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Abstract

The K-means algorithm is one of the most often
used clustering techniques. However, when it comes
to discovering clusters in informetric data sets that
consist of non-increasingly ordered vectors of not
necessarily conforming lengths, such a method can-
not be applied directly. Hence, in this paper,
we propose a K-means-like algorithm to determine
groups of producers that are similar not only with
respect to the quality of information resources they
output, but also their quantity.

Keywords: k-means clustering, informetrics, ag-
gregation, impact functions

1. Introduction

In the practice of data analysis and mining, the K-
means algorithm is very often applied in order to
automatically discover a partition of a given, unla-
beled data set, so that objects within each cluster
are similar as much as possible and objects in dis-
tinct groups differ (with respect to some criteria) as
much as possible from each other (see e.g. [1]). K-
means procedure can be easily applied to data sets
consisting of n-dimensional real vectors. In case of
informetric data sets, however, we are faced with
sets of vectors of nonconforming lengths that are
sorted non-increasingly. For example, one of the
informetric tasks is the problem of evaluating the
quality of information resources and their produc-
ers, the so-called Producers Assessment Problem
(PAP, cf. [5]). Let P = {p1, . . . , pl} be a set of l
producers and assume that each of them outputs ni,
i = 1, . . . , l, products. Additionally, each product
is given some kind of rating concerning its overall
quality. The state of a producer pi may be repre-
sented by a non-increasingly ordered sequence. Ad-
ditionally, the lengths of vectors in PAP may vary
from producer to producer.

Scientometrics, in which a scientist is considered
as a information resources’ producer and his/her
scholarly papers are conceived as products, makes a
perfect example here. Moreover, the papers’ qual-
ity is often described by a function of the number
of citations they received (see e.g. [6]). Similarly, a
Facebook or Twitter user is also a kind of producer.

In such a case, his/her posts are products, and the
numbers of their “re-tweets” or “likes” can be con-
sidered as their quality assessment. PAP has many
other instances, even in manufacturing and quality
management [7].

Thus, the aim of this paper is to derive a
K-means-like procedure for clustering informetric
data. The structure of this contribution is as fol-
lows. Description of K-means algorithm is given in
Sec. 2. In Sec. 3 a dissimilarity measure for vectors
of nonconforming lengths is defined. Then, in Sec. 4
a procedure to determine the d2

M -centroid of a given
set of vectors is derived. Next, in Sec. 5, a fast algo-
rithm to deal with this task is constructed. Sec. 6
presents results of an application of the proposed
approach on a real-world data set. Finally, Sec. 7
concludes the paper and shows future research di-
rections.

2. K-means algorithm

Let us begin with a short introduction of clus-
tering task. Given a set of observations X =
{x(1), . . . , x(l)}, where each x(i) ∈ R

n, we aim at
partitioning the l observations into k nonempty
pairwise disjoint sets C = {C1, C2, . . . , Ck},
⋃k

i=1 Ci = X , so that:

C = arg min
partition C of X

k
∑

i=1

∑

x∈Ci

d2
L2

(

x, µ(i)
)

, (1)

where µ(i) is the centroid of all the vectors in Ci,

µ
(i)
j =

∑

x∈Ci
xj/|Ci|, and d2

L2
(x, µ) =

∑n

j=1(xj −

µj)2 is the squared Euclidean distance. Of course,
the squared Euclidean distance is actually not a
metric in the mathematical sense, since in general
it does not satisfy the triangle inequality. However,
it is a so-called dissimilarity measure, i.e. a func-
tion d(x, y) such that (∀x, y) (a) d(x, y) ≥ 0, (b)
d(x, y) = 0 ⇔ x = y and (c) d(x, y) = d(y, x).
Nevertheless, the usage of dL2 instead of d2

L2
is much

more difficult to tackle both mathematically and
computationally. In particular, there exists no an-
alytic solution the the Euclidean 1-center problem,
see e.g. [2].

As the problem stated in Eq. (1) is known to be
NP-complete [3], the following heuristic is used in
the K-means algorithm, see [4]. For the initial set
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of cluster centers, do what follows until convergence
occurs:

1. Assign each point in X to the cluster with the
nearest center,

2. Recalculate cluster centers by computing the
means µ(1), . . . , µ(k) of all the points assigned
to particular clusters.

