F-transform of a higher degree
- the Fs-transform, s ≥ 0 - with s-degree polyno-
mial components [9]. With respect to this exten-
sion, the original F-transform can be denoted as the
F0-transform.
Generally, the F-transform depends on a chosen

fuzzy partition. In the following, we review the def-
inition of a generalized fuzzy partition [1]. Then,

we introduce a particular Hilbert space as a back-
ground for the definition of the Fs-transform, s ≥ 0.

3.1.1. Generalized Fuzzy Partition

Definition 1 Let x0, x1, . . . , xn, xn+1 ∈ [a, b] be
fixed nodes such that a = x0 ≤ x1 < . . . < xn ≤
xn+1 = b, n ≥ 2. The fuzzy sets A1, . . . , An :
[a, b] → [0, 1] constitute a generalized fuzzy par-
tition of [a, b] if for every k = 1, . . . , n, there exist
h
′

k, h
′′

k ≥ 0 such that h′k+h′′k > 0, [xk−h
′

k, xk+h′′k] ⊆
[a, b] and the following conditions are satisfied:

1. (locality) – Ak(x) > 0 if x ∈ (xk − h
′

k, xk + h
′′

k)
and Ak(x) = 0 if x ∈ [a, b] \ (xk − h

′

k, xk + h
′′

k);
2. (continuity) – Ak is continuous on [xk −

h
′

k, xk + h
′′

k];
3. (covering) – for x ∈ [a, b],

∑n
k=1 Ak(x) > 0.

By the locality and continuity conditions, it fol-
lows that ∫ b

a

Ak(x)dx > 0.

If the nodes x0 = x1, x2, . . . , xn−1, xn = xn+1
are h-equidistant, i.e., for all k = 2, . . . , n, xk =
xk−1 + h, where h = (b− a)/(n− 1), h′ > h/2, and
if two additional properties

4. h′1 = h
′′

n = 0, h′′1 = h
′

2 = · · · = h
′′

n−1 = h
′

n = h
′ ,

and Ak(xk−x) = Ak(xk +x) for all x ∈ [0, h′],
k = 2, . . . , n− 1;

5. Ak(x) = Ak−1(x−h) and Ak+1(x) = Ak(x−h)
for all x ∈ [xk, xk+1], k = 2, . . . , n− 1;

are satisfied, then the fuzzy partition is called a
(h, h′)-uniform generalized fuzzy partition. More-
over, if h = h′, then we say that a fuzzy partition is
h-uniform.

3.1.2. Space L2(Ak), subspace Ls
2(Ak)

Let interval [a, b] be a universe and {Ak | k =
1, . . . , n} be an (h, h′)-uniform generalized fuzzy
partition of [a, b]. Throughout this section, we fix
one Ak from the chosen fuzzy partition.
Let L2(Ak) be a Hilbert space of square-

integrable functions f : [xk−1, xk+1] → R with the
inner product 〈f, g〉k given by

〈f, g〉k =
∫ xk+1

xk−1

f(x)g(x)Ak(x)dx. (2)

Remark 1 The functions f, g ∈ L2(Ak) are or-
thogonal in L2(Ak) if

〈f, g〉k = 0. (3)

In the sequel, we denote by L2([a, b]) a set of func-
tions f : [a, b] → R such that for all k = 1, . . . , n,
f |[xk−1,xk+1] ∈ L2(Ak), where f |[xk−1,xk+1] is the re-
striction of f on [xk−1, xk+1].

414

Moreover, let space Ls
2(Ak), s ≥ 0, be a closed

linear subspace of L2(Ak) with an orthogonal basis
given by the polynomials

{Si
k(x)}i=0,...,s,

where i denotes the degree of the polynomial and
orthogonality is defined in terms of (3). For exam-
ple, L1

2(Ak) is a linear subspace of L2(Ak) with an
orthogonal basis given by the polynomials:

S0
k(x) = 1, S1

k(x) = x− xk.

The following lemma characterizes the orthogonal
projection of a function f ∈ L2([a, b]) or the best
approximation of f in the space Ls

2(Ak).

