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Abstract

The previous correlation measures for hesitant fuzzy
sets proposed in the literature only capture the
strength of the correlations. We present a new
approach based on the classical Pearson correlation
coefficient for crisp values. In this way we can ex-
press not only the strength of the relationship be-
tween two hesitant fuzzy sets, but also whether they
are positively or negatively associated.
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1. Introduction

The correlation coefficient is a classical tool in sta-
tistical analysis that aims to measure the joint rela-
tionship or interdependence among variables. The
Pearson correlation coefficient is the most common
specification and scientists and engineers often take
this correlation coefficient for granted. However,
practitioners often observe that precise data are not
always available in many applications (see [1], [2],
[3], [4], [5], [6], [7]).
Fuzzy set theory is a powerful tool to model im-

precise and vague situations. Since the appearance
of the fuzzy sets some extensions of this concept
have been developed. Among them, we are inte-
rested in the generalization of fuzzy sets known as
hesitant fuzzy sets. They were introduced by Torra
[8]. Rodríguez et al. [7] is a recent authoritative
survey.

The main characteristic of hesitant fuzzy sets
(HFSs) is that they are defined in terms of a set
of several possible membership values for each ele-
ment in the domain. This makes them distinctive
with fuzzy sets and other existing extensions. The
HFSs allow to deal with some practical situations
where establishing the membership degree is diffi-
cult and there is hesitation.

Although correlation measures for hesitant fuzzy
information were discussed in Xu and Xia [9], they
were not designed for HFSs. Besides, Cheng et al.
[10] have defined a correlation coefficient for HFSs
based on the idea of informational energy (see [11]).

In this paper, we discuss the concept of corre-
lation for imprecise data described by HFSs. We
propose new correlation coefficients based on the

concept imported from Statistics. They reflect the
spirit of the classical Pearson correlation coeffi-
cient for crisp data. Consequently, they show the
strength of the relationship and whether a positive
or negative relationship exists between the HFSs.

The remainder of this paper is organized as fo-
llows. In Section 2, we introduce basic notation and
preliminaries about hesitant fuzzy sets. Section 3 is
devoted to review the idea of correlation: the fuzzy
set approach and the classical point of view. Section
4 provides our proposal of new approaches for build-
ing correlation coefficients for hesitant fuzzy sets as
well as their main properties. Finally, we present
some concluding remarks.

2. Notation and preliminaries

We briefly describe some basic concepts related to
hesitant fuzzy sets and some tools needed farther
along.

The concept of HFSs was introduced as a genera-
lization of Fuzzy sets. They permit several possible
membership values in [0, 1] for a single element in
the reference set. The definition is cited below.

Let P∗([0, 1]) be the set of all subsets of the uni-
tary interval [0, 1] and let F∗([0, 1]) be the set of
non-empty finite subsets of [0, 1].

Definition 1 (Torra [8]) Let S be a reference
set. A hesitant fuzzy set (HFS) on S is a function
h : S → P∗([0, 1]).

If within each image the subset in P∗([0, 1]) is a
singleton, then the HFS degenerates into a fuzzy set
(with no hesitation over the membership degree), as
it was mentioned in Alcantud and de Andres Calle
[12].

Definition 2 (Xia and Xu [1]). A hesitant fuzzy
element (HFE) is a non-empty finite subset h of
[0, 1]. The set of all HFEs is F∗([0, 1]).

