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Abstract

The recurrent exponential fuzzy associative mem-
ory (RE-FAM) can be viewed as a recurrent neural
network that employs a fuzzy similarity measure in
its hidden layer. This paper introduces the general-
ized recurrent exponential fuzzy associative memory
(GRE-FAM). In contrast to the RE-FAM, the GRE-
FAM is equipped with a second hidden layer that is
geared to avoiding crosstalk. Apart from theoreti-
cal results, this paper includes some computational
experiments concerning the reconstruction of cor-
rupted gray-scale images.

Keywords: Associative memory, recurrent neural
network, fuzzy system, similarity measure.

1. Introduction

The (discrete) Hopfield neural network, introduced
in the early 1980s, is a widely known recurrent neu-
ral network that can be used to implement an as-
sociative memory (AM) [1]. Despite having some
attractive features and applications [2], the Hop-
field network suffers from a low absolute storage
capacity [3]. A simple but significant improve-
ment over the Hopfield network is given by the ex-
ponential correlation associative memory (ECAM),
introduced by Chiueh and Goodman in the early
1990s [4]. Roughly speaking, Chiueh and Good-
man generalized the Hopfield network by adding a
layer whose nodes apply an exponential function
to the correlation between the current state and
a fundamental memory. The storage capacity of
the ECAM scales exponentially with the length of
the vectors [4]. Besides a very high storage capac-
ity, the ECAM exhibits an excellent error correction
capability but – like the discrete Hopfield network
– the ECAM is only suited for storing and recall-
ing bipolar patterns. However, many applications
of AMs, including the retrieval of gray-scale im-
ages in the presence of noise, require the storage
and recall of many-valued patterns such as real-
valued vectors, complex-valued vectors, or fuzzy
sets [5, 6, 7, 8, 9, 10, 11].

∗This work was partially supported by CAPES, FAPESP
under grant no. 2013/12310-4, and CNPq under grant nos.
305486/2014-4 and 311695/2014-0.

In 1993, Chiueh and Tsai proposed an extension
of the bipolar ECAM called multivalued exponential
recurrent associative memory (MERAM), in order
to deal with multivalued patterns [12]. The hid-
den nodes of the MERAM use evaluate the similar-
ity between multivalued patterns before applying an
exponential function. Then, a weighted average of
the original patterns is computed.

Recently, Valle adapted the MERAM model for
fuzzy sets by employing some well-known fuzzy sim-
ilarity measures and by aggregating fuzzy sets using
weighted averages [13]. The resulting class of mod-
els is referred to as the class of recurrent exponential
fuzzy associative memories (RE-FAMs).

In some computational experiments concerning
the retrieval of gray-scale images [13], RE-FAMs ex-
hibited a better performance than other well-known
AMmodels from the literature such as the kernel as-
sociative memory (KAM) [14], the complex-sigmoid
Hopfield network [6], and a certain subspace pro-
jection autoassociative memory (SPAM) [15]. How-
ever, RE-FAM models may suffer from a problem
known as “crosstalk” that is due to the interaction
between the stored patterns. In this paper, we show
that the crosstalk between the fundamental memo-
ries can be reduced by adding another hidden layer,
which leads to a generalized recurrent exponential
fuzzy associative memory (GRE-FAM), and by ad-
justing the parameters of this hidden layer. Fur-
thermore, we characterize the single-step output of
these GRE-FAM models when the basis of the ex-
ponential is sufficiently large. Some computational
experiments concerning the retrieval of corrupted
gray-scale images are also presented in this paper.

The paper is organized as follows. Section 2
briefly reviews the RE-FAM models based on sim-
ilarity measures. The novel GRE-FAM models are
introduced in Section 3. This section also contains
some theoretical results. Some computational ex-
periments are provided in Section 4. The paper fin-
ishes with some concluding remarks.