3. A dissimilarity measure

Let S := {(x1, . . . , xn) ∈
⋃

n≥1 R
n : x1 ≥ x2 ≥

· · · ≥ xn} be the space of non-increasingly sorted
vectors of arbitrary lengths. Moreover, for any
n ∈ N, let Sn := {x ∈ S : |x| = n} denote the set
of all vectors in S of length exactly n. For example,
in a scientometric context, xi usually represents the
number of citations or the impact factor of the i-th
most cited paper of a scientist. On the other hand,
if we consider the output of the users of the Stack
Exchange portal1, xi may denote a post (question or
answer) rating given by community members. Note
that posts’ quality is not only quantified by count-
ing the so-called UpVotes (+1), but also DownVotes
(−1). Thus, the assessment of some answer may be
negative.

In [8] some classes of metrics on the space S were
introduced. Here we will focus on a squared version
of an Euclidean-like metric from [8] that allows to
capture the dissimilarity between two vectors of not
necessarily equal lengths. Let d2

M : S × S → [0, ∞)
be a function defined for x ∈ Snx

, y ∈ Sny
as:

d2
M (x, y) =

min {nx,ny}
∑

i=1

(xi − yi)
2 +

ny
∑

i=nx+1

y2
i +

+

nx
∑

i=ny+1

x2
i + |nx − ny|,

with convention
∑v

i=u · · · = 0 for u > v. It is easily
seen that d2

M is a dissimilarity measure.
Note that in Sec. 7 we are going to generalize

the above dissimilarity measure. However, all the
results derived below will still be valid.

4. Determining the d2
M -centroid

In order to derive a K-means-like procedure for
clustering informetric data, first we have to pro-
vide a method for computing the d2

M -centroid of
a set of vectors representing producers. Thus, let
X = {x(1), . . . , x(l)} ⊆ S. Our aim is to find

µ = arg min
µ∈S

l
∑

i=1

d2
M (x(i), µ).

1See http://stackexchange.com/; Stack Exchange is a net-
work of over one hundred communities created and run by
enthusiasts and experts on specific topics like computer sci-
ence, physics, wine tasting, psychology, etc.

For brevity of notation, let F (µ) =
∑l

i=1 d2
M (x(i), µ). Also, let m = max {|x| : x ∈ X }

be the maximal length of a vector in X .

Firstly, note that the length of µ which is a min-
imizer of F cannot be greater than m.

Lemma 1.

∣

∣

∣

∣

arg min
µ∈S

F (µ)

∣

∣

∣

∣

≤ m.

Proof. Let µ′ ∈ Sn, n > m. Then it holds that:

F (µ′) =

=
l

∑

j=1

(

n(j)
x

∑

i=1

(x
(j)
i − µ′

i)
2 +

n
∑

i=n
(j)
x +1

µ′2
i + |n(j)

x − n|
)

=

=
l

∑

j=1

(

n(j)
x

∑

i=1

(x
(j)
i − µ′

i)
2 +

m
∑

i=n
(j)
x +1

µ′2
i

)

+

+nl + l
n

∑

i=m+1

µ′2
i −

l
∑

j=1

n(j)
x .

However,

F (µ′
1, . . . , µ′

n) − F (µ′
1, . . . , µ′

m)

= l
n

∑

i=m+1

µ′2
i + nl − ml

= l
n

∑

i=m+1

µ′2
i + l(n − m) > 0.

Thus, F (µ′
1, . . . , µ′

n) > F (µ′
1, . . . , µ′

m) and µ′ is not
a minimizer of F .

Taking the above into account, our problem may
be decomposed as follows. For n = 1, . . . , m deter-
mine:

µ(n) = arg min
µ∈Sn

F (µ) (2)

and then compute:

µ = arg min
n=1,...,m

F (µ(n)). (3)

Therefore, we should focus on solving (2), assum-
ing that n is fixed. As F is a sum of convex func-
tions, we of course have that F is a convex function.
However, here we deal with a constrained optimiza-
tion problem, as our search space consists of vec-
tors that are sorted non-increasingly: we have that

µ
(n)
1 ≥ µ

(n)
2 ≥ · · · ≥ µ

(n)
n .

