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Abstract

We present a technique for size reduction of a base
of fuzzy association rules which is created using an
automated approach and which is intended for in-
ference. Our approach is based on controlling the
coverage of training data by the rule base and re-
moving only such rules that do not increase that
coverage. Experiments show that such reduction is
very effective while affecting the outputs of infer-
ence only very slightly.
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1. Introduction

Mining associations rules has become a very popular
tool for its applicability as well as transparency. Let
us recall that perhaps the first algorithm and related
research no this topic was developed by Héjek et al.
and it dates to late 60’s, see [1, 2]. Although the
original method called GUHA was being developed
also later on [3], the major interest was attracted
later in 90’s due to the research of Agrawal, see e.g.
[4, 5, 6].

Due to the natural interpretability of associa-
tion rules, this method was very soon generalized
for fuzzy association rules as well and developed in
many directions including obtaining further exten-
sions, e.g., visual tools such as fingrams. For some
of the related works, we refer too [7, 8, 9, 10].

In this article, we address the problem of the re-
duction of generated fuzzy association rules. For
the sake of readability, we will talk only about asso-
ciation rules as the classical (crisp) ones are only a
special case of the fuzzy ones and thus, our research
may be easily applied to classical association rules
as well.

The research mainly aims at association rules
that use antecedent and/or consequent fuzzy sets
of an inclusive type, where some of the fuzzy sets
may be included in other fuzzy sets. This does not
mean that the results of the introduced research do
not relate to a bit more “standard” rules' which of-
ten use a sort of partition (e.g. Ruspini partition

IThe word “standard” is understood from the engineering
point of view.
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[11]) of input and output axes and the inclusion of
distinct antecedent and consequent fuzzy sets does
not appear. However, in such cases, the reduction
provided by the introduced algorithm will be signif-
icantly lower.

On the other hand, this fact does not decrease the
applicability of the introduced investigation and its
outputs at all. First, there is so-called Perception-
based Logical Deduction [12, 13, 14] which is a spe-
cific inference method that is at disposal in the
SW package LFLC [15] and also freely in the Ifl
R-package [16, 17]. This method deals with evalu-
ative linguistic expressions [18]. These expressions
stem from the basic trichotomy consisting of expres-
sions Small (Sm), Medium (Me), Big (Bi) which are
later on modified by linguistic hedges of narrowing
or widening effect?. These hedges are of the inclu-
sive type [19] and thus, the related fuzzy sets that
model such expressions are also in an inclusion, see
Fig 1.

ML Sm ML Me

Figure 1: Fuzzy sets modeling some chosen evalu-
ative linguistic expressions — demonstration of the
inclusive type of the used linguistic hedges.

Of course, the model can be easily extended by
adding further atomic expressions between those
form the basic trichotomy, e.g., by adding Lower
Middle and Upper Middle [14] as it is done in the
above mentioned Ifl R-package. The resulting algo-
rithm provided in this article will be applicable also
on such cases.

Second, there exist fuzzy rule base models that
directly employ at-least and/or at most modifiers
[19, 20], for the implicative models using fuzzy sets
modified by such modifiers see e.g. [21, 22]. Of
course, using expressions such as at-least five and
at-least seven necessarily leads to the inclusion of
the fuzzy sets that model these expressions.

2Typical hedges are Extremely (Ex), Very (Ve), More or
Less (ML) or Roughly (Ro)



Finally, the above mentioned models using at-
least and/or at-most modifiers can be easily gen-
erated from the standard ones, that use rather par-
titions of input and output domains, in order to
group several antecedents and consequents together
by the use of the modifiers. In other words, every
standard model may be easily transformed to the
one using inclusive expression and such a transfor-
mation is not an artificial step, but it may help to
reduce the size of a rule base and to increase the
readability.

2. Theoretical Background

Let O = {o01,...,0,}, n > 0, be a finite set of ob-
jects and A = {a1,...,am}, m > 0 be a finite set
of attributes (features). Each attribute can be con-
sidered as a fuzzy logical predicate: the truth value
a;(0;) would be from the interval [0,1] where the
value a;(0;) determines the degree of applicability
of attribute a; on object o;, and boundary values 1
(resp. 0) denote that the i-th attribute fully applies
(resp. does not apply) to object o;.

