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Abstract

Rule base generation from numerical data has been
a dynamic research topic within the fuzzy commu-
nity in the last decades, and several well-established
methods have been proposed. While some authors
presented simple, empirical approaches, but which
generally show high error rates, others turned to
complex heuristic techniques to improve accuracy.
In this paper, an extension of the classical Wang-
Mendel method is proposed. While keeping a linear
complexity, the new method achieves performances
close to those of more complex methods based on
cooperative rules (COR). Results on synthetic data
show the potential of the proposed method as a
complexity-accuracy trade-off.

Keywords: inductive rule learning, fuzzy rule-
based model, double-consequent linguistic rules,
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1. Introduction

Fuzzy rule-based systems, abbreviated FRBS, were
successfully used in many real-world problems, with
applications ranging from system modeling and di-
agnosis [1, 2] to dynamic control processes [3]. The
vast popularity of FRBS resides mainly in their
transparent and interpretable nature, which dif-
ferentiates them from common “black-box” tech-
niques such as multi-layer perceptron or support-
vector machines. Besides, FRBS can be designed
to offer very accurate models since it has been
shown that they can approximate any real con-
tinuous function to arbitrary precision [4]. This
comes however with an important loss in inter-
pretability, and an application-specific compromise
must be reached, yielding two main paradigms
in fuzzy system modeling: accuracy-oriented and
interpretability-oriented [5].

In both cases, FRBS are characterized by a bi-
directional flow of knowledge, which can be either
injected to the system by a human expert and
then validated on experimental data (expert-driven
FRBS), or automatically extracted from data follow-
ing an optimization procedure and later verified by
the system designer (data-driven FRBS). Although
various combinations of the above instances can be
found in the literature, e.g. [6], in this paper we will
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mainly focus on the latter, where FRBS design is
considered in the absence of human experts.

Therefore, according to [7] the identification of
the knowledge base of a FRBS is divided into the
generation of its data base (DB) on the one hand,
dealing with the fuzzy partitions of the input and
output variables and their associated membership
functions, and the generation of the system rule base
(RB) on the other hand.

Although the above formalism can be adapted
to any kind of FRBS, in this paper we will re-
strict ourselves to the case of Mamdani-type sys-
tems. More precisely, considering that the DB was
a priori learned or imposed, we propose an origi-
nal method to generate the RB for a Mamdani sys-
tem from numerical input-output data pairs. The
proposed method is based on the classical Wang-
Mendel (WM) approach [8] combined with the
double-consequent cooperative rules (COR) strat-
egy [9]. The method is shown to have linear com-
plexity in terms of number of evaluations needed,
therefore providing a suitable framework for those
applications where accuracy and speed are equally
important. Moreover, with the use of linguistic vari-
ables [10], and by restricting the number of fuzzy
rules, system interpretability is also preserved.

Considering the above, the rest of the paper
is structured as follows. Section 2 provides an
overview of best known RB generation methods,
with a special focus on the WM-based approaches
and the COR methodology. Then, in Section 3
the proposed method is detailed and its theoreti-
cal properties are studied. Section 4 is dedicated
to the experimental results, where the considered
method is tested on two function modeling tasks
and its performances are compared with those of
three reference methods in the literature. Finally,
in Section 5 some concluding remarks are presented.

2. Overview of Rule Base Learning Methods

The RB is the core of every FRBS. Formally speak-
ing, it represents a collection of fuzzy “IF-THEN”
rules which connect the input variables of the sys-
tem to its output in a way that is easy to read and
interpret by humans. In the early years of fuzzy
logic the RB was almost exclusively built using ex-
pert knowledge, and the rules obtained synthesized
human expertise in the field. However, the lack of
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Figure 1: The WM method for RB generation.

experts in different areas and the need to automate
certain processes pushed the fuzzy community in
search for ways to automatically learn fuzzy rules
from numerical input-output data or examples.

Although the pioneering work of Sugeno [11] pro-
vided the first complete formalism to learn the
RB directly from examples [12], the rules thus ob-
tained used crisp outputs, which limits system in-
terpretability.

A few years later, Wang and Mendel proposed
a simple, yet efficient method to generate the RB
from numerical data [8], and which can be directly
applied to obtain complete linguistic rules. Their
method, successfully used in many real-world prob-
lems [13, 14, 15], is briefly described below.