2. Recurrent Exponential Fuzzy Associative
Memories Based on Similarity Measures

Let us begin by recalling some well-established ba-
sic concepts that will be used throughout the text.
First of all, a fuzzy set A on a universe of dis-
course U is determined by its membership func-
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tion A : U → [0, 1]. Let A(u) denote the degree
to which the element u ∈ U belongs to the fuzzy
set A. The family of all fuzzy subsets of U is
denoted by F(U). Similarly, P(U) represents the
power set of U . As usual, we say that A ∈ F(U)
is a subset of B ∈ F(U), and write A ⊆ B, if
A(u) ≤ B(u) for all u ∈ U . Moreover, Ā denotes
the standard complement of a fuzzy set A, that is,
Ā(u) = 1−A(u),∀u ∈ U .
A similarity measure, also known as equality in-

dex or fuzzy equivalence, is a function that maps
pair of fuzzy sets to a real number in the unit in-
terval [0, 1], representing the degree to which those
fuzzy sets are equal [16, 17]. Applications of similar-
ity measures include fuzzy neural networks [8, 18],
fuzzy clustering [19], and rule base simplification
[20]. In the following, we consider the normal-
ized version of the axiomatic definition provided by
Xuecheng [21]:

Definition 1 (Similarity Measure). A similarity
measure is a function S : F(U) × F(U) → [0, 1]
which satisfies the following properties for any fuzzy
sets A,B,C,D ∈ F(U):

1. S(A,B) = S(B,A).
2. S(A,A) = 1.
3. If A ⊆ B ⊆ C ⊆ D, then S(A,D) ≤ S(B,C).
4. S(A, Ā) = 0, for every crisp set A ∈ P(U).

In addition, we say that S is a strong similarity
measure if S(A,B) = 1 implies A = B.

Example 1. Let U = {u1, · · · , un} be a finite uni-
verse of discourse. The following presents three in-
stances of strong similarity measures [16, 22, 23, 24].

1. Gregson similarity measure:

SG(A,B) =
∑n
j=1A(uj) ∧B(uj)∑n
j=1A(uj) ∨B(uj)

, (1)

where the symbols “∧” and “∨” denote respec-
tively the minimum and maximum operations.

2. Eisler and Ekman similarity measure:

SE(A,B) =
2
∑n
j=1A(uj) ∧B(uj)∑n

j=1A(uj) +
∑n
j=1B(uj)

. (2)

3. Complement of a relative distance:

Sp(A,B) = 1− dp(A,B)
dp(∅, U) , (3)

where dp, given by the following equation, de-
notes the Lp distance of order p ≥ 1:

dp(A,B) =

 n∑
j=1
|A(uj)−B(uj)|p

1/p

. (4)

The denominator dp(∅, U), which corresponds to the
largest distance between two fuzzy sets, ensures that
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Figure 1: Block diagram of a RE-FAM.

Sp(A,B) ∈ [0, 1]. In particular, the complement of
the relative Hamming distance SH is obtained by
considering p = 1, i.e.,

SH(A,B) = 1− 1
n

n∑
j=1
|A(uj)−B(uj)|. (5)

Let us now review recurrent exponential fuzzy as-
sociative memories, also known as fuzzy exponen-
tial recurrent neural networks (FERNNs) [13]. A
RE-FAM can be interpreted as a two-layer dynamic
neural network designed for the storage of a finite
family A = {A1, A2, · · · , Ap} of fuzzy sets. We shall
refer to Aξ ∈ A as a fundamental memory. In each
node of the first layer, an exponential function is ap-
plied to the similarity between Aξ, for ξ = 1, . . . , p,
and the current state, represented by a fuzzy set
XR
t ∈ F(U). The output layer yields an affine com-

bination of the fundamental memories A1, . . . , Ap

whose weights are the outputs of the previous layer.
Figure 1 shows a block diagram of a RE-FAM. For-
mally, a RE-FAM is defined as follows:

Definition 2 (RE-FAM). Consider a family of
fuzzy sets A = {A1, . . . , Ap} ⊆ F(U), a real number
α > 0, and a similarity measure S : F(U)×F(U)→
[0, 1]. Given a fuzzy set X0 ∈ F(U), a RE-FAM re-
cursively produces the following sequence {XR

t } of
fuzzy sets:

XR
t+1(u) =

∑p
ξ=1A

ξ(u)eαS(Aξ,XRt )∑p
η=1 e

αS(Aη,XRt ) , ∀u ∈ U, (6)

where XR
0 = X0, for all non-negative integer t.