For a subset X C A of fuzzy attributes, we define
a new predicate of a logical conjunction by using a
t-norm ®:

X(oj) = ®a(0j), ji=1,...
a€eX

and we put X (o;) =1 for X = 0.

Recall that t-norm ® is a binary operation on
[0,1] that represents multiple-valued logical con-
junction, i.e., a function [0, 1] x [0, 1] — [0, 1] which
is associative, commutative, increasing in both ar-
guments and which satisfies the boundary condition
a®0 =0 (and consequently also a® 1 = «) for any
a € [0,1] (c.f. [23]). Some well-known examples
of t-norm are: the product t-norm a ® § = af,
the minimum t-norm o ® 8 = min{a, 8}, and the
Fukasiewicz t-norm o ® 8 = max{0,« + 8 — 1}.

An association rule? is a formula X — Y, where
X C A is an antecedent, Y C A is a consequent.
Consider the following rule as an example:

(1)

, N

{middle age, high education} — {high income}.

Now, let us recall the most well-known quality
measures of association rules, for details we refer to
(2, 5, §].

Definition 1. Let A be a finite set of attributes,
O be a finite set of objects and let X,Y C A. The
quality measures support and confidence are defined
as follows:

>oco X(0)

supp(X) = Ta (2)

supp(X —=Y) = supp(XUY), (3)
B supp(X = V)
conf(X —Y) p— (4)

3We will consider only associations rules of implicative
type. For the sake of readability, we omit this adjective and
write simply association rule.
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respectively.

Note that the definition of supp(X — Y') uses the
union of antecedent and consequent. As the union
only increases the set of attributes it actually has
rather a conjunctive nature. Indeed, using formulas
(1) and (2) we get:

2oco(X UY)(0)

where

(XUY)0)= @ alo)

aceXUY

from which supp(X — Y) < supp(X) may be easily
concluded for any X,Y € A.

Remark 1. Definition 1 is mathematically correct
but in order to use it in a meaningful way and
in order to avoid getting trivial results, it is usu-
ally assumed that the antecedent and consequent are
non-empty and disjoint, i.e., X # 0, Y # 0 and
XNy =0.

Mining association rules basically consists in
searching for all rules with support and confidence
above some minsupp and minconf thresholds.

3. Rule Base Coverage of Data

Due to the curse of dimensionality phenomenon,
the number of obtained association rules may turn
to be enormous. This is usually strengthened in the
case of fuzzy rules because a single numeric feature
is often transformed to many fuzzy attributes with
slightly different meaning, e.g. by applying linguis-
tic expressions (such as “small”, “medium”, “big”)
combined with hedges (such as “very”, “extremely”,
“rather” etc.). The obtained association rule base
may be used as a model of machine learning for
classification or prediction. It is desirable for the
rule base not to be too complex for the sake of its
understandability and in order to mitigate the risk
of overfitting. An appropriate setting of minimum
confidence and support thresholds is useful but usu-
ally not sufficient and some redundancy removal or
simplification and size reduction algorithms are nec-
essary to be used.

If some rules are being removed in order to de-
crease the size of the rule base, an appropriate “mea-
sure” of the quality of the rule base would be highly
desirable in order to quantify the change of descrip-
tive power of the rule base. Therefore, we intro-
duce a concept called the rule base coverage of data
that expresses the amount of data entries, for which
there exists a rule with an antecedent that models
(“covers”) the data.

Definition 2. Let O = {o1,...,0,} be a set of
objects, A = {a1,...,an} be aset of attributes, and
let R = {Ry,..., R} be a set of association rules
R; = A; — C; with A; Q.A, C; gA,iG {1,,k}



Then the coverage of a data O by rule base R is
given as follows:

n k
covo(R) = % >V Ailoy) (5)

j=1i=1

If there will be no danger of confusion and the
data O will be evident from the context, we will
simply write cov(R) instead of covp(R).

