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Abstract

This paper presents an extension of Fuzzy De-
formable Prototypes (FDPs) based on the use of
interval type-2 fuzzy sets. The aim is to improve
FDPs’ capabilities for managing uncertainty and
imprecision. This extension is applied to predict
the academic performance of the students who make
use of Web-based tutoring systems. The prediction
model contains patterns of behavior that are used to
determine the future academic performance of new
students based on their affinity with the prototypes
previously discovered. Interval Type 2 Fuzzy Sets
(IT2FS) were used to handle the imprecision of the
academic data caused by the overlapping between
the fuzzy representations of prototypes.

Keywords: Fuzzy Deformable Prototypes, Interval
Type 2 Fuzzy Sets, Web-based Tutoring Systems

1. Introduction

Nowadays, studentsâ performance is a top priority
for academic institutions. This is why educators are
specilly focused in the use of tools different tools im-
prove academic achievement. Web tutoring systems
have proved useful to improve the academic success.
On the other hand,predictions models enable edu-
cational institutions to identify students with low
academic performance. Based on these models, it
is possible to plan strategies that contribute to in-
crease the academic level.
Researchers have focused their attention on pre-

dicting academic performance of students who make
use of the tutoring systems by analyzing large vol-
umes of data [1]. The tutoring systems decompose a
given task in a series of activities to help the student
to reach the solution. The works published around
the 2010 KDD Cup competition [2] are good exam-
ples of the analysis of large volumes of data that
generate the tutoring systems. The contest aims
to predict the probability of a student answering a
particular activity that belongs to a specific prob-
lem correctly. On the other hand, in the filed of
computing with words and perceptions, perceptual
calculation [3] has been applied to evaluate Learning
Outcomes in an outcome-based education system[4].

Some research is based on the assumption that
the student receives feedback and this feedback in-
fluences in their learning process, so they estab-
lished a relation between hints requested by stu-
dents who use tutoring systems and the amount of
learning acquired. Koedinger et al. [5] proposed a
method to estimate the knowledge acquired by stu-
dents in these contexts. They analyzed the data
contained in the log file that generates a tutoring
system. Also, they analyzed the skills required in
each issue, and the number of attempts until a suc-
cess is obtained. Beck [6] proposed a model to ob-
tain the academic performance of the students from
the time they use to solve each problem in a tutoring
system. In this work, a logistic curve represents the
evolution of the students’ academic performance.
Beck changed the theory IRT (Item Response The-
ory), which provides a framework for predicting the
probability that a student with a certain level of
ability to successfully answer a question, by intro-
ducing new criteria such as response time and the
difficulty of each question. On the other hand, [7]
proposed a method to estimate the student’s aca-
demic performance based on the difficulty of the
problem computed across three factors: correctness,
time and the requested help.

In this paper, fuzzy logic techniques are used to
predict the academic performance of a student in
the context of Web-based tutoring systems. The
use of Fuzzy Deformable Prototypes [8] permit to
adapt the behavior patterns (prototypes) discovered
to completely describe a new situation. The objec-
tive of this research is to extend the capabiliteies of
Fuzzy Deformable Prototypes by adding the use of
type-2 fuzzy sets to manage the imprecision of exist-
ing data. With these new capabilities, it is possible
to obtain a model and predict the academic perfor-
mance of the students who make use of Web-based
tutoring systems.

The remainder of the paper is organized as fol-
lows: section 2 presents the background of the re-
search, section 3 briefly describes the proposal to
predict student performance on Web-based Tutor-
ing Systems, section 4 describes the case of study
and in section 5 the conclusions and future work are
outlined.

16th World Congress of the International Fuzzy Systems Association (IFSA) 
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

© 2015. The authors - Published by Atlantis Press 556



2. Background

2.1. Fuzzy Prototypes and Fuzzy
Deformable Prototypes

This work uses the concept of Fuzzy Deformable
Prototypes (FDPs) [8]. The definition of FDPs in-
herits some features of the Zadeh’s fuzzy prototype
approach [9], but adding some extensions in order to
manage the complexity of the real world problems.
The principle to obtain a fuzzy prototype of a pop-
ulation is to stratify ς in grouping objects sharing
the same membership degree (see Eq.1).

