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Abstract

Axiomatic generalizations of OWA operators are
introduces and discussed. First, OMA opera-
tors based on comonotone modularity are re-
called. Then, several kinds of comonotone pseudo-
additivity based OWA generalizations are charac-
terized and exemplified. Some of already known
OWA generalizations are thus seen from new points
of view. In several cases an integral representation
of generalized OWA operators is included.

Keywords: OWA operator, OMA operator,
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1. Introduction

OWA (Ordered Weighted Average) operators were
introduced by Yager in 1988 [31]. Though we
will deal with aggregation functions A : [0, 1]n →
[0, 1] (i. e., non-decreasing functions satisfying
two boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1, for more details see [1, 3, 11]), for-
mally OWA operators can be defined on any real
interval I ⊆ R as follows:

Consider a normed weighting vector w =
(w1, . . . , wn) ∈ [0, 1]n,

n∑
i=1

wi = 1 (observe that w

can be seen as a discrete probability distribution);
then the function OWAw : In → I given by

OWAw(x) =
n∑
i=1

wi xσ(i), (1)

is called an OWA operator (linked to w), where
for x = (x1, . . . , xn) ∈ In the permutation σ :
{1, . . . , n} → {1, . . . , n} satisfies xσ(1) ≥ · · · ≥
xσ(n). Note that xσ(i) = OSn−i+1(x) can be seen
as the (n − i + 1)-th order statistics of the sam-
ple (x1, . . . , xn), i. e., xσ(1) is the maximal value
in (x1, . . . , xn), while xσ(n) is the minimal value in
(x1, . . . , xn).
There are more than 500 papers dealing with

OWA operators, for more information we recom-
mend an exhaustive survey [8]. There are also
several generalizations of OWA operators, such as
GOWA [28], IOWA [30, 31], two-dimensional OWA
[2], IGOWA [19] and others. Three different looks

on generalizations of OWA operators (basic, inte-
gral and axiomatic) are presented and discussed in
our recent paper [23]. The aim of this contribution
is a deeper look on the axiomatic generalizations
of OWA operators. Single axioms required for con-
sidered particular generalizations express expected
properties of aggregation functions required for par-
ticular applications. Our choice of axioms cannot
be exhaustive. Nevertheless, we hope our choice of
single axiomatic frameworks to be sufficiently rep-
resentative.

The paper is organized as follows. In the next sec-
tion, axiomatic characterization of OWA operators
is recalled and generalized into OMA operators. In
Section 3, comonotone pseudo-additive generaliza-
tions of OWA operators are treated, namely ∨-OWA
operators in Subsection 3.1, ∨-OWA operators with
special type of homogeneity in Subsection 3.2 and
⊕-OWA operators based on a generator g in Sub-
section 3.3. Finally, some concluding remarks are
added.

2. Modular generalization of OWA
operators

Grabisch [10] has shown the link between OWA
operators and the Choquet integral. This fact, to-
gether with the axiomatic characterization of the
discrete Choquet integral due to Schmeidler [25],
result into the axiomatic characterization of OWA
operators acting on [0, 1]. Indeed, OWA operators
can be characterized as comonotone additive sym-
metric aggregation functions on [0, 1].

Recall that two vectors x,y ∈ [0, 1]n are said to
be comonotone whenever there is a common per-
mutation σ : {1, . . . , n} → {1, . . . , n} such that
xσ(1) ≥ · · · ≥ xσ(n) and yσ(1) ≥ · · · ≥ yσ(n). More-
over, an aggregation function A : [0, 1]n → [0, 1] is
comonotone additive whenever it satisfies

A(x + y) = A(x) +A(y) (2)

for all comonotone vectors x,y ∈ [0, 1]n such that
x + y ∈ [0, 1]n.
It can be shown that each OWA operator is idem-
potent, OWAw(c, . . . , c) = c for each c ∈ [0, 1] and
for any normed weighted vector w, as well as posi-
tively homogeneous, OWAw(cx) = cOWAw(x) for
any x ∈ [0, 1]n and c ≥ 0 such that also cx ∈ [0, 1]n.
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The additivity property of aggregation functions
can be generalized into the modularity. We say that
an aggregation function A : [0, 1]n → [0, 1] is modu-
lar whenever

A(x ∨ y) +A(x ∧ y) = A(x) +A(y) (3)

for any x,y ∈ [0, 1]n, where the lattice operations
∨ and ∧ are defined as

x ∨ y = (max(x1, y1), . . . ,max(xn, yn)),

and

x ∧ y = (min(x1, y1), . . . ,min(xn, yn)).