2.1. WM Rule Base Generation Method

Given a partition of the input and output variables
of the system and a dataset of input-output numer-
ical examples, the steps to generate the RB through
the WM method are:

1) For each example E = (x1,%2, ..., Tm,Y), i.€.,
m input variables and one output variable, de-
termine its membership degrees in every fuzzy
partition of the input and output spaces;

2) Assign E to the fuzzy partitions, i.e. labels,
with maximum degree (best covering label), in
each of the input and output variables spaces;
thus, we can associate to E a rule of the form:

IF 2, is Aiff ... and z,, is Affm’”
THEN y is B
where Aiff Vi, and Bllf’ are the linguistic labels

best covering the example F in each input and
output subspaces, respectively;

3) Iterate step 2) for every example F in the
dataset, to obtain a candidate RB. Then assign
an importance degree to each rule R:

D(R) = /JA;Ill (ml) MEXT /”LAi,Im (xm) . ILLB;:’J (y)
where 1yl Vi, and p i, are the membership

degrees of the linguistic labels best covering the
example F in each input and output subspaces;
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Steps 1) — 3) are illustrated in Figure 1 for a
numerical example F with two input variables
(21, x2) and one output variable (y).

4) The preceding stages are likely to generate
conflicting rules, i.e., rules with the same an-
tecedents but different consequents. To settle
these disputes, we need to group all rules hav-
ing the same antecedents, and from each group,
choose the rule with the maximum degree D(R),
to form the final RB.

The WM method requires a single pass through
the dataset of examples to generate the RB. Besides
its proven efficiency, the method is very fast and
easy to implement. In the next sections we will
present two of its most common extensions proposed
in the literature.

2.2. The WM Method Completed

A first extension was proposed by Wang in [16],
where the rule learning process is carried out
through the following steps:

1) Given a numerical input-output example of the
form E = (21,22, ..., Tm,y) € R™H determine
its membership degrees in every fuzzy partition
of the input space only; then associate to E the
best covered input subspace:

E = (A7}, A2, o AST)
where Aifi"' Vi are the input variables linguistic
labels best covered by the example E; please

note that no output label is associated to E at
this stage;

2) Compute the cumulative membership degree of
F to its input subspace:

(B) _ 17 ,
w = e (T
iljluA;;( )

It should be noticed that w(®) does not include
the membership degree for the output variable.

The above steps are iterated for all available
examples, which are then clustered into the dif-
ferent input subspaces;

3) Next, let SE = (At A2 . Akm) be a

given input subspace. Let K denote the num-
ber of examples situated in this subspace, i.e.
E,, k= 1,..., K. Each example has a corre-
sponding membership degree w(F+). Afterward,
a weighted mean of these membership degrees
is performed as follows [16]:

K . .
o(SE) — Py yrw(Fr)

Zszl w(Ex)

where y©* is the numerical output associated to
the example Ef.

a

The output label assigned to the input subspace
SE, thus forming a complete linguistic rule, is
the label Bi* which best covers the numerical

value av(SE);
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Step 3) is iterated for all input subspaces con-
taining at least one data point, thus obtaining the
system RB. Though in [16] the author proposes a
strategy to adjust the membership functions of the
variables based on av(®F) and a variance measure,
we will limit ourselves to the case where the mem-

bership functions are a priori imposed.

2.3. The WM Extension Based on the
Cooperative Rules (COR) Strategy

A second class of extensions of the classical WM
approach focuses on step 4) of the algorithm, in
order to allow two consequents for the same pair
of input antecedents, i.e. two output labels for the
same input subspace.

Even though the double-consequent rules emerged
from Ishibuchi’s early works on a TSK system [17],
the idea was refined by Cordén in [9] and adapted
for linguistic modeling through a Mamdani FRBS.
While the double-consequent rules approach can be
used to extend several classical RB generation meth-
ods (see [9, 18]), in this section only the WM exten-
sion will be presented.

Therefore, under this strategy, step 4) of the orig-
inal WM algorithm is altered, and from each group
of rules having the same antecedents, the two rules
with the highest importance degree D(R) are cho-
sen. This process is illustrated on a numerical ex-
ample in Figure 2. Let us point out that in those
groups containing a single rule, that rule is the only
one chosen. Spanning all available groups and ap-
plying the above mechanism allows one to construct
a temporary rule base containing N R rules, with:

(1)

where N is the number of rules obtained with the
original WM method.