A HFE represents the set of all possible mem-
bership values on an specific alternative. Based on
Defintion 2, Xia and Xu [1] expressed a HFS with
useful mathematical representation as follows:

E = {〈s, hE(s)/s ∈ S}

where hE(s) ∈ F∗([0, 1]) is a HFE that expresses
the possible membership degrees of s to the set E.
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A notion connected with HFEs is its cardinality.
Given a HFE hE(s), lE(s) stands for its cardinality,
which is also known as the length of the HFE. In
case of a degenerated HFS, this cardinality is 1 for
all its HFEs.
We write hE(s) = {(hE(s))(1), . . . , (hE(s))(lE(s))}

where (hE(s))(j) is the j−th element in hE(s) when
its elements are ordered in an increasing order.
Following the recommendation in Rodríguez et

at. [7], we keep the name HFS although we are con-
cerned with the definition of typical hesitant fuzzy
set in [13]. Henceforth, a HFS on S is a function
h : S → F∗([0, 1]). When S is finite, HFSs are tra-
ditionally depicted in tabular representation. We
use this standard description thoroughly along the
paper.
Next, we recall some tools we need later to design

new correlation coefficients in Section 4, that is, the
Extension Principle and scoring functions.

The Extension Principle allows to export func-
tions and operations on fuzzy sets to HFS. It was
proposed by Torra and Narukawa [14] as follows:

Definition 3 (Torra and Narukawa [14]).
Let Θ be a function Θ : [0, 1]n → [0, 1]
and H = {h1, . . . , hn} a set of HFSs defined on
the same reference set S. We export Θ defining
ΘH = ∪γ∈h1(s)×...×hn(s){Θ(γ)}.

The term score function for HFEs has been in-
troduced by Xia and Xu [1] and then used by
Farhadinia [3] with a slightly different formulation.
Nevertheless the goal is the same, a way to com-
pare HFE. For a HFE h = {h1, . . . , hl(h)}, two es-
tablished score functions are given as follows:

• Xia and Xu [1]

sc(h) = 1
l(h)

l(h)∑
j=1

hj (1)

• Farhadinia [3]

Sc(h) =

l(h)∑
j=1

δ(j)hj

l(h)∑
j=1

δ(j)

(2)

where {δ(1), . . . , δ(l(h))} is a monotonic increasing
sequence of index j compounded of positive values.
Therefore, sc(h) in Equation (1), according to Xia

and Xu [1], is the arithmetic average of the values
in h and Sc(h) in Equation (2), according to Farha-
dinia [3], is a weighted mean of the ordered values

in h with weights δ(j)∑l(h)
j=1 δ(j)

.

3. On correlation measurement

This section addresses the correlation measures
from the fuzzy set approach and the classical Pear-
son correlation coefficient.

3.1. Correlation in Fuzzy set theory

Correlation coefficients have been a tool in fuzzy
decision making models for a long time. Essen-
tially there have been two broad approaches. One
of them produces correlation coefficients into the
interval [0, 1] and the other approach provides the
corresponding correlation coefficients into the inter-
val [−1, 1]. So, in the former approach only the
strength of relationship is evaluated, and in the lat-
ter, also a positive and negative type of a relation-
ship is reflected.

As for the extension of the concept of correlation
coefficient to the fuzzy setting, we find many papers
under different perspectives. We point out some of
them.

A number of authors consider an entropy-
related measure from which they define correlation
coefficients into the interval [0, 1]. In this line,
Dumitrescu [11] developed the so-called correlation
coeffficient between two fuzzy sets and Gerstenkorn
and Mańko [15] gave the correlation coefficient of
two intuitionistic fuzzy sets. Their works were
followed by Bustince and Burillo [16] for interval-
valued intuitionistic fuzzy sets.

On other side, some authors have presented cor-
relation coefficients between Atanassov’s intuition-
istic fuzzy sets ranging in the interval [−1, 1], like
Hung and Wu (see [17]) and Szmidt et at. (see [18])
among others.

Regarding fuzzy numbers, we also find some def-
initions where the correlation coefficient is a value
in [0, 1], like Yu [19] and others where the correla-
tion coefficient ranges in [−1, 1], like Chiang and Lin
[20]. Other definitions produce correlation coeffi-
cients that are fuzzy numbers, rather than a crisp
value (e.g. see [21] and [22]).