ς = H/ςgood +M/ςborder + L/ςpoor (1)

where ςgood, ςborder and ςpoor are multi sets of
good, borderline and poor elements respectively and
H, M and L are fuzzy numbers which represent the
corresponding high, medium and low membership
degrees respectively.
For each level of stratification of ς, this fuzzy pro-

totype is obtained using an iterative process of com-
pactification. During the iterative process, an ob-
ject maximally summarized from each level of strat-
ification is obtained which can be viewed as a fuzzy
prototype.
Given a number of prototypes for a category, it

may be meaningful to compute the collective prop-
erty of the prototypes and to consider that as the
reference for the category. Such use of fuzzy proto-
types has been suggested for this purpose. In this
case, the aim must be to generate conceptual proto-
types (Zadehâs approach: fuzzy schemes) that allow
us to evaluate new situations from these patterns.
The definition of FDPs [8] includes the following ex-
tensions of Zadeh’s fuzzy prototype approach: the
number of fuzzy prototypes depends on the prob-
lem, categories are structured using typicality de-
grees and the shapes of the categories have not been
defined. Moreover, FDPs can also be represented
as fuzzy sets. It means that it is possible to calcu-
late a membership degree between an element and
the fuzzy set. The use of FDP’s allows to deform
[10] the most similar prototypes to a new situation
(w1, w2 . . . wn), and define it using a linear combi-
nation with the membership degrees (µpi) as coef-
ficients (Eq. 2).

Creal (w1 . . . wn) =
∣∣∣∑µpi (v1 . . . vn)

∣∣∣ (2)

In other words, a fact or a set of facts is associated
with a paradigm so that the paradigm interprets the
situation.Thus, it is possible to make predictions ac-
cording to this interpretation. To generalize, many
of the predictions depend on the way the most sim-
ilar paradigm or prototype for the circumstances of
the problem is found.

2.2. Type-2 Fuzzy Sets

In the mid 60’s, Zadeh [11] proposed the type-1
fuzzy sets as an alternative to handle the exist-
ing imprecision in human reasoning. However, it
is insufficient to handle the very large, imprecise
data sets with inherent uncertainties. Therefore, in
1975, Zadeh [12] proposed type-2 fuzzy sets as an
extension of traditional type-1 fuzzy sets. Accord-
ing to [13], a type-2 fuzzy set is defined by a fuzzy
membership function. Each degree of membership
is a type-1 fuzzy set in the range [0, 1] unlike type-
1 fuzzy sets whose membership is a real value in
the range [0,1]. In type-2 fuzzy sets there is a 3D
membership function by a primary and secondary
membership degree. Thus, a type-2 fuzzy set is de-
fined by this membership function; where x is the
primary variable, u is the secondary variable and Jx
is the primary membership grade (see Eq. 3).

Ã = ((x, u), µ(x, u)),∀x ∈ X,∀u ∈ Jx ⊆ [0.1] (3)

To make the secondary membership equal to the
unit function, it gets a two dimensional membership
function (see Fig. 1), which is limited by two type-
1 membership functions: the so-called upper UMF
(Upper Membership Function) and the lower called
LMF (Lower Membership Function) (see Fig. 1).
The area between the UMF and the LMF of a Ã
fuzzy set is called FOU (FootPrint Of Uncertain).
The UMF(Ã) is defined by the upper limit of the
FOU and is defined by µ̄A(x), ∀x ∈ X , and the
LMF(Ã) is associated with the lower limit of the
FOU and it is defined by µ

A
(x), ∀x ∈ X.

Figure 1: FootPrint Of Uncertain (FOU)

The FOU represents the uncertainty that exists
in a type-2 fuzzy set, and it is defined as the union
of all grades of primary membership (see Eq. 4).

FOU(Ã) =
⋃
∀x∈X

Jx (4)

In [15] methodology for obtaining the UMF and
the LMF of an FOU through the representation the-
orem proposed by [14] is defined.

(see Eq. 5).

Ã =
n⋃
i=1

A(i) (5)

where is the i-th T1FS embedded;
⋃

it is the
symbol of union.
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3. Modeling Prototypes through Type-2
Fuzzy Sets

The behavior of a student in a Web-based Tutoring
System can have different interpretations from dif-
ferent points of view. Therefore, it is not enough to
apply a type-1 fuzzy model to make accurate predic-
tions about the student performance. These uncer-
tainty can be seen in the overlapped fuzzy represen-
tation of the prototypes. Therefore, T2FS can rep-
resent better the uncertainty involved in the learn-
ing process than conventional T1FS due the extra
degree of freedom. In this proposal, first, the pro-
totypes are discovered by the Fuzzy Prototypical
Knowledge Discovery process and formally repre-
sented through type-1 fuzzy sets as explained in [8]
(see Fig. 2) and then, the fuzzy partition of the pro-
totypes to obtain type-2 fuzzy prototypes is carried
out. This last process take place in the following
manner:

• The overlapping level of the type-1 fuzzy set
representation is computed, i.e, it is estimated
the level of overlap of the prototypes repre-
sented through fuzzy numbers.
• The type-1 embedded prototype are estab-
lished, i.e., type-1 fuzzy sets embedded within
the fuzzy representation of type-2 are found.
• The UMF and the LMF of the IT2FS are cal-
culated.