Each modular aggregation function A :
[0, 1]n → [0, 1] can be represented in the form

A(x) =
n∑
i=1

fi(xi), (4)

where fi : [0, 1] → [0, 1], i = 1, . . . , n, is a non-
decreasing function. If A is also idempotent then
n∑
i=1

fi(x) = x for each x ∈ [0, 1], and hence each fi is

1- Lipschitz, |fi(x)− fi(y)| ≤ |x− y|, and fi(0) = 0.
This fact allows us to introduce an alternative axio-
matic characterization of OWA operators.

Theorem 2.1 Let A : [0, 1]n → [0, 1] be an aggre-
gation function. Then it is an OWA operator if and
only if it is comonotone modular, symmetric, and
positively homogeneous.

The next generalization of OWA operators was pro-
posed in [21].

Definition 2.2 Let A be a symmetric idempotent
comonotone modular aggregation function. Then
A is called OMA operator (Ordered Modular Ave-
rage).

The next important result was shown in [21].

Theorem 2.3 Let A : [0, 1]n → [0, 1] be a function.
Then the following are equivalent:

1) A is an OMA operator;
2) There are 1-Lipschitz non-decreasing functions

f1, . . . , fn : [0, 1] → [0, 1],
n∑
i=1

fi(x) = x for

each x ∈ [0, 1], and

A(x) =
n∑
i=1

fi(xσ(i)).

3) There is a copula C : [0, 1]2 → [0, 1] and a
symmetric capacity m : 2{1,...,n} → [0, 1] such
that

A(x) =
n∑
i=1

(
C
(
xσ(i),m({σ(1), . . . , σ(i)}

)
−

− C
(
xσ(i),m({σ(1), . . . , σ(i− 1)}

) )
,
(5)

with convention {σ(1), . . . , σ(i − 1)} = ∅ if
i = 1.

For more details about copulas and symmetric ca-
pacities we recommend the monograph [11].

Example 2.4 For n = 2, define f1, f2 : [0, 1] →
[0, 1] by

f1(x) = max
(
x

3 ,
4x− 1

6

)
, f2(x) = min

(
2x
3 ,

2x+ 1
6

)
.

Then the corresponding OMA operator
OMA(f1,f2) : [0, 1]2 → [0, 1] is given by

OMA(f1,f2)(x1, x2) = f1(xσ(1)) + f2(xσ(2))

and it is depicted in Figure 1.
Observe that

OMA(f1,f2)|[0, 0.5]2 = OWA( 1
3 ,

2
3 )|[0, 0.5]2

and

OMA(f1,f2)|[0.5, 1]2 = OWA( 2
3 ,

1
3 )|[0.5, 1]2.

Note that OMA(f1,f2) can be seen as an ordinal
sum of two OWA operators, namely of OWA( 1

3 ,
2
3 )

acting on [0, 0.5] and of OWA( 2
3 ,

1
3 ) acting on [0.5, 1],

as proposed by De Baets and Mesiar in [5]. More-
over, OMA(f1,f2) can be seen as a level dependent
capacity M -based Choquet integral introduced by
Greco et al. [12], with level dependent capacity
M : [0, 1]× 2{1,2} given by

M(t, E) =
{
m1(E) if t ∈ [0, 0.5[
m2(E) otherwise

.

Here m1,m2 are symmetric capacities related to
normed weighting vectors

( 1
3 ,

2
3
)
and

( 2
3 ,

1
3
)
, respec-

tively, i. e.,

m1({1}) = m1({2}) = 1
3 and m2({1}) = m2({2}) = 2

3 ,

m1(∅) = m2(∅) = 0 and m1({1, 2}) = m2({1, 2}) = 1.

Figure 1: Formulae for OMA(f1,f2) from Example 2.4.