Proposition 1. Let O be a fized set of objects then
the following holds:

(a) cov(R) € [0, 1];
(b) cov(h) =0;
(c) If R" C R then cov(R') < cov(R);

(d) If S € R such that S = ) — C then cov(R) =
1;
(e) If ST € R such that S =A—~C,T =B —

C, and A C B, then cov(R ~ {T'}) = cov(R);

(f) Let S=A — C then supp(A) = cov({S}).

Proof. The Proposition can be easily proved using
the given formulas and their fundamental proper-
ties. O

The definition of coverage presented above ex-
presses a very intuitive measure of coverage of data
by the generated rules. It is not necessarily expected
to be close to 1, as some data sets may be generated
rather by a pure noise than by some statistically sig-
nificant dependencies expressible by associations?.
On the other hand, high values of coverage clearly
express high coverage of the data by generated as-
sociation rules. Therefore, the concept of coverage
may be very useful in setting the appropriate pa-
rameters of support and confidence thresholds.

4. Reduction of Rule Bases

In the subsequent sections we develop a technique of
a rule base size reduction that modifies an original
yet too big rule base R into a smaller reduced R’. In
that task, observing the difference between cov(R)
and cov(R') is highly desirable. Indeed, significant
change in the coverage would mean that the reduced
rule base by far does not cover the data samples that
were covered by the original rule base, which is not
advisable.

Definition 3. Let O be a fixed set of objects, R, R’
be rule bases such that R’ C R and cov(R) > 0.
Then the reduction ratio is defined as follows:

covp(R')

reductp (R, R') = covo(R)

4Huge rule base with coverage equal or close to 1 may rise
the suspicion of overfit.
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Again, we are going to omit the O symbols
whenever there is no danger of confusion. Obvi-
ously, reduct(R,R’) € [0, 1], reduct(R,R) = 1, and
reduct(R,0) = 0.

The problem of possible redundancy of fuzzy rules
is well-known and has been studied by many au-
thors, see [24, 25, 26]. Investigations presented so
far provided mainly algorithms that may slightly
change the output of modified rule bases in com-
parison to original ones, but are very efficient in
size-reducing simplification. It is worth recalling,
e.g., the study [27] that focuses on redundancies
in Takagi-Sugeno fuzzy rules or another interesting
investigation dealing with redundancy in Takagi-
Sugeno models [28] that is based on merging of sim-
ilar rules.

In [29, 30, 13], the authors focused on
theoretically-based algorithm of detection and re-
moval of redundant rules in linguistic descriptions
(rule bases) connected to the perception-based log-
ical deduction [12]. However, the results still con-
tained too many rules for the rule base to be trans-
parent and easily interpretable. Therefore, in this
paper we develop a size-reducing technique that re-
duces the rule base size even more. We relax from
the requirement of not-changing the resulting func-
tion of the rule base, however, we try to ensure that
the obtained modification will be as small as pos-
sible. Simultaneously, we keep the reduction ratio
close to 1 in order to ensure that the coverage of the
data does not change significantly, either.

Natural yet partly naive approaches would harm
this goal. For example, an algorithm taking k rules
with the highest confidence would not be very ap-
propriate as the highest confidence is always ob-
tained for rules with narrow antecedents and very
wide consequents. Thus, such modified R’ would
not necessarily keep cov(R’) as close to cov(R) as
possible and moreover, the inference on such mod-
ified rule base would change significantly its be-
haviour. The reason is that the wider the conse-
quents, the closer the defuzzified output is to the
middle of the output universe. A similar approach
based on k rules with the highest support would not
be appropriate as there is always a problem of the
determination of the parameter k.

Another intuitive but not very fruitful approach
is to use an algorithm that creates a reduced rule
base R’ from original R by selecting a rule with
the highest support and then iteratively adding
such rules that most increase the rule base cover-
age up to a certain threshold p € [0,1], i.e., until
p < reduct(R,R’). Setting the threshold p is ele-
gant as it neither depends on the number of rules
in the original rule base, nor on supports or confi-
dences of the rules, and one transparently expresses
the maximal allowed decrease of rule base coverage.