Next, a combinatorial optimization algorithm is
used to search for the subset of rules in the tempo-
rary RB which minimizes some error criterion. In [9]
the authors used a genetic algorithm to find the op-
timal set of rules using a population of chromosomes
having N R binary genes, g; € {0,1},Vi=1,..., NR.
Therefore, if g; = 1, then its corresponding rule
from the temporary RB is included in a final rule-
base, which is later used to evaluate the fitness func-
tion of the system.

It should be noticed that genetic rule learning
dates back to 1991, when Thrift proposed in [19] a
mechanism to encode the RB’s consequent array as
an integer-valued chromosome.

Throughout the years, genetic and evolutionary
techniques were extensively used in RB learning
(see [23] for a survey), with successful applications
in many fields such as medicine [24] or HVAC sys-
tems [6].

N < NR<2N
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Since the introduction of the double-consequent
methodology, several extensions have been pro-
posed in the literature where genetic algorithms
are replaced by other optimization techniques such
as: simulated annealing [18], ant colony optimiza-
tion [20, 21] or local search [22]. Although some
differences exist between these approaches, they are
all instances of a general methodology called coop-
eratives rules strategy (COR), stating that good co-
operation among rules, rather than good individual
rules, is important for a FRBS.

However, the major drawback of these methods is
associated with the high number of evaluations per-
formed to find the optimal set of rules. In this re-
gard, we outline that the search space tackled grows
exponentially with the number of fuzzy labels of the
input and output variables. This aspect limits their
applicability for real-time or quasi real-time con-
trollers which need to quickly update their structure
as new data is delivered.

This is why in the following section we will intro-
duce an original RB generation method designed to
considerably reduce the number of evaluations per-
formed, while still providing high accuracy FRBS.
The pillars of our proposal are the WM method,
presented in Section 2.1, and the double-consequent
rules strategy, illustrated in Figure 2.

3. The Selection-Reduction Rule Base
Generation Method

While greatly improving system performances, the
COR methods perform a high number of evalua-
tions to find the optimal set of rules. On the other
hand, while performing a single pass through the
dataset, the WM method generally provides higher
error rates, and is sensitive to noise in the data.

Therefore, we believe that an appropriate trade-
off between complexity and accuracy should be
reached in order to provide a predictable framework
in the context of RB generation.

The proposed method divides RB learning into
two independent stages: the selection of the most
relevant fuzzy rules, starting from a temporary RB
of double-consequent rules; and then the reduction
of the new RB obtained.

3.1. Rule Selection Stage

The steps performed in the rule-selection stage are
the following;:

1) Consider an original RB (ORB) obtained with
the WM algorithm presented in Section 2.1.
Let N denote its number of rules. Further
consider a double-consequent RB (DCBR) ob-
tained from ORB as illustrated in Figure 2.
Let NR denote the number of rules of DCRB,
where N R follows the set of inequalities in (1).

2) Let FRB denote the final RB of the system.
Initialize it: FRB = ORB.
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Figure 2: Temporary RB construction under the double-consequent rules strategy. In each input subspace
the two rules with the highest importance degree, if they exist, are chosen. Filled points represent numerical
data which generate chosen rules, while empty points represent numerical data generating unchosen rules.

3) Next, the relative complement (RC) of ORB in
DCRB is computed as the set-theoretic differ-
ence between the two rule bases:

RC = {DCRB} \ {ORB}

Therefore, RC' is a set containing only the rules
with the second-best importance degree D(R).
The rules with the best importance degree are
all in ORB. In this way DCRB is separated
into two sets: ORB and RC. Note that the
cardinals of these sets are not necessarily equal.

4) All second best-degree rules contained in RC
are inserted one by one in FRB in lieu of their
corresponding best degree rules (rules having
the same pair of antecedents, but a different
consequent).

5) On a predefined dataset of numerical examples,
the system is tested using FFRB as rule-base.

e If the global error of the system is reduced,
then the original rule (having the best im-
portance degree D(R)) is discarded, and
the second-best degree rule is retained
as final rule for its combination of an-
tecedents; the global error of the system
is updated;

e Otherwise, the original rule (having the
best importance degree D(R)) is kept as
final rule in FRB.

Iterating steps 4) and 5) for all rules in RC' al-
lows us to obtain an optimized rule-base (FRB).
The selection stage is then followed by a simple rule
reduction stage.