As for hesitant fuzzy sets, a correlation coefficient
has been defined in the vein of those ranging in [0, 1]
by Chen et al. [10]. In contrast to that approach
we are going to propose new correlation coefficients
ranging in [−1, 1] in this paper.
Other extensions of the notion of correlation coef-

ficient in fuzzy environment can be mentioned, e.g.
for linguistic variables (see [23]) and for dual hesi-
tant fuzzy sets (see [24]).

3.2. The classical Pearson correlation
coefficient

Although the meaning of correlation seems intu-
itively clear, diverse attempts of formalization have
appeared. We focus on the classical correlation
coefficient defined by Pearson (see [25] and [26],
among others).
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The purpose of a correlation measure is to capture
the dependence between two variables in terms of
their tendency to increase or decrease either in the
same or the opposite direction. If an increase in the
first variable tends to come along with an increase in
the other variable, then the correlation is positive.
On the contrary, if a rise in the first variable tends
to come along with a fall in the other one, then
the correlation is negative. If there is no relation of
either kind, the correlation is zero or close to zero.

The correlation coefficient between HFSs intro-
duced in Chen et al. [10] does not fulfill the classical
perspective because it does not capture the direc-
tion of the relation. However, our proposals in this
paper do it.

Now we recall the definition of the Pearson corre-
lation coefficient between two variables.

Definition 4 Assume a sample of n ≥ 2 subjects
(or experimental units) along with a sequence of
paired values from two vectors X and Y in Rn, that
is, (x1, y1), . . . , (xn, yn). The Pearson correlation
coefficient between X and Y is given by

cor(X, Y ) =

n∑
i=1

(xi −X)(yi − Y )√√√√ n∑
i=1

(xi −X)2

√√√√ n∑
i=1

(yi − Y )2

(3)

where X = 1
n

n∑
i=1

xi and Y = 1
n

n∑
i=1

yi are the arith-

metic means of X and Y , respectively.

3.3. Properties

The Pearson correlation coefficient has well-known
properties (see e.g. [27]). To name but a few:

(1) cor(x, y) = cor(y, x).
(2) cor(x, y) ∈ [−1, 1].
(3) If x′ = a+bx and y′ = cy+d where a, b, c, d ∈ R,

cor(x′, y′) = cor(x, y).
(4) cor(x, y) = 1 or cor(x, y) = −1 if there exists

a perfect linear relation between x and y with
slope positive or negative, respectively.

(5) cor(x, x) = 1.

The Pearson correlation coefficient shows the
strength of the association through its absolute
value. And it also highlights if the relation is posi-
tive or negative by means of the sign. So, the closer
the value to either +1 or −1, the stronger the (posi-
tive or negative) relation.

4. New correlation coefficients between two
hesitant fuzzy sets

Based on the conceptual idea of the correlation des-
cribed in subsection 3.2, we devote this section to
develop correlation coefficients to measure the asso-
ciation between two HFSs.

Firstly, we propose to use the Extension Princi-
ple (Definition 3) in order to extend the correla-
tion coefficient defined by Equation (3) to HFSs.
Secondly, we provide new definitions of correlation
coefficients based on the score functions (Equations
(1) and (2)). We introduce both definitions as well
as relevant properties.

4.1. A new correlation coefficient between
two hesitant fuzzy sets based on the
Extension Principle

We proceed to present the construction of a corre-
lation coefficient between two HFS by means of the
Extension Principle.

Generally speaking, the Pearson correlation coef-
ficient is a function defined over paired real values
on the n subjects, cor : (R × R)n → [−1, 1]. So,
it is clear that paired hesitant fuzzy sets must be
involved. Accordingly, we define a version of paired
HFS, which is inspired in the extension principle
below.

Along this subsection we let S = {s1, . . . , sn} be
a reference set, and we fix two HFSs on S, namely
X = {〈s, hX(s)〉 /s ∈ S} and Y = {〈s, hY (s)〉 /s ∈
S}.

