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Abstract

Medoid clustering frequently gives better results
than those of the K-means clustering in the sense
that a unique object is the representative element of
a cluster. Moreover the method of medoids can be
applied to nonmetric cases such as weighted graphs
that arise in analyzing SNS(Social Networking Ser-
vice) networks. A general problem in clustering is
that asymmetric measures of similarity or dissim-
ilarity are difficult to handle, while relations are
asymmetric, e.g., in SNS user groups. In this pa-
per we consider hard and fuzzy c-medoids for asym-
metric graphs in which a cluster has two different
centers with outgoing directions and incoming direc-
tions. This method is applied to a small illustrative
example and real data of a Twitter user network.

Keywords: fuzzy c-medoids, asymmetric dissimi-
larity, SNS.

1. Introduction

Clustering [3, 2, 8] is becoming a major tool in data
mining with applications to SNS (Social Network-
ing Service) analysis [4]. Two features should be
noted in analyzing such networks: first, the ba-
sic space is not Euclidean, i.e., an inner product
is not defined. Second, asymmetric relations in net-
works should frequently be analyzed. These two fea-
tures induce problems in applying standard meth-
ods of clustering. Concretely, most clustering tech-
niques are based on symmetric dissimilarity mea-
sures and many important methods assume Eu-
clidean spaces. There are two approaches to over-
come such problems. First way is to transform an
asymmetric relation into symmetric one, and then
use a positive-definite kernel to introduce an Eu-
clidean space [14, 12]. Second way is to design a
new method in order to handle asymmetric data,
which we adopt in this paper.

K-Medoids [5], which minimize the summation of
dissimilarity between the medoid and other points
in a cluster, and fuzzy c-medoid clustering [6] pro-
vide a natural idea when non-Euclidean space is
given. Medoid clustering is frequently appropriate
in the sense that a unique object is the representa-
tive element of a cluster. In this paper we extend
fuzzy c-medoids to asymmetric weighted graphs by
identifying two centers in a cluster.

The rest of this paper is organized as follows. Sec-
tion 2 proposes the formulation and algorithms of
hard and fuzzy c-medoids clustering to asymmetric
graphs. A parameter is introduced to distinguish
three options of handling medoids with outgoing di-
rections and incoming directions. Section 3 shows
numerical examples of a small data set for illustra-
tion purpose and also a larger data set of a real
Twitter network. Finally, Section 4 concludes the
paper.

2. K-medoids and Fuzzy c-medoids for
Asymmetric Networks

We begin with notations. Assume that (X, d) is
given in which X = {x1, x2, . . . , xN } is a set of ob-
jects for clustering;

d : X × X → [0, +∞)

is a dissimilarity measure which is asymmetric,
i.e., d(x, y) ̸= d(y, x) in general. We assume also
d(x, x) = 0 for simplicity. A cluster is denoted by
Gi (i = 1, . . . , c). For hard clusters, Gi forms a
partition of X:

c∪
i=1

Gi = X, Gi ∩ Gj = ∅ (i ̸= j).

In the case of fuzzy clusters, the above relations do
not hold but we assume

c∑
i=1

µGi(xk) = 1, ∀xk ∈ X

instead.

2.1. Basic K-medoids clustering

Let us suppose d(x, y) is symmetric for the moment.
To apply K-means, the squared Euclidean distance
between arbitrary vectors in a space has to be cal-
culated. However, K-medoids can classify data if
we can calculate dissimilarity between an arbitrary
pair of objects. Thus K-medoids can be applied to
a data set that forms nodes of a network with dis-
similarity on edges. In K-medoids, a cluster center
is not a centroid but a representative point in the
cluster: a cluster center is thus given by the follow-
ing:

vi = arg min
x∈Gi

∑
y∈Gi

d(x, y), (1)
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where Gi is a crisp cluster.
K-means minimize the summation of the squared

Euclidean distance between the centroid of a cluster
and points in the cluster. In contrast, K-medoids
minimize the summation of dissimilarity between
the medoid and points in the cluster.