3.2. Rule Reduction Stage

This stage aims to improve both accuracy and inter-
pretability of FRBS by removing those “malignant”
rules in F'RB which negatively affect system perfor-
mances. Hereinafter, a rule R; € FRB is said to be
malignant if the following holds:

Err({FRB}) > Err({FRB} \ R;)

523

where Err({FRB}) is the global error of the
system using the complete rule-base FFRB and
Err({FRB} \ R;) is the global error of the system
using a rule-base obtained by removing R;.

The steps performed in the rule-reduction stage
are the following:

1) Consider an auxiliary rule-base (ARB) and ini-
tialize it: ARB = FRB.

2) One by one, each rule R; € ARB is removed:
ARB = {ARB} \ R;;

3) The system is tested with ARB on the prede-
fined dataset of examples. If the global error
is reduced below an a priori defined threshold,

then R; is definitively discarded from F'RB:
FRB = {FRB}\ R;;

Following these two stages, the RB obtained is
potentially better and more compact than the orig-
inal rule-base ORB. Therefore, the metaheuristic
search of the COR methods is replaced by two in-
dependent stages.

3.3. Theoretical Properties of the
Selection-Reduction Method

Before presenting the behavior of our proposal on a
function modeling task, let us first outline some of
its most important theoretical properties, such as
computational complexity, expected accuracy and
compactness.

3.3.1. Computational complexity

In order to determine the complexity of the pro-
posed method, we will use as indicator the total
number of evaluations (T'E) needed to complete the
RB extraction process.

Considering the above algorithm, in the case of
the Selection-Reduction (S-R) method, TE is the
sum of the evaluations carried out in the two stages:

TE = [{RC}| + [{FRB}| = |{DCRB)|

_ (2)
=TE=NR



where |{-}| represents the set cardinal. Therefore,
TFE is limited by:
N<TE=NR<2N (3)

Equation (3) shows that the total number of eval-
uations performed scales linearly with N, the origi-
nal number of rules obtained with the WM method.
Therefore, the computational complexity of the S-R
method is O(N).

Moreover, once the double-consequent rule-base
(DCRB) is obtained in step 1) of the Selection
stage, the eract number of evaluations needed is
already known. Thus, depending on the context,
we can either choose to carry out the whole S-R
procedure, or to keep using the original rule-base
(ORB).

Let us better illustrate this behavior in the case
of a system working in real-time, receiving new data
from its sensors every T seconds. Knowing the time
needed for a single RB evaluation (t.), the system
can accurately estimate the time needed for a com-
plete RB extraction on the new data using the S-R
method. Three possibilities arise:

(a) the system will complete the whole S-R proce-
dure if:

te x NR < T,

(b) the system will only complete the Selection
stage if:

te x {RCY < T
tex NR>T

the system will not start the procedure if it
cannot complete at least the Selection stage,
i.e. if te x [{RC}| > T in this case, the original
rule-base (ORB) will be used, while waiting for
a human operator to change the periodicity T’
of the data.

Therefore, the linear-complezity of the S-R
method, coupled with its predictable nature, pro-
vides an appropriate framework for those adaptive
FRBS employed in a real-time context.

3.8.2. Properties of the S-R Method

Besides its linear and predictable complexity, the
proposed method exhibits some more interesting
properties, which are briefly discussed below:

e the S-R method yields at least the same quan-
titative performances on the training set as the
original WM method, while producing at most
the same number of rules;

e the maximum number of evaluations needed is
2N, and it is a priori known; besides, the S-R
method can be adjusted to handle c-consequent
rules (¢ > 2) without loosing its O (V) complex-
ity (we recall that O(c- N) = O(N));
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e moreover, if the context allows it, i.e. if there
are no time constraints, the final RB provided
by the S-R method could be used as starting
point in a heuristic search for a better RB using
a combinatorial optimization technique such as
genetic algorithms, simulated annealing or ant
colony optimization;

Therefore, the proposed method offers an im-
provement in terms of accuracy compared to the
WM method, and an improvement in terms of com-
plexity and predictability compared to the COR
methods. It can be seen as a compromise between
accuracy and complexity, with the advantage of pre-
dictability.