Definition 5 The paired HFEs of the HFSs X
and Y on S are the Cartesian products of hX(si)×
hY (si) for each si, i ∈ {1, . . . , n}. Hence, each
paired HFE comprises all pairs of elements such that
the first element of the pair is from hX(si) and the
second one is from hY (si), i.e.

hX(si)× hY (si) =
= {(γX , γY ) /γX ∈ hX(si), γY ∈ hY (si)}

In other words, we can also specify hX(si) ×
hY (si) as the collection of all pairs(

(hX(si))(j), (hY (si))(k)
)

where j ∈ {1, . . . , lX(si)} and k ∈ {1, . . . , lY (si)}

In this vein, we consider the paired HFS of two
HFSs, X and Y, as the set of all paired HFEs for
each si ∈ S,

RHFS = ∪si∈ShX(si)× hY (si) =

=
{ (

(hX(si))(j), (hY (si))(k)
)}

where i ∈ {1, . . . , n}, j ∈ {1, . . . , lX(si)} and
k ∈ {1, . . . , lY (si)}

The total number of pairs of values in RHFS is

|RHFS | =
n∑
i=1

(lX(si)× lY (si))

Definition 6 The correlation coefficient between
X and Y is

ρ
HF S

(X,Y ) = cor(x, y) (4)
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where (x, y) are the pairs of values in RHFS.

Hence, we state the correlation coefficient of X
and Y as the value obtained when the Pearson
correlation coefficient (Equation (3)) is computed
from the pairs of values in RHFS . The most de-
tailed formal expression is as follows:

ρ
HF S

(X,Y ) = SSC(hX , hY )√
SS(hX)

√
SS(hY )

(5)

where SSC(hX , hY ) =

=
n∑

i=1

lX (si)∑
j=1

lY (si)∑
k=1

(
hX(si))(j) − hX

) (
hY (si))(k) − hY

)
hX = 1

|RHF S |

n∑
i=1

lY (si)

(
lX (si)∑

j=1

(hX(si))(j)

)
and

hY = 1
|RHF S |

n∑
i=1

lX(si)

(
lY (si)∑

j=1

(hY (si))(j)

)

Thus, hX and hY are the arithmetic means of
the corresponding values of the first and second
elements of the pairs, respectively.

SS(hX) =
n∑

i=1

lY (si)

(
lX (si)∑

j=1

(
(hX(si))(j) − hX

)2

)

SS(hY ) =
n∑

i=1

lX(si)

(
lY (si)∑

j=1

(
(hY (si))(j) − hY

)2

)

Remark 1 In the crisp case, the Pearson corre-
lation coefficient between two variables is not de-
fined when one of them is constant, i.e. when all
its values coincide. In such a case, Equation (3)
does not make sense. It is well known that the di-
vision by zero is not defined mathematically. The
usual position is that under coincidences like that,
it is pointless to study correlation.
We would have an analogous situation here

if one of the hesitant fuzzy sets, X or Y ,
has coincident membership degrees for all
HFEs. For instance, S = {s1, s2, s3} and
{(s1, {0.7}), (s2, {0.7}), (s3, {0.7})}. Then the
corresponding SS(hX) or SS(hY ) would be 0 and
the denominator in Equation (5) would be zero.
Exactly as in crisp context, we assume that a such
kind of coincidence does not happen.

Unlike the previous proposal in Chen et at. [10],
Definition 6 allows to operate correctly without
any assumption about the length of the HFEs and
without adding elements to the HFEs for the pur-
pose of the computations.

Example 1 below shows how to compute the
correlation coefficient ρ

HF S
in a practical case.