From now on let [n] := {1, 2, . . . , n}. Let us in-
troduce the notion of a contiguous partition of an
index set [n], that is a set of nonempty, disjoint sets
of consecutive elements in [n]. Formally, P ⊆ 2[n]

is a contiguous partition of [n], if
⋃

P ∈P = [n],
P ∩ P ′ = ∅, |P | > 0, {i, j} ∈ P with i ≤ j implies
that i + 1, i + 2, . . . , j − 1 ∈ P for all P 6= P ′. The
whole class of such contiguous partitions will from
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now on be denoted as CP([n]). It might be shown
that |CP([n])| = 2n−1. For example, we have:

CP([3]) =















{

{1}, {2}, {3}
}

,
{

{1, 2}, {3}
}

,
{

{1}, {2, 3}
}

,
{

{1, 2, 3}
}















.

Given P ∈ CP([n]) and i ∈ [n], let P{i} stand for
an element in P such that i ∈ P{i}. Moreover, let

P (i) be the i-th ordered element in P, i.e. such that
for 1 ≤ i < j ≤ |P| it holds max P (i) < min P (j).
Assuming that x̃i =

∑

x:|x|≥i xi we have what fol-
lows.

Theorem 1. Fix n ∈ [m] and let P ∈ CP([n]).
Define y ∈ R

n as:

yi =
1

l|P{i}|

∑

j∈Pi

x̃j for i = 1, . . . , n.

If y1 ≥ y2 ≥ · · · ≥ yn and for all i ∈ [n] with
i ∈ (P{i} \ {max P{i}}) we have

i − min P{i} + 1

|P{i}|

∑

j∈P{i}

x̃j −
∑

j∈P{i},j≤i

x̃j > 0,

then y is a solution to Eq. (2).

Proof. Our aim is to find

min
y∈Rn

F (y)

with respect to n − 1 constraints of the form:

gi(y) = yi+1 − yi ≤ 0 for i = 1, . . . , n − 1.

By means of the Karush-Kuhn-Tucker (KKT) the-
orem (cf. [9]), we need to find y and λ1, . . . , λn−1

such that

∇F (y) +
n−1
∑

i=1

λi∇gi(y) = 0,

with λigi(y) = 0 and λi ≥ 0 for i ∈ [n − 1]. Note
that for h ∈ [n] we have:

∂F

∂yh

(y) = 2lyh − 2x̃h.

For brevity of notation, let us assume that λ0 := 0
and λn := 0. Thus, our task reduces to solving the
following system of linear equations:























































0 = 2(ly1 − x̃1) +λ0 −λ1

0 = 2(ly2 − x̃2) +λ1 −λ2

...
0 = 2(lyn−1 − x̃n−1) +λn−2 −λn−1

0 = 2(lyn − x̃n) +λn−1 −λn

0 = λ1(y2 − y1)
...

0 = λn−1(yn − yn−1)

under constraints λ1 ≥ 0, . . . , λn−1 ≥ 0 and y1 ≥
y2 ≥ · · · ≥ yn.

Thus, let us consider a solution (not necessarily
feasible) that fulfills λ ≥ 0. First of all, let us take
u such that λu−1 = λu = 0. It immediately implies
that:

yu =
1

l
x̃u.

On the other hand, for each u and p ≥ 2 such that
λu−1 = 0, λu > 0, λu+1 > 0, . . . ,λu+p−2 > 0,
λu+p−1 = 0 we get that yu = · · · = yu+p−1. More
specifically, we have:

yi =
1

lp

u+p−1
∑

j=u

x̃j for i = u, . . . , u + p − 1.

In such a case, we have that for i = u, . . . , u + p − 2:

λi = 2
i − u + 1

p

u+p−1
∑

j=u

x̃j − 2
i

∑

j=u

x̃j > 0, (4)

Moreover, since F is convex and (∀i) gi is an affine
function, then by [10] we get that if y calculated
as above fulfills y1 ≥ y2 ≥ · · · ≥ yn, then it is the
optimal solution to the task of our interest.

Remark 1. Please note that if I = [0, ∞], i.e. all
vectors consist of non-negative numbers, it is easily
seen that we have x̃1 ≥ x̃2 ≥ · · · ≥ x̃m. Therefore,
in Theorem 1 we have |Pi| = 1 for all i = 1, . . . , n,
hence yi = 1

l
x̃i gives the optimal solution to (2).

Example 1. Let

X =















( 42, 21, 12, 10, 8 ),
( 1, 0, −10 ),
( 0, −1 ),
( −10, −13 )















.