A basic K-medoid clustering can be described as
the alternate optimization [2, 9]:

J1(U, V ) =
c∑

j=1

N∑
k=1

ukid(xk, vi)

with the constraint on U :

MU = {U = (uki) :
c∑

j=1
ukj = 1, ∀k; ukj ≥ 0, ∀k, j}

and another constraint on V = (v1, . . . , vc):

MV = {V = (v1, . . . , vc) : vj ∈ X, ∀j}.

The alternate optimization algorithm is as follows:

K-medoid algorithm.

KMED1: Give an initial value for V̄ .

KMED2: Fix V̄ and find

Ū = arg min
U∈MU

J1(U, V̄ ).

KMED3: Fix Ū and find

V̄ = arg min
V ∈MV

J1(Ū , V ).

KMED4: If the solution (Ū , V̄ ) is convergent,
stop. Else go to KMED2.

End KMED.

The main difference of this algorithm from that of
K-means is that V ∈ MV is imposed.

We immediately have

ūki = 1 ⇐⇒ i = arg min
1≤j≤c

d(xk, v̄j),

where v̄j is given by (1). The optimal solutions ūki

and v̄i are also written as uki and vi for simplicity
without confusion.

2.2. Fuzzy c-medoids for asymmetric
measures

Let us assume that d(x, y) is asymmetric. We in-
troduce a new measure having three variables and
a parameter α ∈ [0, 1]:

D(x, v, w; α) = αd(x, v) + (1 − α)d(w, x).

We moreover assume that either α = 0, α = 1, or
α = 1

2 for simplicity.

We proceed to describe fuzzy c-medoids for asym-
metric measures. For this purpose the following ob-
jective function is considered:

J(U, V, W ) =
c∑

j=1

N∑
k=1

(uki)mD(xk, vi, wi, α), m > 1,

where V = (v1, . . . , vc) and W = (w1, . . . , wc).
Since J(U, V, W ) has three variables, the follow-

ing alternate optimization is used:

Asymmetric fuzzy c-medoid algorithm.

AFCMED1: Give an initial value for V̄ and W̄ .

AFCMED2: Fix V̄ , W̄ and find

Ū = arg min
U∈MU

J(U, V̄ , W̄ ).

AFCMED3: Fix Ū , W̄ and find

V̄ = arg min
V ∈MV

J(Ū , V, W̄ ).

AFCMED4: Fix Ū , V̄ and find

W̄ = arg min
W ∈MV

J(Ū , V̄ , W ).

AFCMED5: If the solution (Ū , V̄ , W̄ ) is conver-
gent, stop. Else go to AFCMED2.

End AFCMED.

Note that when α = 1, W is not used, and if α = 0,
V is not used. In these cases, respective steps of
AFCMED should be skipped.

The optimal solution in AFCMED2 is the fol-
lowing:

uki =

 c∑
j=1

D(xk, vi, wi; α)
1

m−1

D(xk, vj , wj ; α)
1

m−1

−1

, (2)

(xk ̸= vi or xk ̸= wi)
uki = 1, (xk = vi = wi). (3)

while the solutions for V and W are respectively
given as follows:

vi = arg min
zj∈X

N∑
k=1

(uki)mD(xk, zj , wi) (4)

wi = arg min
yj∈X

N∑
k=1

(uki)mD(xk, vi, yj) (5)

2.3. Theoretical properties

We can prove the following theoretical properties of
the solutions of fuzzy c-medoids. First property is
almost trivial and the proof is omitted.

436



Proposition 1 Cluster centers vi and wi given re-
spectively by (4) and (5) satisfy the following:

vi = arg min
zj∈X

N∑
k=1

(uki)md(xk, zj),

wi = arg min
yj∈X

N∑
k=1

(uki)md(yj , xk).

Second property is on the convergence of the algo-
rithm. The convergence criterion in AFCMED5 is
roughly written in terms of (Ū , V̄ , W̄ ). We can also
use the value of objective function, i.e., we stop the
algorithm when the objective function value is not
decreased. Note that the objective function value is
monotonically nonincreasing.

Proposition 2 Suppose we stop the algorithm
when the objective function value is not decreased.
Then algorithm AFCMED necessarily stops, and
the upper bound of the number of iterations is

(
N
c

)2.