X

Y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8
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●

●

●

●

●

●

●

●

s1 s2 s3 ●

Figure 1: Scatter plot of the pairs in the Example 1

Example 1 Consider the following example from
Chen et at. [10, Ex. 2, p. 2201]. Let X and Y be
two HFSs on S = {s1, s2, s3} defined as
X = {(s1, {0.7, 0.5}), (s2, {0.9, 0.8, 0.6}),
(s3, {0.5, 0.4, 0.2})} and
Y = {(s1, {0.4, 0.2}), (s2, {0.8, 0.5, 0.4}),
(s3, {0.7, 0.6, 0.3})}.

We start building the set RHFS of pairs (see Ta-
ble 1). Figure 1 shows a scatter plot of the pairs in
Table 1. Then, we use Equation (5) to calculate the
correlation coefficient.
hX = 0.57272, hY = 0.5045, SSC(hX , hY ) =
0.0327, SS(hX) = 1.0436, SS(hY ) = 0.7695.
Finally, ρ

HF S
(X,Y ) = 0.0327√

1.0436
√

0.7695 = 0.0365.
This value is near zero in agreement with the Figure
1.

hX(s1)× hY (s1) hX(s2)× hY (s2) hX(s3)× hY (s3)
0.7 0.4 0.9 0.8 0.5 0.7
0.7 0.2 0.9 0.5 0.5 0.6
0.5 0.4 0.9 0.4 0.5 0.3
0.5 0.2 0.8 0.8 0.4 0.7

0.8 0.5 0.4 0.6
0.8 0.4 0.4 0.3
0.6 0.8 0.2 0.7
0.6 0.5 0.2 0.6
0.6 0.4 0.2 0.3

Table 1: Pairs of the Cartesian Product for the HFS
of the Example 1

Note that when X and Y are degenerate HFSs,
i.e., all the HFEs into X and Y have cardinality
1, and expressions (4) or (5) are applied, the
correlation coefficient ρ

HF S
(X,Y ) boils down to

the classical Pearson correlation coefficient between
two variables (Equation (3)).

In order to illustrate negative and positive asso-
ciations between two HFS, we present Examples 2
and 3 below.
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Example 2 Let S = {s1, s2, s3} and the HFSs
on S given by Table 2. The corresponding paired
HFEs are:

hX(s1)× hY (s1) = {(0.05, 0.3) , (0.1, 0.3),
(0.15, 0.3), (0.05, 0.4), (0.1, 0.4), (0.15, 0.4),
(0.05, 0.5), (0.1, 0.5), (0.15, 0.5)}

hX(s2)× hY (s2) = {(0.2, 0.5), (0.3, 0.5),
(0.4, 0.5), (0.2, 0.6), (0.3, 0.6), (0.4, 0.6),
(0.2, 0.7), (0.3, 0.7), (0.4, 0.7)}

hX(s3)× hY (s3) = {(0.4, 0.7), (0.5, 0.7),
(0.6, 0.7), (0.4, 0.8), (0.5, 0.8), (0.6, 0.8), (0.4, 0.9),
(0.5, 0.9), (0.6, 0.9) }

X Y
s1 {0.05, 0.1, 0.15 } {0.3, 0.4, 0.5 }
s2 {0.2, 0.3, 0.4 } {0.5, 0.6, 0.7 }
s3 {0.4, 0.5, 0.6 } {0.7, 0.8, 0.9 }

Table 2: HFSs X and Y in Example 2

Thus, we form a total number of pairs of (3 ×
3) + (3× 3) + (3× 3) = 27. We use them for com-
puting hX = 0.3, hY = 0.6, SSC(hX , hY ) = 0.72,
SS(hX) = 0.855 and SS(hY ) = 0.9.
Now, following Definition 6, we compute the corre-
lation coefficient through Equation (5) and we ob-
tain ρ

HF S
(X,Y ) = 0.8207827.

Example 3 In the situation of Example 2, con-
sider now the HFSs defined in Table 3.