Then the optimal solution to (2) for n = 5 is
(8 1

4 , 4 1
4 , 1 2

3 , 1 2
3 , 1 2

3 ). We get that by considering
P = {{1}, {2}, {3, 4, 5}}.

Example 2. Let

X =















( −10, −12, −14, −16, −17 ),
( 1, 0, −10 ),
( −10, −15, −16 ),
( −20 )















.

Then the optimal solution to (2) for n = 5 is
(−6.95, −6.95, −6.95, −6.95, −6.95). This is gener-
ated with and P = {{1, 2, 3, 4, 5}}.

5. A fast algorithm to compute the

d2
M -centroid

Theorem 1 induces a simple algorithm to determine
µ(n) ∈ Sn. One may consider every possible con-
tiguous partition of [n] and then verify if the condi-
tions listed in the theorem are met. Such a routine,
being of course mathematically correct, is unfortu-
nately practically unusable.

Therefore, to solve (2), we propose Algorithm 1.
The proof of its correctness is presented below.
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Data: A set of l vectors X ⊂ S and n ∈ N.
Result: µ(n) = arg min

µ∈Sn
F (µ).

Let x̃ be such that x̃i =
∑

x:|x|≥i xi, i ∈ [n];

Let P = ∅;
Let y ∈ R

n;
for k = 1, 2, . . . , n do

yk = x̃k/l;
Let P := P ∪

{

{k}
}

; (we have P ∈ CP([k]))

while |P| > 1 and ymin P (|P|) > ymax P (|P|−1)

do

P :=
(

(

P \ {P (|P|)}
)

\ {P (|P|−1)}
)

∪

{P (|P|−1) ∪ P (|P|)}; (merge P (|P|−1), P (|P|))

for i ∈ P (|P|) do

Set yi := 1
l|P (|P|)|

∑

j∈P (|P|) x̃j ;

end

end

end

return y;

Algorithm 1: An algorithm to solve (2).

Theorem 2. Fix n and let X = {x(1), . . . , x(l)}. If
y is the result of applying Algorithm 1, then y =
arg miny∈Sn(I) F (y).

Proof. We shall show that for each k = 1, 2, . . . , n
the (y1, . . . , yk) vector at the end of the for

loop in Algorithm 1 is such that (y1, . . . , yk) =
arg min

µ∈Sk
F (µ).

First of all, for k = 1 we trivially have that (y1) =
(x̃1/l) fulfills the conditions listed in Theorem 1.

Now let us assume that after the (k − 1)-th iter-
ation, k ≥ 2, (y1, . . . , yk−1) = arg min

µ∈Sk−1
F (µ).

By Theorem 1 this implies that for all a < b ≤ |P|:

∑

j∈P (a) x̃j

|P (a)|
≥

∑

j∈P (b) x̃j

|P (b)|
.

What is more, for all c ∈ [|P|] and i =
min P (c), min P (c) + 1, . . . , max P (c) − 1:

∑

j∈P (c) x̃j

|P (c)|
>

∑i

j=min P (c) x̃j

i − min P (c) + 1
. (5)

These conditions imply that for all a < |P| and
i = max P (a) + 1, P (a) + 2, . . . , k − 1 we have:

∑

j∈P (a) x̃j

|P (a)|
≥

∑i

j=P (a)+1 x̃j

i − max P (a)
. (6)

Now let us proceed to the k-th iteration of the al-
gorithm.

We set P = P ∪{{k}}. If
∑

j∈P (|P|−1) x̃j ≥ (|P|−
1)x̃k, then for the current P and (y1, . . . , yk) all the
conditions in Theorem 1 are of course met. Thus,
assume that we need to merge {u, u + 1, . . . , u + p −
1} := P (|P|−1) and {u + p, u + p + 1, . . . , u + p +
p′ − 1} := P (|P|), with u ≥ 1, p, p′ ≥ 1. Note that
surely u + p + p′ − 1 = k. We shall show that after

each such merge for i = u, u + 1, . . . , u + p + p′ − 2
it holds that

i − u + 1

p + p′

u+p+p′−1
∑

j=u

x̃j −
i

∑

j=u

x̃j > 0.

By induction, this is sufficient for proving this
very theorem, as the algorithm guarantees that
(y1, . . . , yk) is non-increasingly sorted at the end of
each for loop.