The proof is easy when we observe that choice for
all combinations of (vi, wi) ∈ X × X is finite, and
the objective function is monotone nonincreasing.
However,

(
N
c

)2 is generally huge and hence it gives
an unrealistic upper bound.

Third property is on the membership value uki.
We suppose an object xℓ is ‘movable’ to the infinity
in the sense that D(xℓ, vi, wi; α) → ∞ for all 1 ≤
i ≤ c.

Proposition 3 Suppose xk = vi = wi. When α =
1, xk = vi and when α = 0, xk = wi. We then have

uki = max
1≤l≤N

uli = 1.

Suppose xℓ moves to the infinity in the sense that
D(xℓ, vi, wi) → ∞ for all 1 ≤ i ≤ c. Then we have

uℓi → 1
c

, ∀1 ≤ i ≤ c.

The proof is not difficult when we observe the form
of uki in (2). If xk = vi = wi, then D(xℓ, vi, wi; α) =
0 and uki takes it maximum value of uki = 1. If
D(xℓ, vi, wi; α) → ∞, then it is easy to see uℓi → 1

c .

2.4. Hard c-medoids

The function J(U, V, W ) can be used for m = 1 to
derive solutions for K-medoids alias hard c-medoids
for asymmetric dissimilarity measures. The solu-
tions are reduced to the following.

uki =

{
1, i = arg min

1≤j≤c
D(xk, vj , wj)

0, otherwise
,

vi = arg min
zj∈X

∑
xk∈Gi

d(xk, zj),

wi = arg min
yj∈X

∑
xk∈Gi

d(yj , xk).

Proposition 2 holds also for hard c-medoids, since
the argument is the same as that for fuzzy c-
medoids.

3. Examples

3.1. A small example of travelers among
countries

We show a small example for illustrating how the al-
gorithm works. In this example, The data of foreign
traveler in major 19 countries in 2001 from World
Tourism Organization [16] are used. The countries
are South Africa, America, Canada, China, Taiwan,
Hong Kong, Korea, Japan, India, Indonesia, Sin-
gapore, Australia, New Zealand, England, France,
Switzerland, Italy, Thailand, and Malaysia. The
number of travelers nij from country xi to country
xj is given and normalized to similarity

s(xi, xj) = nij∑
l

nil

.

Then s(xi, xj) is transformed to dissimilarity

d(xi, xj) = 1 − s(xi, xj),

except that d(xi, xi) is set to zero for all xi.
Figures 1, 2, and 3 respectively show graphs with

two, three, and four clusters. Clusters are distin-
guished by different colors and we used the hard
c-medoids with m = 1 and α = 1

2 for two medoids
in a cluster. In these figures, some edges are thicker
and others are thinner. Where an edge has higher
similarity, the edge is shown by a thicker arrow.
The two centers vi and wi in each cluster are ex-
pressed by a pentagram and a hexagram. Thus
a hexagram means outer-direction medoid and a
pentagram means inner-direction medoid. We used
Gephi [17], an interactive visualization software for
graph data.

More details about clusters are as follows.

Two clusters:
{ China, Taiwan, Hong Kong, Korea },
with medoids: v = China, w = Korea ;
{ South Africa, America, Canada, Japan,

India, Indonesia, Singapore, Australia, New
Zealand, England, France, Switzerland, Italy,
Thailand, Malaysia },
with medoids: v = America, w = Australia.

Three clusters:
{ China, Taiwan, Hong Kong, Korea },
with medoids: v = China, w = Korea ;
{France, Switzerland, Italy},
with medoids: v = France, w = Switzerland.
{ South Africa, America, Canada, Japan,

India, Indonesia, Singapore, Australia, New
Zealand, England, Thailand, Malaysia },
with medoids: v = America, w = Australia.

Four clusters:
{ China, Taiwan, Hong Kong, Korea, Japan },
with medoids: v = China, w = Korea ;
{France, Switzerland, Italy},
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with medoids: v = France, w = Switzerland.
{America, Canada},
with medoids: v = w = Canada.
{ South Africa, India, Indonesia, Singapore,

Australia, New Zealand, England, Thailand,
Malaysia },
with medoids: v = Singapore, w = Aus-

tralia.