X Y ′

s1 {0.05, 0.1, 0.15 } {0.7, 0.8, 0.9 }
s2 {0.2, 0.3, 0.4 } {0.5, 0.6, 0.7 }
s3 {0.4, 0.5, 0.6 } {0.3, 0.4, 0.5 }

Table 3: HFSs X and Y ′ in Example 3

The corresponding paired HFEs are:

hX(s1)× hY (s1) = {(0.05, 0.7) , (0.1, 0.7),
(0.15, 0.7), (0.05, 0.8), (0.1, 0.8), (0.15, 0.8),
(0.05, 0.9), (0.1, 0.9), (0.15, 0.9)}

hX(s2)× hY (s2) = {(0.2, 0.5), (0.3, 0.5),
(0.4, 0.5), (0.2, 0.6), (0.3, 0.6), (0.4, 0.6),
(0.2, 0.7), (0.3, 0.7), (0.4, 0.7)}

hX(s3)× hY (s3) = {(0.4, 0.3), (0.5, 0.3),
(0.6, 0.3), (0.4, 0.4), (0.5, 0.4), (0.6, 0.4), (0.4, 0.5),
(0.5, 0.5), (0.6, 0.5) }

Thus, we form a total number of pairs of (3×3)+
(3× 3) + (3× 3) = 27. We use them for computing
hX = 0.3, hY = 0.6, SSC(hX , hY ) = −0.72,
SS(hX) = 0.855 and SS(hY ) = 0.9.

X

Y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6

● ● ●
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(a) Positive association
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(b) Negative association

Figure 2: Scatter plots of the pairs in the Example
2 (a) and in the Example 3 (b).

Now, following the Definition 6, we compute the
correlation coefficient with Equation (3) from those
pairs and we obtain ρ

HF S
(X,Y ′) = −0.8207827.

Note that the strength of the relation is the same
for both examples, but the sign of the correlation
coefficient is different. This indicates the direction
of the relationship. Figure 2 displays the scatter
plot of the corresponding pairs. The direction of
the association is clearly noticeable.

4.1.1. Properties

The correlation coefficient introduced in Definition
6 has the following properties. Let X and Y be two
HFSs on S.

(1) ρ
HF S

(X,Y ) = ρ
HF S

(Y,X)
It states that this correlation coefficient is sym-
metric.

(2) −1 ≤ ρ
HF S

(X,Y ) ≤ 1
The most usual range of values for a correla-
tion coefficient is reached with this specific def-
inition.

(3) ρ
HF S

(X,Y ) = 1 or ρ
HF S

(X,Y ) = −1 if and
only if the pairs in RHFS are in a straight line.
It shows how the extreme values of the range
can be attained by this correlation coefficient.

We omit the proofs of these properties because
they are straightforward from the corresponding
properties of the coefficient correlation between two
real numerical vectors.

Note that property (3) implies that even if the
HFSsX and Y are equal, then the correlation coeffi-
cient ρ

HF S
(X,Y ) does not necessarily take the value

1 as the following example shows.

Example 4 Suppose X = Y = {(s1, {0.7, 0.5}),
(s2, {0.9, 0.8, 0.6}), (s3, {0.5, 0.4, 0.2})}. Then some
algebra produces
ρ

HF S
(X,Y ) = ρ

HF S
(X,X) = 0.6933798.

If we want to design X and Y where either
ρ

HF S
(X,Y ) = 1 or ρ

HF S
(X,Y ) = −1, then we need

that both X and Y be degenerate HFSs (i.e., that
all their HFEs have cardinality 1) and also the pairs
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Figure 3: Scatter plot of the pairs in the Example 4

in RHFS must be in a straight line. Otherwise, at
least one paired HFE contains some elements out of
an straight line because of its construction.

Note that property (5) of Pearson correlation
coefficient is not verified for Definition 6. This fact
is shown in Example 4.