Lemma 1 Assume f ∈ L2([a, b]) and let Ls
2(Ak)

be a closed linear subspace of L2(Ak), as specified
previously. Then, the orthogonal projection F s

k of
f |[xk−1,xk+1] on Ls

2(Ak), s ≥ 0, is

F s
k =

s∑
i=1

ci
kS

i
k (4)

where

ci
k = 〈f, Si

k〉k
〈Si

k, S
i
k〉k

=

∫ xk+1
xk−1

f(x)Si
k(x)Ak(x)dx∫ xk+1

xk−1
(Si

k(x))2Ak(x)dx
. (5)

The proof can be found in [9].

3.2. Direct Fs-transform, s ≥ 0

Let [a, b] be the universe and let {Ak | k = 1, . . . , n}
be the (h, h′)-uniform generalized fuzzy partition
of [a, b]. Moreover, assume f ∈ L2([a, b]) and let
Ls

2(Ak), s ≥ 0, k = 1, . . . , n, be a space with a basis
given by

{Si
k(x)}i=1,...,s.

Next, we define the direct F s-transform of the
given function f .

Definition 2 Assume f ∈ L2([a, b]), and let F s
k ,

s ≥ 0 be the orthogonal projection of f |[xk−1,xk+1]
on Ls

2(Ak), k = 1, . . . , n given by (4). We say that
the n-dimensional vector Fs

n[f] = (F s
1 , . . . , F

s
n) is

the direct F s-transform of f with respect to {Ak |
k = 1, . . . , n}, where F s

k , k = 1, . . . , n are called the
F s-transform components.

3.2.1. Direct F1-transform

In this section, we briefly discuss the (direct) F1-
transform of functions from L2([a, b]). The F1-
transform will be used subsequently in this study.
Let L1

2(Ak) ⊆ L2(Ak) be a linear span of the set
consisting of two orthogonal polynomials

S0
k(x) = 1, S1

k(x) = x− xk, (6)

whereAk from the chosen fuzzy partition is assumed
to be symmetric with respect to xk, k = 1, . . . , n.
Analogous to the general Fs-transform, s ≥ 0, in

the following we introduce the F1-transform, which
has components in the form of linear polynomials.

Definition 3 Assume f ∈ L2([a, b]) and let F 1
k be

the orthogonal projection of f |[xk−1,xk+1] on subspace
L1

2(Ak), k = 1, . . . , n, with a basis given by (6).
The n-dimensional vector F1

n[f] = (F 1
k), k =

1, . . . , n is the F 1-transform of f with respect to
{Ak | k = 1, . . . , n}, and F 1

k is the corresponding
F 1-transform component represented by

F 1
k (x) = c0

k + c1
k(x− xk), (7)

where the coefficients c0
k, c1

k are given by (5).

The following theorem provides approximations
of the function f and its first derivative f ′ using
the coefficients of the F1-transform and estimates
of the quality of the approximations.

Theorem 1 Assume f ∈ L2([a, b]), and let
{Ak | k = 1, . . . , n}, n ≥ 2, be an (h, h′)-uniform
generalized fuzzy partition of [a, b]. Let F1

n[f] =
(F 1

1 , . . . , F
1
n), where F 1

k = c0
k + c1

k(x − xk), k =
1, . . . , n is the F 1-transform of f with respect to the
given partition.

• Let functions f , Ak, k = 1, . . . , n be twice con-
tinuously differentiable on [a, b]. Then, for ev-
ery k:

c0
k = f(xk) +O(h′2).

• Let functions f , Ak, k = 1, . . . , n, be four times
continuously differentiable on [a, b]. Then, for
every k:

c1
k = f ′(xk) +O(h′2).

The proof is analogous to that for the h-uniform
fuzzy partition introduced in [9].

3.2.2. Discrete case of F1-transform

Let us consider the discrete case, where the value
of the original function is known only at discrete
points. The data used in the examples in this study
are represented by discrete elements.

The discrete (direct) F1-transform is defined as
follows.

Definition 4 Let a function f : [a, b] → R be de-
fined at discrete points P = {(pi) | i = 1, . . . , N}.
Let {Ak | k = 1, . . . , n} be a fuzzy partition of [a, b]
where x0, x1, . . . , xn+1 ∈ [a, b] are fixed nodes. Sup-
pose that the set P is sufficiently dense with respect
to the chosen partition, i.e.,

∀k ∃i; Ak(pi) > 0.