As already mentioned, OMA operators can be
seen as discrete copula-based integrals with respect
to symmetric capacities, see (5). In this example,
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OMA operator depicted in Figure 1 is related to a
symmetric capacity m : 2{1,2} → [0, 1] related to
a normed weighting vector

( 1
2 ,

1
2
)
, and the corre-

sponding copula C satisfies C
(
x, 1

2
)

= f1(x), x ∈
[0, 1]. As an example of such copula, exploiting
method introduced in [13], one can consider a cop-
ula C : [0, 1]2 → [0, 1] given by

C(x, y) =


2xy

3 if (x, y) ∈ [0, 1
2 ]2

x+y−1+2xy
3 if (x, y) ∈ [ 1

2 , 1]2
4xy−min(x,y)

3 otherwise
.

3. Pseudo-additive generalizations of OWA
operators

In this section we propose and discuss an axioma-
tic generalization of OWA’s based on the idea to
replace the additivity by pseudo-additivity. It is
well known that an operation ⊕ : [0,∞]2 → [0,∞]
is called a pseudo-addition whenever it is mono-
tone, symmetric, associative, continuous and 0 is
its neutral element. For more details concern-
ing the pseudo-additions we recommend [15, 24].
Each pseudo-addition ⊕ can be represented as an
ordinal sum of generated pseudo-additions, ⊕ =
(〈ak, bk, ϕk〉|k ∈ K), where {]ak, bk[ | k ∈ K} is a
disjoint system of open subintervals of [0,∞], and
ϕk : [ak, bk]→ [0,∞], k ∈ K, are continuous strictly
monotone functions satisfying ϕk(ak) = 0. Then

x⊕ y =


ϕ−1
k (min(ϕk(bk), ϕk(x) + ϕk(y)))

if (x, y) ∈]ak, bk [2 for some k ∈ K.
max(x, y) otherwise

Definition 3.1 Let ⊕ : [0,∞]2 → [0,∞] be a
given pseudo-addition, ⊕ = (〈ak, bk, ϕk〉|k ∈ K).
An idempotent symmetric aggregation function A :
[0, 1]2 → [0, 1] is called a ⊕-OWA operator when-
ever it is comonotone pseudo-additive, i. e., if
for any comonotone pair x,y ∈ [0, 1]n such that
x⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn) ∈ [0, 1]n it holds

A(x⊕ y) = A(x)⊕A(y). (6)

3.1. Idempotent pseudo-addition

The only idempotent pseudo-addition is the stan-
dard maximum ∨ : [0,∞]2 → [0,∞] given by
x ∨ y = max(x, y). Note that it corresponds to
the empty ordinal sum, i.e., K = ∅. The cor-
responding ∨−OWA operators are then character-
ized by the comonotone maxitivity and the sym-
metry. Recall that comonotone maxitive aggrega-
tion functions were studied in [22] and characterized
as Sugeno integrals with respect to level dependent
capacities. We have the next characterization of
∨−OWA operators.

Theorem 3.2 Let A : [0, 1]n → [0, 1] be a function.
Then the following are equivalent:

1) A is a ∨−OWA operator;
2) There are increasing functions f1, . . . , fn :

[0, 1]→ [0, 1] such that

max (f1(x), . . . , fn(x)) = x

for each x ∈ [0, 1], and

A(x) = max
(
f1(xσ(1)), . . . , fn(xσ(n))

)
; (7)

3) There is a level dependent symmetric capacity
M : [0, 1]× 2{1,...,n} → [0, 1] such that

A(x) =
∨

t∈[0,1]

(t ∧M(t, {i ∈ {1, . . . , n}|xi ≥ t})) .

(8)

For more details about level dependent capacities
we recommend [14].

Obviously, Theorem 3.2 holds also for any
pseudo-addition ⊕ such that it coincides with ∨ on
[0, 1]2, i.e., x⊕ y = max(x, y) for each x, y ∈ [0, 1].

Example 3.3 For n = 2 and k ∈ ]0, 1 ], consider
f1, f2 : [0, 1]→ [0, 1] given by

f1(x) = min(x, k), f2(x) =
{

0 if x ≤ k
x otherwise

.

Then the ∨-OWA operator A : [0, 1]2 → [0, 1] given
by formula (7) is just k-median (idempotent null-
norm with annihilator k), see [9, 11],

A(x1, x2) = med(x1, k, x2).