Unfortunately, this algorithm is not suitable, ei-
ther. If the original rule base R contains rule R with
empty antecedent, i.e., R = () — B, then all details



about changed behaviour in exceptional cases, that
may be modelled with other rules in R having dif-
ferent consequents, get lost because the trivially re-
duced rule base R’ = {R} would have cov(R’) =1
and therefore also reduct(R,R’) = 1, see Proposi-
tion 1 for details. Similar lost occurs even if R con-
tains a rule with antecedent having only few very
broad predicates, i.e., predicates that are “almost-
always” true for any data sample o € O or most of
such data samples.

4.1. The Reduction Algorithm

Our algorithm is driven by the threshold of allowed
decrease of coverage too, but a care is taken on as-
suring the same diversity of rule consequents in re-
duced rule as in original rule base, see Algorithm 1.

Let p € [0, 1] be a reduction ratio threshold. First
of all, the original rule base R is split into seper-
ate sub-bases R¢ containing only the rules with the
same consequent C. Then these sub-bases are pro-
cessed separately. The reduced rule base R’ ¢ is cre-
ated iteratively by adding rules that mostly increase
coverage until cov(R/¢) < cov(R¢) - p. Finally, the
reduced rule bases R'¢ are joined into a single final
rule base R':

R =JRc.
vC

Obviously cov(R’) > cov(R) - p and thus the reduc-
tion ratio reduct(R,R’) is above p. Moreover, the
same holds about all sub-bases, i.e., for any sub-
base of rules with a single fixed consequent R and
its related reduced sub-base R’¢, the reduction ra-
tio reduct(R¢e, R'¢) is also above p. This ensures
that all consequents are preserved in the reduced
rule base for sufficiently (determined by p) many
object samples compared to the original rule base.

Algorithm 1 wuses the so-called hill-climbing
heuristic: at each iteration, a rule with the po-
tential to most increase the coverage is selected.
Such method ensures a quite fast approach to ob-
tain local minimum — a minimal rule base for which
cov(R'¢) > cov(Re) - p.

The performance of the algorithm is influenced
by the order of rules being tried to add to R’c.
Some rules have a great potential to increase the
whole coverage and some others do not. We define
rule R potential Pr as the biggest known amount
of increase of coverage that the rule may cause by
adding it to the reduced rule base. In the beginning,
when R'¢ is empty, each rule R = A — B has
potential P = supp(A).

During construction of reduced rule base R'¢, we
take a rule R with greatest potential Pr and com-
pute cov(R'. U {R}). Then we update its potential
Pr to Pr = cov(R'. U{R}) — cov(R'.) If such rule
(in some of the next steps) occurs again as a rule
with greatest potential, we can be sure that it is a
rule with the greatest potential, and thus, it is the
rule that increases the coverage most.

466

For selection of the rules by greatest potential, we
use a priority queue that sorts the rules internally by
their potential (in descending order) and then also
by timestamp (in ascending order). Timestamp is
a small trick to prevent miss-selection if two rules
occur in the queue with the same potential. Then
that rule is selected whose potential is “older” i.e.
rule that was in the queue stored with that potential
earlier.

For k = |R|, the time complexity of the inner
while-loop is of the complexity order O(k), then
the time complexity of the whole algorithm is of
the complexity order O(k?). However, in average,
both while-loops iterate k-times very seldom. In
fact, the best rule to add is found quite quickly af-
ter relatively few iterations as can be seen from the
experiment introduced Section 5. The space com-
plexity is linear, O(k).

One may see the fact that our algorithm finds
only local minima as a drawback. To vindicate our
approach please note that finding a global minimum
— a smallest rule base possible — is an NP-hard prob-
lem. Since the reduction of rule base size is quite
huge even in local minimum, we see our approach as
rational compromise between time complexity and
the quality of the solution.

Also note that the outer for-loop can be executed
concurrently and hence the algorithm is easily par-
allelizable for computer architectures with up to p
CPUs, where p is the number of unique consequents
in the input rule base R.

4.2. Pre-processing During the Rule Base
Construction

A broadly accepted technique for mining of associ-
ation rules [4, 6] is searching for rules starting from
empty antecedents and adding new predicates to
them until the rule support falls below the user-
specified minimum support threshold. If a rule
A — C has a support below some minimum thresh-
old then any rule B — C' such that B D A would
necessarily have the support below that minimum
too. Such implication is known as the Apriori con-
dition.