First of all, as a merge in P occurs, we have that

1

p

u+p−1
∑

j=u

x̃j <
1

p′

u+p+p′−1
∑

j=u+p

x̃j . (7)

(a) Let i = u + p − 1. Then,

p

p + p′

u+p+p′−1
∑

j=u

x̃j −

u+p−1
∑

j=u

x̃j

=p





u+p−1
∑

j=u

x̃j +

u+p+p′−1
∑

j=u+p

x̃j



 − (p + p′)

u+p−1
∑

j=u

x̃j

=p

u+p+p′−1
∑

j=u+p

x̃j − p′

u+p−1
∑

j=u

x̃j > 0. (by (7))

(b) Let i = u + 1, . . . , u + p − 2. Then,

i − u + 1

p + p′

u+p+p′−1
∑

j=u

x̃j −
i

∑

j=u

x̃j

=
i − u + 1

p + p′

(

u+p−1
∑

j=u

x̃j +

u+p+p′−1
∑

j=u+p

x̃j

)

−
i

∑

j=u

x̃j

=p
( (i − u + 1)

p

u+p−1
∑

j=u

x̃j −
i

∑

j=u

x̃j

)

+p′
( (i − u + 1)

p′

u+p+p′−1
∑

j=u+p

x̃j −
i

∑

j=u

x̃j

)

(by (7))

>p[c1(> 0 by (5))] + p′
( (i − u + 1)

p

u+p−1
∑

j=u

x̃j −
i

∑

j=u

x̃j

)

>p[c1(> 0 by (5))] + p′[c2(> 0 by (5))] > 0.

(c) Let i = u + p, . . . , u + p + p′ − 2. Then,

i − u + 1

p + p′

u+p+p′−1
∑

j=u

x̃j −
i

∑

j=u

x̃j

=
p′

p + p′

i − u + 1 + p − p

p′





u+p−1
∑

j=u

x̃j +

u+p+p′−1
∑

j=u+p

x̃j





−
p + p′

p + p′





u+p−1
∑

j=u

x̃j +
i

∑

j=u+p

x̃j
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=
p′

p + p′





i − (u + p) + 1

p′

u+p+p′−1
∑

j=u+p

x̃j −
i

∑

j=u+p

x̃j





+
1

p + p′



p

u+p+p′−1
∑

j=u+p

x̃j − p′

u+p−1
∑

j=u

x̃j





+
p

p + p′





i − u + 1

p

u+p−1
∑

j=u

x̃j −
i

∑

j=u

x̃j





=
p′

p + p′
[c3(> 0 by (5))] +

1

p + p′
[c4(> 0 by (7))]

+
p

p + p′
[c5(≥ 0 by (6))] > 0.

Hence, the proof is complete.

Note that Algorithm 1 may very simply be ex-
tended so that it solves (3) directly. An exemplary
C++ implementation using Rcpp [11] classes (for
use within the R [12] environment for statistical
computing) is provided in Fig. 3. We see that at
most O(min{m3, m2l})-time is required to compute
the d2

M -centroid.

Example 3. Let us again focus on a data set dis-
cussed in Example 1. Here is the output of Algo-
rithm 1 for each n. n = 5 gives the optimal solution
to (2).

xtilde= | 8.25 4.25 0.50 2.50 2.00 0.00

- ------- | -----------------------------

n dist | y1 y2 y3 y4 y5 y6

1 3139.75 | 8.25

2 3063.50 | 8.25 4.25

3 3062.50 | 8.25 4.25 0.50

4 3047.50 | 8.25 4.25 1.50 1.50

5*3034.17*| 8.25 4.25 1.67 1.67 1.67

6 3037.17 | 8.25 4.25 1.67 1.67 1.67 0.00

Example 4. Let us go back to input data from Ex-
ample 2. Here is the output of Algorithm 1 for each
n. Again, n = 5 gives the optimal solution to (2).

xtilde= | -9.750 -6.750 -10.000 -4.000 -4.250

- ------- | -----------------------------------

n dist | y1 y2 y3 y4 y5

1 1694.75 | -9.750

2 1528.50 | -8.250 -8.250

3 1126.50 | -8.250 -8.250 -10.000

4 1142.75 | -7.625 -7.625 -7.625 -7.625

5*1108.95*| -6.950 -6.950 -6.950 -6.950 -6.950

6. Empirical analysis

Let us now investigate the proposed approach on
an informetric data set that has been gathered from
the Cross Validated portal2. It is one of the sites
on the Stack Exchange network. Data consisting
of users’ posts and ratings (sums of UpVotes and
DownVotes) were gathered on 2014-09-153. Basic

2See http://stats.stackexchange.com/.
3See https://archive.org/details/stackexchange.

sample statistics for vectors’ lengths (n), maximal
values (max), and total sums of ratings (sum) of the
5063 registered users are presented in Table 1.