Define a level dependent capacity M : [0, 1] ×
2{1,2} → [0, 1] by

M(t, ∅) = 0, M(t, {1, 2}) = 1,

M(t, {1}) = M(t, {2}) =
{

1 if t ≤ k
0 otherwise

.

Then M is symmetric and applying formula (8) we
have an equivalent definition of k-median, i. e., an
idempotent nullnorm with annihilator a = k,

A(x1, x2) =
∨

t∈[0,1]

(t ∧M(t, {i ∈ {1, 2}|xi ≥ t})) .

Obviously, if max(x1, x2) < k then

M (max(x1, x2), {i ∈ {1, 2}|xi ≥ max(x1, x2)}) = 1

while M (t, {i ∈ {1, 2}|xi ≥ t}) = 0 for each t >
max(x1, x2), and hence A(x1, x2) = max(x1, x2).
Similarly, analyzing the remaining cases, we obtain

A(x1, x2) =


max(x1, x2) if x1, x2 ∈ [0, k[
min(x1, x2) if x1, x2 ∈ ]k, 1]
k otherwise

.

Observe that A is associative.
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3.2. ⊗-homogeneous ∨-OWA operators

Consider a pseudo-multiplication ⊗ : [0, 1]2 → [0, 1]
which possesses a neutral element 1, i. e., x ⊗ 1 =
1⊗ x = x for any x ∈ [0, 1], and which is monotone
in each coordinate. Recall that this special aggrega-
tion functions is often called a semicopula [6]. Based
on results of [21], we know that a comonotone maxi-
tive aggregation function A : [0, 1]n → [0, 1] which is
positively ⊗-homogeneous, i. e., A(c⊗x) = c⊗A(x)
for each c ∈ [0, 1] and x ∈ [0, 1]n, with c ⊗ x =
(c⊗x1, . . . , c⊗xn), is, in fact, the smallest universal
integral on [0, 1] based on ⊗, see [16], with respect
to some symmetric capacity m : 2{1,...,n} → [0, 1].
We have also a more transparent representation of
these special ∨-OWA operators.
Theorem 3.4 Let A : [0, 1]n → [0, 1] be a function
and let ⊗ : [0, 1]2 → [0, 1] be a semicopula. Then
the following are equivalent:

1) A is a positively ⊗-homogeneous ∨−OWA ope-
rator;

2) There is a cumulative normed weighting vector
v ∈ [0, 1]n, i. e., v = (v1, . . . , vn) and
0 = v1 ≤ v2 ≤ · · · ≤ vn ≤ 1, so that

A(x) =
n∨
i=1

(
vi ⊗ xσ(i)

)
. (9)

Note that if ⊗ = min then ∨−OWA operator given
by (9), i. e., A(x) =

n∨
i=1

(
vi ∧ xσ(i)

)
, is the WOMax

(Weighted Ordered Maximum) operators discussed
already in [7] and it is related to the Sugeno integral
[27].
If ⊗ is the standard product, A(x) =

n∨
i=1

(
vi · xσ(i)

)
,

the link to the Shilkret integral [26] can be found.
Similarly, when ⊗ = T is a strict t-norm,
A(x) =

n∨
i=1

T
(
vi, xσ(i)

)
, an integral proposed by

Weber [29] can be considered.

3.3. Generated pseudo-addition

Generated pseudo-additions are related to automor-
phism g : [0,∞] → [0,∞], and then x ⊕ y =
g−1(g(x) + g(y)), i.e., ⊕ = (〈0,∞, g〉). In this case,
the next result hold.

Theorem 3.5 Let A : [0, 1]n → [0, 1] be a function
and ⊕ = (〈0,∞, g〉) be a generated pseudo-addition.
Then the following are equivalent:

1) A is a ⊕−OWA operator;
2) There is an OWA operator B : [0,∞[n→ [0,∞[

so that

A(x) = g−1 (B(g(x1), . . . , g(xn))) ;

3) There is a normed weighting vector w ∈ [0, 1]n
so that

A(x) =
n⊕
i=1

g−1(wi)⊗ xσ(i),

where the pseudo-multiplication ⊗ : [0,∞]2 →
[0, 1] is given by x⊗ y = g−1(g(x).g(y)).