Accordingly to Apriori condition, if a rule has a
support below given threshold, adding new predi-
cates to its antecedent is not needed because no new
rule can be created with sufficiently large support.

Similarly, if R = A — C'is a found rule, R € R,
we can stop searching for rules R = B — C such
that B D A (i.e. with a longer antecedent) because
according to Proposition 1, cov(RU{R'}) = cov(R)
and hence adding R’ to the rule base would not
increase the coverage at all.

As can be seen from Table 1, such pruning seems
to be very efficient. Table 1 shows number of rules
found without pruning (column 5) and with prun-
ing (column 8). One can see the size of rule base is
very reduced even without the reduction algorithm



Algorithm 1 Reduction of a rule base driven by the rule base coverage ratio

Inputs: set of objects O, rule base R, reduction ratio threshold p

Output: reduced rule base R’

queue < R¢ (queue sorts the rules by potential Pg (decreasing) and timestamp Tg (increasing))

1: function REDUCE(R, O, p)

2 R +0

3 for each unique consequent C of any rule from R do
4 Rc < (R e R | C is the consequent of R)

5: R/c «—0

6 best Rule < ()

7 bestCoverage < 0

8 timestamp < 0

9:

10: while covp(R/¢) < covo(R¢) - p do

11: while queue.top # best Rule do

12: timestamp < timestamp + 1

13: R < remove top rule from the queue
14: Pgr + covo(R'¢ U{R}) — covo(R'¢c)
15: TR < timestamp

16: push R into the queue

17: if bestCoverage < covp(R'. U{R}) then
18: bestCoverage + covp(R'. U{R})
19: bestRule + R
20: end if
21: end while
22: remove top rule from the queue

23: R'c + R'c U {bestRule}

24: best Rule + ()

25: bestCoverage < 0

26: end while

27 R +— R UR ¢

28: end for

29: return R’

30: end function

being applied. After application of the reduction al-
gorithm proposed in Section 4.1, the size of rule base
decreases even more. Moreover, the performance
of reduction is much better than without pruning
(compare column 7 with column 10).

The proposed pruning condition speeds-up both
the rule search algorithm (because less combina-
tions has to be evaluated) and the rule base reduc-
tion algorithm (as the smaller original rule base has
to be processed).

5. The Experiment

‘We have executed two experiments to assess the use-
fulness of reduction. In the first experiment, the
performance of the algorithm is evaluated from the
perspective of execution time and the amount of re-
duction. In the second experiment, a quality of the
reducted rule base is evaluated in the sense of the
quality of prediction by a logical deduction.

5.1. Reduction Performance

To evaluate the execution time and the ability to re-
duce the size of rule bases, the proposed algorithm
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was tested on several data sets from the UCI Ma-
chine Learning Repository [31].

The tests were executed on Intel(R) Core(TM)
i7-2600K CPU @ 3.40GHz with 16 GB RAM run-
ning the Ubuntu 14.04 operating system with kernel
Linux version 3.13.0-43-generic. The algorithm was
written in C+4 and evaluated in the environment
of the R software version 3.1.2. The fuzzy associ-
ation rules search algorithm was taken from the Ifl
(Linguistic Fuzzy Logic) package [16, 17].

Single data column was selected as consequent,
the rest were antecedents. Each categorical col-
umn was transformed into ¢ fuzzy sets (where c¢ is
the number of categories), such that each set rep-
resents a different category and objects have trivial
membership degrees {0,1} only. Each numeric col-
umn was transformed into 16 different fuzzy sets
by applying linguistic expressions (small, medium
big) and linguistic hedges to the original value.
Rows with missing values were omitted. Associ-
ation rules were searched with minimum support
threshold = 0.05, minimum confidence threshold =
0.7, and maximum size of the antecedent (i.e. |A]
for rule A — C) = 4. The reduction ratio was set