Table 1: Basic sample statistics for the Cross Vali-
dated data set.

Min. Median Mean Max.

n 1.00 1.00 8.08 1348.00

max -11.00 2.00 4.00 155.00

sum -11.00 2.00 7.00 7111.00

Investigation carried out in this section is based
on a K-means-like procedure using the d2

M dissimi-
larity measure and clusters centroids computed with
Algorithm 1. The procedure was set up to deter-
mine six clusters and it starts with random assign-
ments of observations to each cluster. Next, by ap-
plying Algorithm 1 iteratively over each cluster, the
centroid was recalculated, and clusters’ assignment
was updated. Basic summary statistics of clusters’
centroids are given in Table 2 and those connected
to the whole cluster are presented in Table 4.

Table 2: Basic statistics of clusters’ centroids:
length of µ (n), minimal (Min), maximal (Max)
value, quartiles, and mean element of µ.

Ci 1 2 3 4 5 6

Min 1.59 0.50 0.67 0.48 0.51 0.74

1st Q 1.59 0.76 1.29 0.86 0.97 1.26

Med 1.59 1.27 2.33 1.53 1.92 2.37

Mean 1.59 2.19 6.53 2.83 3.35 4.24

3rd Q 1.59 2.40 5.00 3.16 4.15 4.89

Max 1.59 8.29 68.39 19.55 31.80 79.89

n 1 10 23 35 157 454

Table 3: Cardinalities of obtained clusters.
Cluster no. 1 2 3 4 5 6

Size 4060 695 36 188 65 19

Fig. 1 depicts the step functions corresponding
to the vectors in each cluster. The centroid is high-
lighted. On the other hand, Fig. 2 depicts the box
plots for the producers’ productivity (as measured
by n) and quality (as measured by total sums of
elements) per each cluster. Please note the loga-
rithmic scale on the Y -axis. Box plots are sorted
increasingly with respect to the mean length of vec-
tors in each cluster. Note that in the first cluster
the users with low number of posts and ratings were
captured (median productivity, n, equals to 1 and
median sum of ratings, sum, equals to 1).

We see that by using d2
M we may quite easily lin-

guistically describe the aggregated characteristics of
vectors in each cluster according to both productiv-
ity and quality. Clusters no. 2, 3, and 4 consist
of users with low-moderate, moderate, and high-
moderate productivity (median n equals 7, 12 and
28.5), respectively, and they may be distinguished
by taking into account the sums of ratings of their
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Figure 1: Step functions depicting vectors in each cluster (Cross Validated) and their centroids.
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Figure 2: Basic sample statistics for vectors in each
cluster (Cross Validated).

Table 4: Basic sample statistics for vectors’ lengths
(n), maximal values (max), and total sums of ele-
ments per each cluster.

Min. Median Mean Max.

Cluster no. 1

n 1.00 1.00 1.74 21.00

max -11.00 1.00 1.59 8.00

sum -11.00 1.00 2.08 19.00

Cluster no. 2

n 1.00 7.00 10.97 101.00

max 3.00 8.00 8.29 26.00

sum 8.00 20.00 25.12 141.00

Cluster no. 3

n 1.00 12.00 18.11 93.00

max 42.00 63.50 68.39 121.00

sum 51.00 144.00 157.10 380.00

Cluster no. 4

n 1.00 28.50 33.33 138.00

max 6.00 17.50 19.55 44.00

sum 34.00 90.00 106.40 299.00

Cluster no. 5

n 28.00 132.00 165.10 954.00

max 11.00 28.00 31.80 85.00

sum 258.00 528.00 568.90 1754.00

Cluster no. 6

n 92.00 347.00 450.30 1348.00

max 32.00 60.00 79.89 155.00

sum 848.00 1548.00 2154.00 7111.00
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posts (median sum: 20, 144 and 90). In Cluster
no. 5 we can find users with quite high productiv-
ity (median 132) and quite high quality (∼ 528).
Finally, last cluster contains users of very high pro-
ductivity (median 347) and very high sum of ratings
(∼ 1548).