4.2. New correlation coefficients between
two hesitant fuzzy sets based on score
functions

We now introduce new correlation coefficients
between two hesitant fuzzy sets. It fulfills that the
maximum value (+1) can be reached whenever the
two HFSs are equal.
In order to achieve our goal, we con-

vert the initial problem, i.e. the quan-
tification of the correlation between two
HFSs, into a related question, namely, the
computation of the correlation coefficient between
the scores of the corresponding HFSs in the
following precise terms.

Let S = {s1, . . . , sn} be a reference set and let
X = {〈s, hX(s)〉 /s ∈ S} and Y = {〈s, hY (s)〉 /s ∈
S} be two HFSs on S. We consider a score function
sc, which is applied on the HFEs of X and Y . It
provides sc(hX(si)) and sc(hY (si)), i ∈ {1, . . . , n}.

Definition 7 The score correlation coefficient be-
tween the HFS, X and Y is defined as the correla-
tion coefficient calculated from Equation (3) applied
to pairs ( sc(hX(si)), sc(hY (si)) ), i ∈ {1, . . . , n}.
The specific expression is as follows

ρsc(X,Y ) = SSC(sc(hX), sc(hY ))√
SS(sc(hX))

√
SS(sc(hY ))

(6)

where

Xsc = 1
n

n∑
i=1

sc(hX)(si) Y sc = 1
n

n∑
i=1

sc(hY )(si),

SS(sc(hX)) =
n∑
i=1

(
sc(hX)(si)−Xsc

)2

SS(sc(hY )) =
∑n
i=1
(
sc(hY )(si)− Y sc

)2

SSC(sc(hX), sc(hY )) =

=
n∑
i=1

(sc(hX)(si)−Xsc)(sc(hY )(si)− Y sc).

Obviously, the score function plays a role in the
final result. The goal of this paper is not to in-
troduce a new definition of score function, then we
use the traditional scores defined by Xia and Xu [1]
and Farhadidnia [3] in order to put in practice our
methodology in the following example.

Example 5 Example 1 continued.
Let X and Y be as in Example 1. Firstly, we use the
score function given by Xia and Xu (Equation (1))
on all the HFEs in X and Y . We display the results
in Table 4. We compute the correlation coefficient
by means of Equation (6) and the obtained result is
ρsc(X,Y ) = 0.019.

sc(hX)(si) sc(hY )(si)
s1 0.6 0.3
s2 0.7667 0.5667
s3 0.3667 0.5333

Table 4: Results of applying the score function in
Equation (1) to Example 1.

Secondly, we use the score function given by
Farhadinia (Equation (2)), the associated correla-
tion coefficient is different. The values obtained by
applying that score function to the HFEs in X and
Y appear in Table 5. The computations produce
ρSc(X,Y ) = 0.0607.

Sc(hX)(si) Sc(hY )(si)
0.64 0.34

0.82667 0.64667
0.42667 0.6134

Table 5: Results of applying the score function in
Equation (2) to Example 1.

4.2.1. Properties

Definition 7 satisfies the following properties. LetX
and Y be two HFSs on S and sc be a score function.

(1) If X = Y , then ρsc(X,Y ) = 1.
It means that the correlation between two iden-
tical HFSs is always 1.

(2) ρsc(X,Y ) = ρsc(Y,X).
It ensures that this score correlation coefficient
is symmetric.

(3) −1 ≤ ρsc(X,Y ) ≤ 1.
It gives the range of values that the score corre-
lation coefficient can assume.
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(4) ρsc(X,Y ) = 1 or ρsc(X,Y ) = −1 if and
only if the pairs ( sc(hX(si)), sc(hY (si)) ),
i ∈ {1, . . . , n} are in a straight line.
This property identifies when the extreme
values are reached.

Proof 1 Consider first property (1). If two HFSs
are equal then their HFEs are equal too. Conse-
quently, the values of the score function for the
HFEs coincide as well. That is, sc(hX(si)) =
sc(hY (si)) for i ∈ {1, . . . , n} when X = Y . There-
fore, property (1) is obvious from Equation (6).
Properties (2) - (4) result directly from the corres-

ponding properties of the correlation coefficient
between two real numerical vectors.