Like as the correlation matrix memory [25], the
RE-FAM model is subject to crosstalk between pat-
terns as the following example illustrates.

Example 2. Consider the nine gray-scale images
displayed in Figure 2. These images have size
128×128 and 256 gray levels. By dividing the 8-bit
intensities by 255, each of these images was associ-
ated with a fundamental memory Aξ : U → [0, 1],
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Figure 2: Original gray-scale images of size 128×128
and 256 gray-levels.

RE-FAM SG RE-FAM SE RE-FAM SH

Figure 3: Images recovered by single-step RE-FAMs
with α = 5 upon presentation of the original Lena
image.

where U = {1, 2, . . . , 128} × {1, 2, . . . , 128}. After-
wards, we presented the original Lena image to the
RE-FAMs based on the similarity measures given
by Example 1 and the parameter α = 5. Figure 3
shows the gray-scale images produced by the single-
step RE-FAMs. In other words, the three images de-
picted in Figure 3 correspond to the fuzzy set XR

1
determined by (6), where X0 represents the orig-
inal Lena image, using α = 5 and the similarity
measures SG, SE , and SH , respectively. Note that
the original Lena image was not recovered by the
single-step RE-FAMs due to the crosstalk between
the fundamental memories A1, . . . , Ap. Specifically,
if X0 = Aµ, µ ∈ {1, . . . , p} is fed into a RE-FAM,
then (6) yields the fuzzy set

XR
1 (u) = wµA

µ(u) +
∑
ξ 6=µ

wξA
ξ(u), ∀u ∈ U, (7)

where

wξ = eαS(Aξ,Aµ)∑p
η=1 e

αS(Aη,Aµ) , ∀ξ = 1, . . . , p. (8)

The term E(u) =
∑
ξ 6=µ wξA

ξ(u) in (7) corresponds
to the error due to the crosstalk.

The following theorem1 shows that the error term
1Due to restrictions in the number of pages, we postpone

the proofs of some theorems to a future journal paper.

E(u) can be made as small as desired by increasing
the value of the parameter α, that is, E(u) → 0 as
α→∞.

Theorem 1. Consider a family of fundamental
memories A = {A1, · · · , Ap} ⊆ F(U) and a sim-
ilarity measure S. Given a fuzzy set X0 ∈ F(U),
let Γ ⊆ {1, . . . , p} denote the set of the indexes of
the fundamental memories which are the most sim-
ilar to the input X0 in terms of S. Formally, we
have

Γ = {γ : S(Aγ , X0) ≥ S(Aξ, X0),∀ξ = 1, . . . , p}.
(9)

If XR
1 ∈ F(U), given by (6) with t = 0, denotes the

output of the single-step RE-FAM, then

lim
α→∞

XR
1 (u) = 1

Card(Γ)
∑
γ∈Γ

Aγ(u), ∀u ∈ U.

(10)

Accordingly, by increasing the parameter α from
5 to 20, the three single-step RE-FAMs considered
in Example 2 produced images that are visually in-
distinguishable from the original Lena image. Fur-
thermore, the RE-FAM based on the similarity mea-
sure SG with α = 20 exhibited excellent tolerance
with respect to noise in some experiments concern-
ing the reconstruction of corrupted gray-scale im-
ages [13]. In practice, however, the implementa-
tion of a RE-FAM with large α may be limited by
the floating point representation of real numbers.
The generalized RE-FAM introduced in the follow-
ing section can mitigate the adverse effects of the
crosstalk between the fundamental memories inde-
pendently of the value of the parameter α.