Figure 2: Fuzzy representation of the prototypes.
Each fuzzy prototype is defined by a letter.

3.1. Level of overlap of type-1 fuzzy sets

The overlapping-level of the type-1 fuzzy prototypes
were computed through Eq. 6:

S(A,B) = 1−
∑p
i=1 |ai − bi|

p
(6)

where, A and B are triangular fuzzy numbers;
ai and bi are the fuzzy prototypes parameters and
p is the number of parameters of each fuzzy num-
ber. Table 1 shows the similarity that exists be-
tween each pair of prototypes.

Table 1: Reduced Similarity Matrix
A B C D E F

A - 0.9 0.8 0.5 0.46 0.37
B - - 0.9 0.6 0.54 0.47
C - - - 0.7 0.64 0.57
D - - - - 0.94 0.87
E - - - - - 0.94
F - - - - - -

3.2. Determination of the type-1 embedded
prototypes

A prototype represented through an IT2FS consists
of the union of all its embedded prototypes. The fol-
lowing process is performed to determine the num-
ber of type-2 fuzzy prototypes, as well as the type-1
fuzzy prototypes embedded in them.

From the reduced similarity matrix (Table 1),
the prototypes of greater similarity are determined.
In the example, the prototypes (D,E), and (E,F )
have a similarity of 0.94 in the range of 0 to 1. On
the other hand, the prototypes E and F are selected
and they are grouped to form the composite object
(E,F ) (Table 2). To calculate the similarity of the
composite object (E,F ) he maximum of the simi-
larities with its components is chosen. For example,
the similarity of the composite object (E,F ) with
D will be:

max[(E,D), (F,D)] = max(0.94, 0.87) = 0.94 (7)

In the same way, each fuzzy prototype is com-
puted. Table 3 shows that the greatest similarity
is between (D) and (E,F ) with 0.94, so they are
grouped to form the composite object (D, (E,F )).
In the same way, the maximum similarity of the ob-
ject with each one of the prototypes in Table 3 is
estimated (see Table 4).

Table 2: Composite Matrix I
A B C D (E,F)

A - 0.9 0.8 0.5 0.46
B - - 0.9 0.6 0.54
C - - - 0.7 0.64
D - - - - 0.94

(E,F) - - - - -

Table 3: Composite Matrix II
A B C (D,(E,F))

A - 0.9 0.8 0.5
B - - 0.9 0.6
C - - - 0.7

(D,(E,F)) - - - -

Table 3 shows that the greater similarity be-
tween A,B and B,C is 0.9. Then, B and C are
grouped forming the composite object (B,C) (Ta-
ble 4. Then, the similarity of the compound object
with the each of the elements of the array is com-
puted.
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Table 4: Composite Matrix III
A (B,C) (D,(E,F))

A - 0.9 0.5
(B,C) - - 0.6

(D,(E,F)) - - -

Table 5 shows the composite objects which repre-
sent the type-2 fuzzy prototypes. Each element of
the composite object represents a type-1 fuzzy pro-
totype embedded in it. For example, a type-2 fuzzy
prototype results from the fusion of the prototypes
A,B and C and the second prototype from the pro-
totypes C,D and F . Finally, there is a similarity
of 0.5 between both type-2 fuzzy prototypes, that
is below the threshold set by the user.

Table 5: Final Matrix
(A,B,C) (D,E,F)

(A,B,C) - 0.5
(D,E,F) - -

3.2.1. Definition of the UMF and the LMF of the
IT2FS

As it is mentioned below, an IT2FS is delimited by
two type-1 fuzzy sets; the UMF (Upper Member-
ship Function) and the LMF (Lower Membership
Function), which represent the high and low mem-
bership with the IT2FS. The area between UMF
and LMF is the FOU (Footprint Of Uncertainty),
which allows to model the existing imprecision. The
Representation Theorem (RT) is used to represent
and manipulate the overlap of the prototypes to the
IT2FS.