We say that the n-dimensional vector F1
n[f] =

(F 1
1 , . . . , F

1
n) is the discrete F1-transform of f with

respect to the chosen partition if for all k = 1, . . . , n
and pi ∈ P

F 1
k (pi) = c0

k + c1
k(pi − xk), (8)

415

where the coefficients c0
k, c1

k are given as follows

c0
k =

∑N
i=1 f(pi)Ak(pi)∑N

i=1 Ak(pi)
,

c1
k =

∑N
i=1 f(pi)(pi − xk)Ak(pi)∑N

i=1(pi − xk)2Ak(pi)
.

3.3. Proposed algorithm based on the
F1-transform (FTSS)

The principle of our approach is as follows. We
apply the F1-transform to the strings oD and oP .
Then, we compare the components of the F1-
transforms F1

n[oD] and F1
m[oP] by computing the

closeness of the coefficients c1
k,oD and c1

k,oP (see (8));
i.e., we compute Cl(c1

k,oD , c
1
k,oP) (given by (1)). We

use the F1-transform because it is sensitive to local
changes in the analyzed string (unlike the F0 trans-
form, which produces only average values and thus
does not follow the linear structure of a string).
The measure Cl(c1

k,oD , c
1
k,oP) is used to detect po-

tential occurrences of the pattern. By this we mean
that if Cl(c1

k,oD , c
1
k,oP) is less than the value of the

predefined threshold θ, then the corresponding sub-
string of oD is close to the pattern oP and is there-
fore a candidate for a match.
The algorithm iterates with respect to the pa-

rameter h from the chosen (h, 2h)-uniform general-
ized fuzzy partition (h denotes the distance between
nodes from the partition). More specifically, we use
a large value of h (e.g., h = 10000) in the first step
of the algorithm, and we find and mark the “suspi-
cious” sub-strings of oD as described above. In the
second step, we focus only on the chosen sub-strings
from the previous step and create a new partition
with the smaller value of h. Then, we repeat the
procedure with decreasing values of the parameter
h. This approach enables us to process less data,
and therefore we can achieve a faster search by mak-
ing the algorithm sequentially more accurate.
The algorithm consists of the following steps:

Input: Strings oD and oP , h, θ.
S 1: Compute F1

n[oD] = (F 1
1 , . . . , F

1
n)oD w.r.t. the

(h, 2h)-uniform generalized fuzzy partition.
S 2: Compute F1

m[oP] = (F 1
1 , . . . , F

1
m)oP w.r.t. the

same fuzzy partition.
S 3: Compute the closeness Cl(c1

k,oD , c
1
k,oP).

S 4: Find and mark sub-strings of oD for which
Cl(c1

k,oD , c
1
k,oP) less than the chosen threshold

θ.
If no sub-strings are found, go to Output a).

S 5: Replace oD by a union of the marked sub-
strings (from the previous step); reduce the
value of the parameter h, e.g., h = h/10.

S 6: Repeat steps S 1 - S 5 until h = 1.
S 7: Choose the sub-strings of oD with

Cl(c1
k,oD , c

1
k,oP) = 0.

If no sub-strings are found, go to Output a).

Figure 3: An example of recognition of pattern oP

(on the right side) in signal oD (on the left side). 1.
signals representations, 2.-4. iterative procedure
with decreasing values of h (and increasing number
of the corresponding components), 5. the found and
highlighted occurrence of oP in oD.

Output: a) The pattern has no occurrences in the
database.

b) The first coordinate in oD that corre-
sponds to an occurrence.

In step S 4), the threshold θ can be given by user
arbitrarily, or it can be computed as:

θ = m · max
i=1,...,m−1

|c1
i,oP − c1

i+1,oP |,

where m denotes the number of components of
F1

m[oP].
An example of the iterative procedure for search-

ing for the pattern oP in the signal oD with decreas-
ing values of h is illustrated in Figure 3.

In Figure 4, we show the steps of the algorithm
in the form of a flow chart. This diagram indicates
the dependencies between the partial steps of the
algorithm.

4. Experiments and results

The four search algorithms - RK, BM, KMP, and
FTSS - were implemented on a notebook computer:
an ASUS with an i7 4500U CPU and a clock speed
of 1.8 GHz. These algorithms were implemented in
C++ with the QT framework.