4. Experimental Results

In this section the S-R method is tested on some
synthetic data, and its behavior is compared with
the three methods presented in this paper: the origi-
nal Wang-Mendel method [8] (WM), the completed
version of the WM method [16] (WM-C) and the
COR genetic algorithm WM method [9] (COR-GA-

In all cases, the input and output variables are
defined by uniformly partitioned triangular mem-
bership functions, as shown in Figure 3. For each
situation, the number of linguistic labels is speci-
fied. The inference operators used are the same for
all methods: the arithmetic product T-norm as con-
junction operator (as used in [8]), the Mamdani min
T-norm as implication and maz T-conorm as aggre-
gation operators, along with the centroid method of
defuzzification.

The four methods are tested with two perfor-
mance indicators, namely:

e the mean-square error of the system:

1y .
MSE:EZEZGW)—A@D

i=1

where M is the number of data samples evalu-
ated, P(7) is the output value predicted by the
system and A(7) is the actual output value of
the data sample.

For the two iterative methods (S-R and COR-
GA-WM) MSE is used as fitness function, to
evaluate the performance of the system.

e the normalized global error of the system:

A~ Tt [P() — AGD)

Zi]\il MazxFErr;
with
_f A@) —min(I), if A(i) >k
MazErr; = { max(I) — A(i), otherwise

with M, P and A as defined above; MaxErr;
is the maximal error that the system can make
in predicting the output value of data sample i,



| | WM |WMC| SR [COR-GA-WM

vs S M H VH
MSE¢rq | 0.0999 | 0.0221 | 0.0198 0.0198
MSE¢s: | 0.0890 | 0.0197 | 0.0146 0.0146
0.5
Atra 34.59% | 15.49% | 14.82% 14.82%
Aist 32.53% | 14.39% | 12.46% 12.46%
min Max
NR 9 9 9 9
Figure 3: Uniform partition of the universe of dis- TE - - 15 2700

course in five fuzzy subsets using triangular-shaped
membership functions.

and k is the midpoint of I, which is the interval
of variation of the output variable.

Besides the two performance indicators above,
the final number of rules (NR) and the total num-
ber of evaluations performed (TE) are also used to
compare the RB generation methods.

The parameters considered for the COR-GA-WM
method are: a population of 100 binary-coded indi-
viduals, a maximum number of generations of 100
(with a stall criterion of 25 generations), crossover
and mutation probabilities of 0.8 and 0.01 (per
gene), respectively.

Since FRBS are universal function approxima-
tors [4], the performances of the above methods will
be tested on two 3-D function modeling tasks, with
different initial conditions.

4.1. Matyas Function Modeling

The first function to be modeled is the Matyas func-
tion, represented in Figure 4, and defined by the
equation below:

Fitatyas(T1,72) = 0.26 - (27 + 23) — 0.48 - 21 - 29
T1,T2 € [_171]7 FMatyas S [Oa 1],

The function is frequently used to test the effi-
ciency of optimization algorithms [25], and shows a
global optimum at (0, 0), where Fasqtyas(0,0) = 0.

The training dataset was composed of 6400
points, uniformly sampled in the 3-D space of the
function. The training dataset was used by all
methods to learn the RB.

The test dataset was composed of 2116 samples,
i.e. ~ 25% of the (training + test) data samples,
generated by randomly selecting points in the input
space and determining the function value at those
points. The same procedure was used for function
modeling in [18].

Two initial conditions were considered. In the
first condition, three uniformly partitioned fuzzy la-
bels were used for each linguistic variable, and in
the second condition, seven.

The results of all methods in the above condi-
tions are collected in Table 1 and Table 2. In both
cases, the S-R and COR-GA-WM methods outper-
form the non-iterative ones (WM and WM-C), and
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Table 1: Results of the Matyas function modeling
with three labels for each linguistic variable. The
best result for each indicator is shown in boldface.

| | WM [WMC| SR [COR-GA-WM

MSE¢rq | 0.00504 | 0.00421 | 0.00108 0.00106
MSE;s¢ | 0.00468 | 0.00397 | 0.00112 0.00112
Atra 7.82% | 6.86% 3.20% 3.17%
Aot 7.67% | 6.63% 3.24% 3.20%
NR 49 49 45 47
TE - - 87 7000

Table 2: Results of the Matyas function modeling
with seven labels for each linguistic variable. The
best result for each indicator is shown in boldface.