7. Conclusions

This contribution addresses the question of how to
determine groups of producers that are similar not
only with respect to the quality of information re-
sources they output, but also their quantity. In such
a model, the agents are usually represented by real
vectors of nonconforming lengths. One of the possi-
ble solutions to this issue is the K-means-like algo-
rithm proposed in this paper. The procedure bases
on a dissimilarity measure which takes into account
the difference of vectors’ lengths.

Moreover, please note that the proposed approach
is not only restricted to the dissimilarity mea-
sure d2

M introduced in this paper. Note that the
”penalty” for difference of vectors lengths can be
easily change. By replacing |nx − ny| with ν such
that ν(|x|, |y|) = 0 iff |x| = |y| and ν(|x|, |y|) > 0
otherwise (e.g. ν(|x|, |y|) = p|nr

x −nr
y|, p > 0, r 6= 0,

at it was proposed in [8]), we can control the impact
of the difference in the vectors’ lengths. In such a
way, the procedure may be better calibrated to suit
the nature of an input data set we analyze.

There are still many interesting directions worth
of deeper investigation. First of all, the proposed
approach may be generalized in order to mimic the
fuzzy k-means algorithm, which in some applica-
tions may be more valid. Secondly, an axiomatic
analysis of the d2

M -centroid (perhaps as an aggre-
gation operator on a special kind of a lattice) can
give us a better insight into the derived theoretical
results.

On the other hand, please note that in some ap-
plicative problems in order to apply clustering tech-
niques on vectors of nonconforming lengths one may
try to reduce the data dimension by considering a
fixed number of attributes or indicators. This ap-
proach discussed in [8] may lead to substantial infor-
mation loss. However, extensive analysis of such an
approach in comparision to proposed in this paper
K-means-like procedure may give a better insight
into the essence of informatric data.
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# include <deque >

# include <Rcpp.h>

using namespace Rcpp;

// [[ Rcpp :: plugins (" cpp11 ")]]

double dM2_dist (List X, NumericVector y,

int ny) {

int l = X.size ();

double dist = 0.0;

for (int i=0; i<l; ++i) {

NumericVector x(X[i]);

int nx=x.size ();

int min_nx_ny =std :: min(nx , ny );

for (int j=0; j< min_nx_ny ; ++j)

dist +=(x[j]-y[j])*(x[j]-y[j]);

for (int j= min_nx_ny ; j<nx; ++j)

dist +=x[j]*x[j];

for (int j= min_nx_ny ; j<ny; ++j)

dist +=y[j]*y[j];

dist += abs(nx -ny );

}

return dist;

}

// [[ Rcpp :: export ]]

NumericVector dM2_centroid (List X) {

int l=X.size ();

int m= calc_max_vector_length (X);

NumericVector xtilde = calc_xtilde (X, m);

// a linked list (a stack ):

std :: deque < std :: pair <int , int > > part;

NumericVector y(m);

NumericVector best_y = NumericVector (0);

double best_dist = INFINITY ;

for (int n=1; n <=m; ++n) {

// C++ arrays use 0- based indices

part. push_front (

std :: pair <int , int >(n-1, n -1) );

y[n -1]= xtilde [n -1]/l;

auto it=part. begin ();

while (it +1!= part.end () &&

y[(* it ). first ]

> y[(*( it +1)). second ]) {

// merge :

int p1 =(* it ). second -(* it ). first +1;

int p2 =(*( it +1)). second -

(*( it +1)). first +1;

y[(* it ). second ]=

(y[(* it ). second ]* p1+

y[(*( it +1)). second ]* p2 )/( p1+p2 );

for (int j=(* it ). second -1;

j >=(*( it +1)). first ; --j)

y[j]=y[(* it ). second ];

(*( it +1)). second =(* it ). second ;

// erases current it

// and move forward ( pop stack )

it=part. erase (it );

}

double cur_dist = dM2_dist (X, y, n);

if (cur_dist < best_dist ) {

best_dist = cur_dist ;

best_y = NumericVector (y. begin (),

y. begin ()+n);

}

}

return best_y ;

}

Figure 3: A C++ (using Rcpp [11] classes) imple-
mentation of Algorithm 1.
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