3. Generalized Recurrent Exponential
Fuzzy Associative Memories

Let us now generalize the RE-FAMmodel by adding
a hidden layer before computing the affine combi-
nation. As in the original RE-FAM, the first layer
nodes of a generalized RE-FAM (GRE-FAM) ap-
plies an exponential function to the similarity be-
tween Aξ and the current state XG

t , for ξ = 1, . . . , p.
The second hidden layer consists of linear neurons.
Finally, the output layer computes an affine com-
bination of the fundamental memories A1, . . . , Ap

followed by a piece-wise linear function ϕ which en-
sures that XG

t+1(u) ∈ [0, 1] for all u ∈ U . A block
diagram of a GRE-FAM is shown in Figure 4. In
mathematical terms, we have the following defini-
tion:

Definition 3 (GRE-FAM). Consider a family of
fundamental memories A = {A1, A2, · · · , Ap} ⊆
F(U), a real number α > 0, and a similarity mea-
sure S : F(U) × F(U) → [0, 1]. Furthermore, let
G = (gνµ) be a real-valued matrix of size p× p.
Given an initial fuzzy set X0 ∈ F(U), a GRE-FAM
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Figure 4: Block diagram of a GRE-FAM.

defines recursively the following fuzzy sets for all
u ∈ U and t = 0, 1, . . ., where XG

0 = X0:

XG
t+1(u) = ϕ


p∑
ξ=1

p∑
µ=1

Aξ(u)gξµeαS(Aµ,XGt )

p∑
η=1

p∑
µ=1

gηµe
αS(Aµ,XGt )

 ,

(11)
where ϕ : R→ [0, 1] is the piece-wise linear function
given by

ϕ(x) =


0, x < 0,
x, 0 ≤ x ≤ 1,
1, x > 1.

(12)

Note that the GRE-FAM model described by (11)
generalizes the RE-FAM model given by (6). In
fact, we obtain a RE-FAM from (11) by setting G
equal to the identity matrix, i.e., G = Ip×p. More-
over, the following theorem determines a matrix G
such that any fundamental memory Aξ is a fixed
point of (11).

Theorem 2. Given a family of fundamental mem-
ories A = {A1, A2, · · · , Ap} ⊆ F(U), a parameter
α > 0, and a similarity measure S : F(U)×F(U)→
[0, 1], let the matrix C = (cνµ) ∈ Rp×p be defined as
follows:

cνµ = eαS(Aν ,Aµ), ∀ν, µ = 1, · · · , p. (13)

If C is invertible, then any fundamental memory
from the family A is a fixed point of the GRE-FAM
with G = C−1.

Example 3. Let A1, . . . , A9 be the fundamental
memories that correspond to the nine gray-scale im-
ages shown in Figure 2. The matrix C given by (13)
with α = 5 and either SG, SE , or SH is invertible.
Furthermore, all fundamental memories – includ-
ing the original Lena image – are fixed points of

the GRE-FAM with G = C−1. In other words, if
X0 = Aµ, µ ∈ {1, . . . , p}, then (11) yields X1 = Aµ.

Let us now turn our attention to the output XG
1

produced by a single-step GRE-FAM with G pre-
scribed by Theorem 2. Specifically, the following
theorem shows that XG

1 converges point-wise to
an affine combination of the fundamental memories
which have the highest similarity (in terms of S)
with the input X0 as the parameter α > 0 tends to
infinity.

Theorem 3. Consider a family of fundamental
memories A = {A1, · · · , Ap} ⊆ F(U) and let S de-
note a strong similarity measure. Suppose that the
matrix C given by (13) is invertible for any α > 0.
If the single-step GRE-FAM with G = C−1 pro-
duces the output XG

1 ∈ F(U) upon presentation of
X0 ∈ F(U), then

lim
α→∞

XG
1 (u) = 1

Card(Γ)
∑
γ∈Γ

Aγ(u), ∀u ∈ U,

(14)
where Γ is the set of indexes given by (9).