The following steps, based on the methodology
defined by [15], are used to obtain the UMF and
the LMF of the IT2FS for representing the fuzzy
prototypes:

• The support of the UMFj (αUMF is obtained
through the minimum of the ai (a), and the
maximum of the bi (b̄; where ai and bi represent
the left and right ends of the bracket of the i-th
T1FS embedded in the FOUj ; ci is the centre
of the i-th T1FS.

αUMFj = (min(ai),max(bi)) (8)

• The bottom (c) and upper (c̄) centroids of the
UMFj are computed. The bottom centroid is
the minimum of ci, and the upper centroid the
maximum of the ci.

c = min(ci)c̄ = max(ci) (9)

In this way, you get a UMFj with
trapezoidal-shaped and defined by the points
(a, 0), (c, 1), (c̄, 1), (b̄, 0).
• The support of the LMFj (αLMF ) is computed
through the maximum of the ai (ā) and the
minimum of the bi (b) (see Eq.10). The LMF is

triangular in shape so that equations 11 and 12
are used to calculate its centre and maximum
height.

αLMF = (max(ai),min(bi))
αLMF = ā, b

(10)

p = b(c̄− ā) + ā(b− c)
(c̄− ā) + (b− c) (11)

µp = b− p
b− c

(12)

Figure 3: Fuzzy prototype represented through IT2FS

In order to evaluate a new situation which
matches with the prototypes represented by
IT2FSs, it is necessary to compute the affinity de-
gree with each of the FOUs that define each proto-
type. Eq. 13 is used to calculate the actual mem-
bership of the situation with each FOU. The UMF
and the LMF are type-1 membership functions. To
obtain the LMF is necessary to calculate its height
and its center according to the equations defined by
[15] (see Eqs. 11 and 12).

µF OUj =
{

UMFi si LMFi = 0
UMFi − UMFi−LMFi

2 si LMFi > 0
(13)

where UMFi and LMFi correspond to the up-
per and lower membership with the i-th IT2FS; and
µFOUj

is the actual membership with the j-th pro-
totype. Finally, to describe the new situation using
the prototypes of data (which were obtained by the
FPKD), a deformation process based on the affinity
degree of the new situation with the fuzzy proto-
types is done. For this purpose, it is possible to use
the technique previously defined in Eq. 2.

4. Application for predicting student
performance

In this work, a cognitive model for predicting the
academic performance of students is built using
the FPKD Process. In the following subsections is
shown a brief description of how this model is con-
structed based on data generated by a Web-based
tutoring system.
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4.1. Data Selection and Preparation

A collection of data generated by a web-based tu-
toring system containing all the interactions of the
student with the system. The algebra 2008-2009
train collection provided by the 2010 KDD Cup
competition[2] has been selected as example. It was
generated by a tutoring system for the teaching of
algebra called Carnegie Learning Algebra System,
containing more than 8 million of records belonging
to 3310 students from different educational insti-
tutions that used the tutoring system during the
2008-2009. The collection contains 23 characteris-
tics such as: student ID, the name of the problem
solved, the unit to which it belongs, etc. The char-
acteristics that affect the academic performance of
the student have been selected: the number of at-
tempts to resolve each step, the response of the res-
olute step (1 if it is correct, 0 wrong), the hints
requested as well as the skills used to solve a step.
In the preparation of the data, the arithmetic

mean has been used to deal with the missing val-
ues. In addition, some attributes has been divided
into others, such is the case of the attribute hierar-
chy unit.

4.1.1. Transformation

A set of tasks have been carried out to detect the
patterns of students academic perfomance solving
algebra problems:

• Task 1 - Calculate the performance: The cen-
tral axis of all tutoring systems are the tasks
(exercises, problems) that the student have to
solve. Tasks are split up into a set of activities
called steps. For the academic development of
each student, it is necessary to analyse the way
the student addresses the problem with regard
to the sequence of steps followed. The perfor-
mance is compared with students who solved
the same problems to compute the difficulty,
the speed, and whether the problem solved it
correctly or not.

– Difficulty: According to the evolution of
the student, the increase of steps in a
problem represents the difficulty adressed
by the student to solve the problem. In
this way, the difficulty is defined by Eq. 14:

difficulty =
StepsCarriedOut− AverageSteps

AverageSteps
(14)

where StepsCarriedOut refers to the num-
ber of activities in which the tutor system
broken down the problem, AverageSteps
refers to the average number of steps
taken by the students who adresssed the
same problem.