Without Pre-processing With Pre-processing | Reduced
Data Rows LHS  RHS Rules Scans  Time | Rules Scans Time Rules
1) (2) (3) (4) (5) (6) ) (8) (9) (10) (11)
abalone 4177 115 16 12338 17803  1.462 167 336 0.031 32
bikesharing 731 208 16 | 78861 128297  3.825 | 2922 7632 0.166 93
german 1000 166 16 | 119430 5 3.818 5 5 0.005 5
heart 270 208 16 | 296925 476060 12.684 | 3805 12900 0.157 120
housing 506 208 16 | 73361 83181  3.519 | 1281 3603 0.070 85
skillcraftl 3395 304 16 | 44549 102816  5.108 | 3621 10526 0.396 36
winequality | 4898 176 16 | 50953 2 2.578 2 2 0.024 2

Table 1: Evaluation of the reduction algorithm on several datasets from the UCI repository [31]. The columns
from the left are: 1. data set name, 2. number of rows, 3. number of (fuzzy) sets in LHS (antecedent), 4.
number of (fuzzy) sets in RHS (consequent); 5. & 8. size of rule base before reduction, 6. & 9. number
of scans of dataset during reduction (without initial scan to determine original rule base coverage), 7. &
10. reduction execution time (in seconds): first without and next with pre-processing pruning condition; 11.

number of rules after reduction.

Data Original Size Reduction Threshold
(without pre-proc.) | 1.00 0.99 0.98 0.97 096 095 0.90 0.85 0.8
abalone 12338 70 32 27 23 21 18 13 10 9
bikesharing 78861 | 148 93 7 70 64 56 45 34 27
german 119430 5 5 5 5 5 5 5 5 )
heart 296925 | 175 120 110 95 85 75 55 40 30
housing 73361 | 128 85 72 65 58 54 38 30 22
skilleraft1 44549 | 155 36 27 21 17 16 10 8 7
winequality 50953 2 2 2 2 2 2 2 2 2
Table 2: Number of rules obtained for different levels of reduction threshold
Data Original Difference from Orig. data set Wa,S'SI')ht into training (2) and testing (1)
Pre-proc.  Reduced part. On training part, the rules were searched and
abalone 3.453 —0.003 10.061 reduction performed. The original rule base and the
bikesharing | 1623.821 13.439 —144.491 reduced rule base were then used for prediction of
german 0.586 —0.046 —0.021 the target attribute value on the testing data set.
heart 0.586 0 —0.014 As an inference mechanism, the Perception-based
housing 7.546 40.001 —0.039 Logical Deduction [12] was used. The difference be-
skilleraft1 1.443 0 —0.007 tween predicted p and real value r was evaluated
winequality 0.882 0 0 using the Root Mean Square Error:

Table 3: Evaluation of the prediction performance
of the rule bases. Here RMSE is reported for orig-
inal rule base, rule base created with pruning (pre-
processing) as described in Section 4.2, and reduced
rule base.

to 0.99. Table 1 shows summary information about
data being used and the results obtained.
Although the theoretical complexity of the reduc-
tion algorithm is O(k?) (where k = |R|) it can be
seen that the number of scans of data set is no more
than 4 - k (k scans for initial determination of the
coverage + 2k to 3k scans in average). The heuristic
based on rule potential seems to be very efficient.

5.2. Rule Base Quality

To measure how the predictive power of a rule
base changes after application of the reduction algo-
rithm, the following experiment was set. The source
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RMSE(p,r) =

As can be seen from Table 3, the RMSE of pre-
diction has no change or changes only very slightly
for reduced rule base compared to original rule base.
Most of the times, the error even decreases if using
reduction on rule base. We believe that reduction
helps eliminating overfit — too complex model such
as large rule base may capture also the noise.

6. Conclusion

We have proposed a novel technique for size reduc-
tion of rule bases. The reduction is driven by the
coverage of data by the rules so that the coverage
must not decrease below a user-specified threshold.
We have shown the performance of the proposed al-
gorithm, the effectiveness of reduction, and we have
also demonstrated that the resulting reduced rule



base does not produce worse predictions if used with
the Perception-based Logical Deduction.

The reduction algorithm together with a tool for
searching of fuzzy association rules in data as well
as the Perception-based Logical Deduction is pro-
grammed as an open-source package, Ifl [16, 17],
for the R statistical envirnoment that runs on Win-
dows, Linux, or Macintosh systems.
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