Proof. Let σ = maxξ=1:p{S(Aξ, X0)} denote the
maximum of the similarity between the input fuzzy
set X0 and the fundamental memories A1, · · · , Ap.
The output of a single-step GRE-FAM satisfies

XG
1 (u) = ϕ

 p∑
ξ=1

wξA
ξ(u)

 , (15)

where wξ, for ξ = 1, . . . , p, is given by

wξ =
∑p
µ=1 gξµe

αS(Aµ,X0)∑p
η=1

∑p
µ=1 gηµe

αS(Aµ,X0) . (16)

Multiplying both the numerator and the denomina-
tor of (16) by e−ασ and breaking up the sums, we
obtain:

wξ =

∑
γ∈Γ

gξγ +
∑
µ/∈Γ

gξµe
α(S(Aµ,X0)−σ)

p∑
η=1

∑
γ∈Γ

gηγ +
p∑
η=1

∑
µ6∈Γ

gηµe
α(S(Aµ,X0)−σ)

.

(17)
Now, the matrix C given by (13) can be written
as C = eαD(α), where the entries of D(α) are
dνµ(α) = eα(S(Aν ,Aµ)−1). Moreover, G = C−1 =
e−αH(α), where H(α) = D−1(α). Hence, by fac-
toring e−α, we obtain from (17):

wξ =

∑
γ∈Γ

hξγ(α) +
∑
µ/∈Γ

hξµ(α)eα(S(Aµ,X0)−σ)

p∑
η=1

∑
γ∈Γ

hηγ(α) +
p∑
η=1

∑
µ/∈Γ

hηµ(α)eα(S(Aµ,X0)−σ)
.

(18)
Recalling that S(Aµ, X0) − σ < 0 for all µ /∈ Γ,
the second sum in both numerator and denomi-
nator tends to 0 as α → ∞. Moreover, since S
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Figure 5: RMSE between A3 and the fuzzy set re-
trieved by a single-step model by the parameter α.

is a strong similarity measure, lim
α→∞

hνµ(α) = δνµ,
where hνµ(α) is the (ν, µ)-entry of H(α) and δνµ
denotes the Kronecker’s delta. Hence,

lim
α→∞

X1(u) = lim
α→∞

ϕ

 p∑
ξ=1

wξA
ξ(u)

 (19)

= ϕ

(∑p
ξ=1

∑
γ∈Γ δξγA

ξ(u)∑p
η=1

∑
γ∈Γ δηγ

)
=
∑
γ∈ΓA

γ(u)
Card(Γ) ,

for all u ∈ U .

By comparing (10) and (14), we conclude that the
single-step RE-FAM and GRE-FAM – both based
on the same similarity measure and fundamental
memories – yield the same fuzzy set upon the pre-
sentation of X0 for α sufficiently large. The follow-
ing example illustrates this remark.

Example 4. Consider the fundamental memories
A1, . . . , A9 corresponding to the nine gray-scale im-
ages displayed in Figure 2 and let X0 ∈ F(U) be the
fuzzy set given by X0(u) = 1 for all u ∈ U . Visually,
X0 corresponds to a white image. By considering
the similarity measure SG given by (1), we obtain
the similarity degrees shown in Table 1. Note that
A3 is the fundamental memory that is most similar
to the input X0 in terms of SG and, consequently,
Γ = {3}. Now, let XR

1 and XG
1 denote respectively

the fuzzy sets retrieved by the single-step RE-FAM
and the GRE-FAM with G = C−1 under presenta-
tion of X0. Figure 5 shows the root-mean-squared
error (RMSE) produced by XR

1 and XG
1 by the pa-

rameter α. We would like to remark that the RMSE
is given by the relative Euclidean distance between
the desired fuzzy set Aξ, xi ∈ {1, . . . , p}, and the

output Y ∈ F(U) yielded by a model, i.e.,

RMSE(Aξ, Y ) =

√∑
u∈U (Aξ(u)− Y (u))2

Card(U) . (20)

As expected, RMSE(A3, XR
1 ) as well as

RMSE(A3, XG
1 ) approaches zero as α tends to

infinity. In fact, we have RMSE(A3, XR
1 ) ≤ 10−6

and RMSE(A3, XG
1 ) ≤ 10−6 for any α ≥ 90. In

other words, both XR
1 → A3 and XG

1 → A3 for
α→∞ in accordance with Theorems 1 and 3.

Remark 1. We obtained similar results by con-
sidering the other two similarity measures given in
Example 1. In particular, both SE and SH yielded
Γ = {3} because A3 corresponds to the whiter im-
age – thus, the most similar to X0 – among the nine
gray-scale images depicted in Figure 2.