For our experiments, we chose two alphabets with
different lengths. The first one, |Σ| = 5, simu-

416

Figure 4: Demonstration of partial steps of the al-
gorithm in the form of a flow chart.

lates special computer applications such as DNA
sequences. The second one, |Σ| = 30, simu-
lates standard text. For both alphabets, we ran-
domly created three types of databases, tDmax ∈
{1 · 106, 1 · 107, 1 · 108}, and two types of patterns,
tPmax ∈ {1 · 104, 1 · 105}, based on different lengths.
For each trial of the algorithms, we randomly cre-
ated one type of database and one type of pattern as
characterized previously. We tested two cases, one
in which the pattern occurs in the database and one
in which it does not.
The processing times for each of the algorithms

are given in the following Tables 1 - 4. The process-
ing times are the average values of ten trials of the
algorithm. The execution time is measured in ms.

For the three standard algorithms - KMP, BM,
and RK - the preprocessing time is included in the
processing time because the preprocessing part is
dependent on the chosen pattern. In the case of
the FTSS algorithm, we distinguish the preprocess-
ing time (FSSS F1

m[oP] , the computation of the
F1-transform components of the pattern oP), the
processing time (FTSS closeness, the computation
of Cl(c1

k,oD , c
1
k,oP)) and their summation (FTSS to-

tal). The computation of F1
n[oD] = (F 1

1 , . . . , F
1
n)oD

is not included because this step is executed only
one time and the result can be used for searching
for all of the patterns.
All of the tests were successful in that all actual

occurrences of the pattern were found and marked
in the correct place in the database, and no false
occurrences of the pattern were found or marked.

Tables 1 and 2 show the results for the databases
created from the alphabet with length |Σ| = 30.
We can observe that the fastest results were ob-
tained by the BM algorithm. However, in the case

of tDmax = 1 · 107 and tDmax = 1 · 108, the FTSS al-
gorithm was significantly faster than the KMP and
RK algorithms and was in several cases comparable
with the BM algorithm.

Tables 3 and 4 show the results for the databases
created from the alphabet with length |Σ| = 5. In
this case, we can observe that the BM algorithm
was slower than in the previous case where |Σ| = 30,
whereas the FTSS algorithm had processing times
similar to those in the previous case. Moreover, the
results for the FTSS algorithm were comparable to
those of the BM algorithm and in some cases better.

We can conclude that the BM algorithm is very
fast for “long” (i.e., many symbols) alphabets,
whereas for “short” (i.e., few symbols) alphabets,
the results are comparable to those of the other al-
gorithms. The performance of the proposed FTSS
algorithm is less sensitive to the length of the alpha-
bet; i.e., it is very fast and the length of alphabet
does not affect the processing speed.

Table 1: Processing time for the pattern tPmax =
3 · 104 and the alphabet |Σ| = 30.
Algorithm tD

max =
1 · 106

tD
max =

1 · 107
tD
max =

1 · 108

Pattern is in db
KMP 1 44 442
RK 1 40 441
BM 1 1 31
FTSS F1

m[oP] 1 1 1
FTSS closeness 1 1 30
FTSS total 2 2 31
Pattern is not in db
KMP 6 42 442
RK 3 32 328
BM 1 1 32
FTSS F1

m[oP] 3 1 1
FTSS closeness 1 16 281
FTSS total 4 17 282

5. Conclusion

We proposed a new string searching algorithm that
is based on the F-transform (FTSS). In short, this is
a brute-force-style algorithm applied to transformed
data using the F-transform. Three standard search-
ing algorithms, the KMP, RK and BM algorithms,
were compared to the FTSS algorithm. The com-
parison was performed on examples with various
databases, patterns and alphabets. The results of
these examples showed that, among the standard
algorithms, the best results were achieved by the
BM algorithm. However, the BM algorithm was
sensitive to the length of the alphabet. All three
algorithms have linear complexity with a multiplier
of approximately 1. The proposed FTSS algorithm
has sub-linear complexity with a multiplier of ap-
proximately 0.5. Moreover, this algorithm is not
sensitive to the length of an alphabet. As a result,