Figure 4: Illustration of the Matyas function.

when three fuzzy labels are used for each linguis-
tic variable they obtain the same quantitative re-
sults. The S-R method however, converges quickly
and performs only T'E = 15 evaluations, while the
COR-GA-WM needs TE = 2700 evaluations.

When seven fuzzy labels are used for each linguis-
tic variable, thereby causing an exponential growth
of the search space, the COR-GA-WM needs no less
than TE = 7000 evaluations in order to converge,
while the S-R method performs only T'E' = 87 eval-
uations. Despite the huge difference in complexity,
the two methods achieve approximatively the same
results (in terms of MSE and A) on both training
and test datasets. Moreover, thanks to its reduc-
tion stage, the S-R method obtains a slightly more
compact RB with NR = 45.
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Figure 5: Illustration of the Sphere function.

4.2. Sphere Function Modeling

The second function tested is the Sphere function,
illustrated in Figure 5, and defined as follows:

FSphere(xla x?) = l‘% + .T%
x1,T2 € [—5,5]; FSphe're € [Oa50]7

The training and test datasets are generated as
described in Section 4.1, with 6400 data points for
the training set and 2116 data points for the test
set. The same initial conditions, with three and
seven fuzzy labels for each linguistic variable, are
considered.

The results obtained can be consulted in Table 3
and Table 4 for the two initial conditions, respec-
tively. Hence, in the three fuzzy labels condition,
the S-R and COR-GA-WM methods yielded identi-
cal results (meaning that the same RB was mined by
the two methods), which show significant improve-
ment over WM or WM-C methods. There is how-
ever an important gap in complexity between the
two methods, as the COR-GA-WM method needs
to perform 200 times more evaluations to reach the
same performances as the S-R method.

In the second experimental condition, where
seven fuzzy labels are used for each linguistic vari-
able, the COR-GA-WM method was more accu-
rate than the S-R method on the training set, but
the two show similar performances on the test set.
The higher accuracy of the COR-GA-WM method
comes from the considerable number of evaluations
performed (TE = 9300), and also from the large
number of fuzzy rules selected (NR = 65). On
the other hand, the S-R method obtained compa-
rable performances using a much more compact RB
(NR = 49), and performing only TE = 97 evalua-
tions.

5. Conclusion

In this paper we proposed an original method to
generate the rule-base of fuzzy systems from nu-
merical data. The method is based on the clas-
sical Wang-Mendel approach corroborated by the
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| | WM |WMC| SR [COR-GA-WM

MSE¢r, | 108.38 | 116.65 | 47.81 47.81

MSE¢s: | 96.043 | 91.544 | 29.954 29.954
Atra | 24.74% | 25.91% | 16.62% 16.62%
Avsr | 25.15% | 23.64% | 13.26% 13.26%
NR 9 9 9 9
TE - - 17 3400

Table 3: Results of the Sphere function modeling
with three labels for each linguistic variable. The
best result for each indicator is shown in boldface.

] | WM [WM-C| SR | COR-GA-WM

MSE¢rq | 7.4607 | 7.8445 | 3.5036 2.9939

MSE¢s: | 6.9006 | 6.9115 | 2.2791 2.1884
A¢ra | 6.36% | 6.47% | 4.15% 3.88%
Aot 6.23% | 6.23% | 3.47% 3.31%
NR 49 49 49 65
TE - - 97 9300

Table 4: Results of the Sphere function modeling
with seven labels for each linguistic variable. The
best result for each indicator is shown in boldface.

double-consequent rules methodology. Employing
two independent stages (rule-selection and rule-
reduction), the proposed algorithm achieves linear
complexity and predictability in terms of number
of evaluations performed. Therefore, the Selection-
Reduction method induces a tractable behavior, al-
lowing FRBS to make contextual choices about
whether or not a rule-base update is feasible.

Engaging a linear exploration of the space of
double-consequent rules, the proposed method pro-
duces very reliable models, with performances com-
parable to those of the complex GA-driven ap-
proaches. Moreover, we showed that under certain
conditions the Selection-Reduction method even
manages to match the performances of the heuristic-
based COR methods.

Although preliminary experiments on function
modeling show promising results, further investiga-
tions are needed to assess the effectiveness of the
proposed method in different contexts and for dif-
ferent applications. In this regard, an interesting
perspective would be to use the solution of the
Selection-Reduction method as starting point for
the metaheuristic optimization algorithms, in order
to speed up their convergence rate, and therefore
reduce the number of evaluations performed.
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