Thus the cluster {China, Taiwan, Hong Kong,
Korea} is stable in the three figures except that
Japan is included in the case of four clusters. Other
large cluster in Figure 1 are subdivided into two
and three clusters in the next two figures, reflecting
geometrical nearness.

Figure 1: classification result of nineteen countries
to two clusters. Clusters are distinguished by dif-
ferent colors. Pentagram implies vi and hexagram
means wi.

Figure 4 is with α = 1, i.e., we use vi alone with-
out wi; Figure 5 shows four clusters with α = 0, i.e.,
we use wi and without the use of vi. In both figures,
clusters are unbalanced: In Figure 4, we have two
small clusters of {Taiwan} and {China}. Third
cluster has right countries of {France, England,
Italy, Switzerland, Australia, America, Canada,
Japan}, and fourth cluster consists of the rest of
the nine countries. In Figure 5 we have three small
clusters of {Australia}, {Switzerland}, and {Eng-
land, France}; fourth cluster consists of the rest of
the countries.

Thus the method using both vi and wi shows
more balanced clusters than other two methods us-
ing only one of vi or wi.

3.2. Twitter user network

A real Twitter user network of Japanese political
parties was used of which the data have been taken

Figure 2: Classification result of nineteen countries
to three clusters. Clusters are distinguished by dif-
ferent colors. Pentagram implies vi and hexagram
means wi.

by the authors. There are five parties in these
tweets: Liberal Democratic Party of Japan, Demo-
cratic Party of Japan, Japanese Communist Party,
New Komeito, and Social Democratic Party. The
data are network among 1, 745 users of these parties
held in the form of asymmetric adjacency matrix
A = (aij) which consists of 0 and 1: user i following
j is represented by aij = 1. The matrix is trans-
formed into asymmetric dissimilarity D = (dij) us-
ing S = (sij) as follows:

S = A + 1
2

A2,

dij = 1 − 1
max

k,l
sk,l

sij , ∀i, j,

dii = 0, ∀i.

We tested three algorithms of the proposed
method using vi and wi (α = 1

2 ), the method using
vi alone (α = 1), and the method using wi alone
(α = 0). All the three methods are with m = 1
(hard c-medoids). One hundred trials with differ-
ent random initial values are made and the Rand
Index (RI) [11] was calculated against the right
party belongingness. Table 1 summarizes the re-
sults. The user groups are well-separated and all
the three methods give rather good RI values. In
particular, the proposed method using both vi and
wi gives the best results among these three meth-
ods.

4. Conclusion

The formulation and algorithms of hard and fuzzy c-
medoids for asymmetric dissimilarity measures have
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Figure 3: Classification result of nineteen countries
to four clusters. Clusters are distinguished by dif-
ferent colors. Pentagram implies vi and hexagram
means wi. A ‘blue’ cluster is with vi = wi at
Canada.

Table 1: The maximum and the average of the
Rand indexes (RI) for three methods: the proposed
method using vi and wi, the method using vi alone,
and the method using wi alone.

Method Max RI Ave. RI
vi and wi 0.95 0.9
vi alone 0.89 0.8
wi alone 0.94 0.88

been proposed and tested using numerical examples.
The method includes three options of α = 0, 1, and
1
2 . The values of α = 0, or 1 mean that a cluster has
only one medoid of vi or wi, while α = 1

2 implies
that a cluster should have two medoids of vi and
wi.

A fundamental problem is that which of α should
be adopted. This problem has no general solution
and dependent on an application domain. It hence
needs further investigation in a specific application
such as SNS networks.

Another problem is that larger computation is
needed than K-means. For such problems, we need
to consider multistage clustering (e.g., [13]) whereby
we can effectively reduce computation. Moreover
an algorithm of k-medoid++ should be considered
which is a variation of k-means++ [1].

As other future studies, the present method
should be compared with other existing meth-
ods (e.g.,[10, 15]) that can handle asymmetric mea-
sures of dissimilarity using large-scale real examples.
Moreover cluster validity criteria (e.g.,[2]) should be
developed for medoid clustering.

Figure 4: Classification result of nineteen countries
to four clusters using vi alone. Clusters are distin-
guished by different colors. Pentagram implies vi.
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