417

Table 2: Processing time for the pattern tPmax =
3 · 105 and the alphabet |Σ| = 30.
Algorithm tD

max =
1 · 106

tD
max =

1 · 107
tD
max =

1 · 108

Pattern is in db
KMP 10 62 414
RK 6 42 328
BM 1 1 31
FTSS F1

m[oP] 39 31 32
FTSS closeness 3 8 30
FTSS total 42 39 62
Pattern is not in db
KMP 12 48 449
RK 4 32 347
BM 1 3 28
FTSS F1

m[oP] 25 24 22
FTSS closeness 1 15 22
FTSS total 26 39 44

Table 3: Processing time for the pattern tPmax =
3 · 104 and the alphabet |Σ| = 5.
Algorithm tD

max =
1 · 106

tD
max =

1 · 107
tD
max =

1 · 108

Pattern is in db
KMP 10 68 692
RK 6 34 328
BM 3 24 213
FTSS F1

m[oP] 5 1 5
FTSS closeness 1 2 15
FTSS total 6 3 20
Pattern is not in db
KMP 11 70 703
RK 1 34 390
BM 3 18 172
FTSS F1

m[oP] 3 1 1
FTSS closeness 6 44 217
FTSS total 9 45 218

Table 4: Processing time for the pattern tPmax =
3 · 105 and the alphabet |Σ| = 5.
Algorithm tD

max =
1 · 106

tD
max =

1 · 107
tD
max =

1 · 108

Pattern is in db
KMP 17 74 724
RK 4 35 328
BM 1 23 187
FTSS F1

m[oP] 39 26 46
FTSS closeness 4 8 5
FTSS total 43 34 51
Pattern is not in db
KMP 17 79 703
RK 3 32 328
BM 1 20 191
FTSS F1

m[oP] 18 26 27
FTSS closeness 3 32 81
FTSS total 21 58 108

the FTSS algorithm has better performance than
the BM algorithm in cases with a short alphabet.

To conclude, the FTSS algorithm demonstrated
universality and good potential in solving similar
problems in various applications. Our future re-
search will be focused on the analysis of the param-
eters that affect the performance of the proposed
algorithm such as the rate of decrease of the pa-
rameter h, the multiplier in the estimation of com-
plexity.

Acknowledgment

The research was supported by the Euro-
pean Regional Development Fund in the
IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070) and SGS13/PRF/2015.

References

[1] Perfilieva, Irina. "F-transform." in:
J. Kacprzyk, W. Pedrycz (Eds.), Hand-
book of Computational Intelligence, Springer,
Berlin, Heidelberg, 2014, in press.

[2] Hodakova, Petra, Irina Perfilieva, and Petr
Hurtik. "F-transform and Its Extension as Tool
for Big Data Processing." Information Pro-
cessing and Management of Uncertainty in
Knowledge-Based Systems, Communications
in Computer and Information Science, 444
(2014): 374–383.

[3] Jacobs, Adam. "The pathologies of big data."
Communications of the ACM 52.8 (2009): 36–
44.

[4] Kurzweil, Ray. "The singularity is near: When
humans transcend biology." Penguin, 2005.

[5] Knuth, Donald E., James H. Morris, Jr, and
Vaughan R. Pratt. "Fast pattern matching
in strings." SIAM journal on computing 6.2
(1977): 323–350.

[6] Boyer, Robert S., and J. Strother Moore. "A
fast string searching algorithm." Communica-
tions of the ACM 20.10 (1977): 762–772.

[7] Karp, Richard M., and Michael O. Rabin.
"Efficient randomized pattern-matching algo-
rithms." IBM Journal of Research and Devel-
opment 31.2 (1987): 249–260.

[8] Perfilieva, Irina. "Fuzzy transforms: Theory
and applications." Fuzzy Sets and Systems, 157
(2006) 993–1023.

[9] Perfilieva, Irina, Martina Daňková and Barn-
abas Bede. "Towards a higher degree F-
transform." Fuzzy Sets and Systems, 180
(2011) 3–19.

[10] Hutchinson, Lee. Information explosion: how
rapidly expanding storage spurs innovation.
ArsTechnica [online]. 2011. Available at:
http://arstechnica.com/business/2011/09/in-
formation-explosion-how-rapidly-expanding-
storage-spurs-innovation/

418