We use this new score correlation coefficient
between HFSs for the HFSs X and Y given in the
previous Examples 2 and 3 in order to illustrate
positively and negatively correlated HFSs, respec-
tively.

Example 6 Example 2 continued.
Suppose we have the HFSs X and Y given in Exam-
ple 2. First, we compute the score function (Equa-
tion (1)) on the HFEs in X and Y . We obtain the
values in Table 6.

s1 s2 s3
sc(hX)(si) 0.1 0.3 0.5
sc(hY )(si) 0.4 0.6 0.8

Table 6: Results of applying the score function (1)
to Example 2.

Second, we calculate Xsc = 0.3, Y sc = 0.6,
SS(sc(hX)) = 0.08, SS(sc(hY )) = 0.08,
SSC(sc(hX), sc(hY )) = 0.08.
Applying Equation (6) the score correlation coeffi-
cient is ρsc(X,Y ) = 1. Therefore, this is an exam-
ple where the correlation is 1 and the HFSs involved,
X and Y , are not equal.

s1 s2 s3
Sc(hX)(si) 0.12 0.34 0.54
Sc(hY )(si) 0.44 0.64 0.84

Table 7: Results of applying the score function 2 to
Example 2.

In the same way as before, when we use the score
function given by Farhadinia (Equation (2)), we ob-
tain a different result. After using that score func-
tion, the values are in Table 7. We make the corres-
ponding calculations XSc = 0.3333, Y Sc = 0.64,
SS(Sc(hX)) = 0.0883, SS(Sc(hY )) = 0.08,
SSC(Sc(hX), Sc(hY )) = 0.084. And the score
correlation coefficient is ρSc(X,Y ) = 0.9996223.

Example 7 Example 3 continued.
Now, we assume that we have the HFSs X and Y

given in Example 3. Using the score function in
Equation (1) we obtain the values in Table 8.

s1 s2 s3
sc(hX)(si) 0.1 0.3 0.5
sc(hY )(si) 0.8 0.6 0.4

Table 8: Results of applying the score function 1 to
Example 3.

After some computations we have Xsc = 0.3,
Y sc = 0.6, SS(sc(hX)) = 0.08, SS(sc(hY )) = 0.08,
SSC(sc(hX), sc(hY )) = −0.08.
And through Equation (6), we have that the score
correlation coefficient is ρ

Sc
(X,Y ) = −1.

s1 s2 s3
Sc(hX)(si) 0.12 0.34 0.54
Sc(hY )(si) 0.84 0.64 0.44

Table 9: Results of applying the score function 2 to
Example 3.

Analogously to the previous example, now we
use Farhadinia’s score function given by Equation
(2). The computed values are in Table 9. Then,
we compute again XSc = 0.3333, Y Sc = 0.64,
SS(Sc(hX)) = 0.0883, SS(Sc(hY )) = 0.08,
SSC(Sc(hX), Sc(hY )) = −0.084. And the
score correlation coefficient yields ρSc(X,Y ) =
−0.9996223.

Our examples emphasize the existence of posi-
tively (see Example 6) and negatively (see Example
7) correlated HFSs.

5. Concluding remarks

In this work we introduce new correlation coeffi-
cients for hesitant fuzzy sets based on the classi-
cal definition of the Pearson correlation coefficient
for crisp values. We first present the correlation
coefficient that results from applying the Extension
Principle directly. Then, other correlation coeffi-
cients are built through score functions. All these
coefficients provide us with the magnitude of the
relationship and they also distinguish whether the
hesitant fuzzy sets are positively or negatively corre-
lated. We also show their main properties.

The proposed correlation coefficients can be used
in applications where the concept of correlation is
required but the information is available in form of
hesitant fuzzy sets, since the presence of uncertainty
and ambiguity prevents classical analysis.
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