Note that once ⊕−OWA operator A :
[0, 1]n → [0, 1] is known, the corresponding weights
w1, . . . , wn can be determined as follows:

w1 = g(A(1, 0, . . . , 0))
g(1) ,

w2 = g(A(1, 1, 0, . . . , 0))− g(A(1, 0, . . . , 0))
g(1) ,

...

wn = g(A(1, . . . , 1)))− g(A(1, . . . , 1, 0))
g(1) .

It is not difficult to check that each ⊕−OWA ope-
rator A considered in Theorem 3.5 is positively ⊗-
homogeneous, i. e., for any x ∈ [0, 1]n and c ∈]0,∞[
such that (c ⊗ x1, . . . , c ⊗ xn) ∈ [0, 1]n it holds
A(c ⊗ x) = c ⊗ A(x). Moreover, A can be repre-
sented as a Choquet-like integral [20] with respect
to a symmetric capacity m : 2{1,...,n} → [0, 1],

A(x) = (g −Ch)−
∫

{1,...,n}

x dm,

where m(E) =
cardE∑
i=1

wi.

As special examples one can consider GOWA ope-
rators [28]. For λ > 0, consider g(x) = xλ. Then
the corresponding ⊕−OWA operator linked to a
normed weighting vector w = (w1, . . . , wn) is given
by

A(x) =
(

n∑
i=1

wix
λ
σ(i)

) 1
λ

.

Observe that a dual aggregation function Ad :
[0, 1]n → [0, 1] to an aggregation function A is given
by Ad(x) = 1 − A(1 − x1, . . . , 1 − xn). Then, if
A = OWAw, it is not difficult to check that also
Ad is an OWA operator, however, it is linked to the
reversed weighting vector w′ = (wn, . . . , w1), i. e.,
Ad = OWAw′ .
Consider an automorphism g : [0,∞] → [0,∞]

and a ⊕−OWA operator A : [0, 1]n → [0, 1] linked
to a normed weighting vector w. Then

Ad(x) = h−1

(
n∑
i=1

wn−i+1h(xσ(i))
)
,

where h : [0, 1] → [0, g(1)] is a decreasing bijection
given by h(x) = g(1 − x). Observe that similar
axiomatization of OWA operators can be done
based on strict t-norms or t-conorms [15]. Consider,
for example, a strict t-norm T : [0, 1]2 → [0, 1], i. e.,
T (x, y) = ϕ−1(ϕ(x) +ϕ(y)) for some decreasing bi-
jection ϕ : [0, 1]→ [0,∞]. Then a symmetric idem-
potent aggregation function A : [0, 1]n → [0, 1] will
be called a T -OWA operator whenever

T (A(x), A(y)) = A(T (x1, y1), . . . , T (xn, yn))
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for any comonotone vectors x,y ∈ [0, 1]n. Based
on results of [4] the above constraint commuting
problem has a solution

A(x) = ϕ−1

(
n∑
i=1

wiϕ(xσ(i))
)
. (10)

Consider T = Π the standard product. Then ϕ is
given by ϕ(x) = − logλ x, where λ > 1 is a constant,
and then (10) yields

A(x) =
n∏
i=1

xwi

σ(i),

i. e., each Π-OWA operator is just the OWGA
(Ordered Weighted Geometric Average) operator.

4. Concluding remarks

We have discussed several axiomatic generalizations
of OWA operators. For some other generalizations
we recommend [23]. Note that, following an idea of
Einstein, an axiomatic characterization of any in-
troduced and applied concept is the last theoretical
step necessary for its deeper understanding, and an
opening for further generalizations of the concerned
concept. This is also the case of OWA operators,
where their axiomatization has opened the door for
several new kinds of aggregation functions, some of
them being presented in this contribution. Based on
the experience with applications of OWA operators,
we expect the major applications of presented, ax-
iomatically characterized aggregation functions in
the area of multicriteria decision support and re-
lated fields.
Observe also that recently the OWA operators

defined on lattices were proposed, see, e.g., [17, 18].
These operators were not yet axiomatically charac-
terized, and thus this fact can be seen as an open
problem. Moreover, it would be interesting to study
axiomatically defined operators on lattices which
could be seen as generalizations of OWA operators
studied in [17, 18].
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