Concluding, given fundamental memories
A1, . . . , Ap and a strong similarity measure S,
the single-step RE-FAM and the GRE-FAM with
G = C−1 yield almost the same output when the
parameter α tends to infinity. Computationally,
the design of a GRE-FAM based on Theorem 2
requires O(p3) operations. Apart from evaluating
the piece-wise linear function ϕ given by (12), a
GRE-FAM performs O(p2) more operations per
step than a RE-FAM due to the additional layer.

In many practical situations, however, the param-
eter α cannot be made indefinitely large. For in-
stance, due to overflow, we must roughly consider
α ≤ 700 on a machine that supports IEEE floating
point arithmetic. If the parameter α is not suffi-
ciently large, the fuzzy sets produced by the RE-
FAM and the GRE-FAM may differ significantly.
Examples 2 and 3, where the RE-FAM failed but
the GRE-FAM succeed to retrieve the original Lena
image, illustrate this remark. In fact, from The-
orem 2, the fundamental memories A1, . . . , Ap are
all fixed points of the GRE-FAM with G = C−1.
In other words, this memory model has optimal ab-
solute storage capacity. The computational experi-
ments provided in the following section reveal that
this GRE-FAM also exhibits an excellent noise tol-
erance even if α is not very large. In particular, we
shall see that the GRE-FAM with G = C−1 outper-
forms the RE-FAM in experiments concerning the
reconstruction of corrupted gray-scale images.

4. Computational Experiments

Let A1, . . . , A9 be the fuzzy sets corresponding to
the nine gray-scale images displayed in Figure 2.
First, we synthesized a RE-FAM and a GRE-FAM
model using the family of fundamental memories
A = {A1, . . . , A9}, the parameter α = 20, and the
similarity measures SG, SE , and SH defined respec-
tively by (1), (2), and (5). As suggested by Theorem
2, the matrix of the GRE-FAM is determined by
the equation G = C−1, where C is given by (13).
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SG(A1, X0) SG(A2, X0) SG(A3, X0) SG(A4, X0) SG(A5, X0) SG(A6, X0) SG(A7, X0) SG(A8, X0) SG(A9, X0)

0.4865 0.4061 0.6990 0.3080 0.3396 0.5028 0.5337 0.4607 0.5348

Table 1: Degree of similarity between the input fuzz set X0 and the fundamental memories A1, . . . , A9 of
Example 4.
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Figure 6: Average RMSE by the probability of salt
and pepper noise added to the input image.

In the computational experiments, the outputs of
the RE-FAM and GRE-FAM have been obtained
by iterating respectively (6) and (11) until either
d2(Xt, Xt+1)/d2(∅, U) ≤ 10−6 or t > 20.
We probed each model with images corrupted by

salt and pepper noise with densities varying from 0
to 0.8. We also probed the AM models with images
corrupted by Gaussian noise with zero mean and
variance ranging from 0 to 0.15 as well as blurred
images obtained by an approximation of the hori-
zontal motion of a camera by h ∈ {1, 3, 5, . . . , 51}
pixels. Figures 6, 7, and 8 compares the average
RMSEs produced by the six models averaged in 90
experiments, that is, each original image was dis-
torted 10 times for a certain noise or blur intensity.
The average RMSEs produced by the corrupted im-
ages are also shown in these figures.
First of all, note that the average RMSE produced

by a GRE-FAM is at most as large as the aver-
age RMSE yielded by its corresponding RE-FAM
model. In particular, observe in Figure 6 that the
GRE-FAM based on SH exhibited the best toler-
ance with respect to salt and pepper noise with
probability p less than or equal to 0.525. All the
models produced similar average RMSEs for images
corrupted by salt and pepper noise with p ≥ 0.6.
Similarly, Figures 7 and 8 reveal that the GRE-FAM
based on Gregson’s similarity measure SG exhibited
the best tolerance with respect to both Gaussian
noise with variance σ2 ≤ 0.075 and blurred im-
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Figure 7: Average RMSE by the variance of Gaus-
sian noise added to the input image

ages obtained by an horizontal motion of h ≤ 33
pixels. The GRE-FAM and the RE-FAM based on
SG yielded almost the same RMSEs for images cor-
rupted by Gaussian noise with σ2 ≥ 0.08 or blurred
images with h ≥ 35.

Finally, Figures 9, 10, and 11 provide visual ex-
amples of the corrupted input image and the cor-
responding images retrieved by the AM models.
Precisely, Figure 9 shows the image “peppers” cor-
rupted by salt and pepper noise with probability
p = 0.45 followed by the images retrieved by the
RE-FAM and GRE-FAM based on the similarity
measures SG, SE , and SH . Note that both RE-
FAM and GRE-FAM based on SE failed to retrieve
the original gray-scale image. Similarly, Figure 10
shows the image “peppers” corrupted by Gaussian
noise with zero mean and variance σ2 = 0.07 fol-
lowed by images retrieved by the AM models. The
RE-FAM based on SH as well as the RE-FAM and
GRE-FAM based on SE failed to retrieve the origi-
nal image. Also, Figure 11 depicts a blurred image
obtained by a horizontal motion of h = 20 pixels
and the corresponding recalled images. In this case,
the RE-FAMs based on SE and SH failed to retrieve
the original “peppers” image. Finally, although the
RE-FAM models retrieved images visually similar
to the original “peppers” image, their RMSEs are
often much larger than the RMSEs produced by the
GRE-FAMs.
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X0 RE-FAM SG GRE-FAM SG RE-FAM SE GRE-FAM SE RE-FAM SH GRE-FAM SH

0.3765 2.4626× 10−4 3.3317× 10−9 0.2582 0.2604 0.0159 3.7889× 10−7

Figure 9: Input image corrupted by salt and pepper noise with probability 0.45 followed by the images
retrieved by the RE-FAM and GRE-FAM models. The last row provides the corresponding RMSE.

X0 RE-FAM SG GRE-FAM SG RE-FAM SE GRE-FAM SE RE-FAM SH GRE-FAM SH

0.2285 2.4626× 10−4 2.0323× 10−9 0.2582 0.2656 0.2474 2.8161× 10−7

Figure 10: Input image corrupted by Gaussian noise with zero mean and variance 0.07 followed by the images
retrieved by the RE-FAM and GRE-FAM models. The last row shows the corresponding RMSE.
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Figure 8: Average RMSE by the number of pixels
of an horizontal motion of the camera.

5. Concluding Remarks

In this paper, we introduced the generalized recur-
rent exponential fuzzy associative memories (GRE-
FAM) that can implement high-capacity associa-
tive memories for storing and recalling fuzzy sets
A1, . . . , Ap. In few words, the novel models are
obtained from the previous recurrent exponential
fuzzy associative memories (RE-FAM) by adding a
layer of traditional linear artificial neurons. Also, as
pointed out by Theorem 2, this hidden layer can be
used to mitigate the crosstalk between the funda-
mental memories A1, . . . , Ap. In addition, we pro-
vided a theorem that characterizes the output of
a broad class of single-step GRE-FAMs (cf. Theo-
rem 3 ). Roughly speaking, for a sufficiently large

parameter α > 0, a GRE-FAM yields an average
of the fundamental memories which are the most
similar to the input. Finally, computational exper-
iments concerning the reconstruction of noisy gray-
scale images revealed that the novel models, besides
the optimal absolute storage capacity, may exhibit
an excellent noise tolerance.

In the future, we plan to investigate further the
effect of the similarity measure on the storage ca-
pacity as well as the noise tolerance of a GRE-FAM.
The relationship between the novel memories and
other fuzzy AM models, including the bank of fuzzy
associative memories of Kosko [11, 26] and the sim-
ilarity measure fuzzy associative memory of Esmi
and Sussner [8, 7], require further attention. Fi-
nally, since an fuzzy associative memory can be used
as a fuzzy inference engine [26], applications of the
GRE-FAM in rule-based systems can be explored in
the future.
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