– Rate of correctness: The rate of correct-
ness of the problem is calculated through
the equation 15:

correctnessRate =
RC

PR
− correctnessAverage

(15)

where RC refers to the correctly answered
steps n a problem, PR refers to the num-
ber of steps in which the tutoring system
decomposed the problem for each student.

– Speed Factor : The speed to solve a prob-
lem is defined by Eq. 16.

speedFactor =
TE − TP

TP
(16)

where TE referred to the time spent by
the student to solve the problem, TP
refers to the average time spent by stu-
dents who solve the same problem.

– Help Ratio: The hints requested by the
student were used to compute the help ra-
tio defined by Eq. 17:

Rateofhelp =
PS − PP

PP
(17)

where PP refers to the average number
of hints requested by students who solve
the same problem, PS refers to the hints
requested by the student.

• Task 2 - Compute the academic performance of
students per unit. For each student, is/her per-
formance is computed through the obtained av-
erage performance in each unit. The evolution
of the student can be represented as a sigmoidal
function (see Fig. 4). This representation al-
lows to trace the academic evolution of students
along of their academic course. This represen-
tation is divided into 3 parts: Low, Average
and High. Each part is divided into 3 sectors:
S1,S2 and S3. The sector S1 means students re-
solved problems correctly are minimized, in a
sector S2 there is an increment in the number
of problems solved correctly. Finally, in sector
S3 there is a stabilization of problems correctly
solved.

Figure 4: Representation of Academic Evolution
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• Task 3 - Calculate the academic students’ per-
formance: The performance obtained in the
completed units is computed through an ag-
gregation function. In this way, each student
is represented by a single record. A heuris-
tic measure is defined to estimate the students’
academic performance (see Eq. 18).

ri =
difficulty ∗ correctnessrate

speedFactor
(18)

where difficulty is the difficulty that the stu-
dent i faced to solve problems; rateOfCorrectez
is the percent of correct answers obtained for
him/her. speedFactor is the average of time
used to solve the problems. This heuristic mea-
sure is used to classify students based on their
expected academic performance levels. In this
way, five performance levels are obtained (low,
average, almost high, high and very high).

4.2. Fuzzy representation of prototypes

Table 6 shows the obtained prototypes of students’
academic performace. Students with low academic
performance solves with at least 2 attempts and
time of 50 seconds, they often ask for hints. Their
percentage of problems solved correctly is 35%. Stu-
dents with high academic achievement solve prob-
lems correctly on the first attempt, in a time of 25
seconds with non-assistance of the tutoring system.

Table 6: Prototypes obtained from the Knowledge
Discovery Process

Prototypes
Domain L A AH H VH

Av. per. correct/ problem 35 62 75 84 96
Min. per. of correct./problem 19 56 72 82 92
Max. per. of correct/problem 50 67 78 87 100
attempts/problem 2 1 1 1 1
Time (seconds) /problems 50 41 33 30 25
hints / problem 1 0 0 0 0

The fuzzy representation of the prototypes was
carried out through fuzzy numbers, which allow to
obtain the affinity degree of a new student with each
of them. For simplicity, triangular and trapezoidal
membership functions are used. The following steps
are carried out to represent the prototypes:

1. The centers of the prototypes are calculated
by computing the arithmetic mean as centers
of the prototypes that fall under each of them
(Eq. 19).

CPi =
∑
rj
n

(19)

where is rj the performance of the j-th sam-
ple belonging to the i-th prototype, n is the
number of samples that fall under the i-th pro-
totype.

2. The base of the fuzzy numbers is calculated.
The fuzzy numbers that represent the proto-
types are symmetrical, i.e., the base is divided

into two equal segments. The standard dis-
tance from zero to the center of the first pro-
totype is considered to calculate the size of the
segment [8]. Fig. 5 shows the fuzzy representa-
tion of the prototypes of the Table 6.

Figure 5: Fuzzy prototypes represented by type-1
fuzzy sets

As can be seen in Fig. 5, there is overlapping be-
tween the fuzzy representations of the prototypes.
The overlap represents the similarity between the
fuzzy prototypes. Therefore, it is necessary to rep-
resent the prototypes as type-2 fuzzy sets as it is
mentioned below.

Table 7 shows the reduced similarity matrix
which it is obtained from fuzzy representations of
the prototypes. L, A, AH , H, and VH represent,
low, average, almost high, high and very high, re-
spectively.

Table 7: Reduced Similarity Matrix
L A AH H VH

L - 0.75 0.55 0.47 0.4
A - - 0.8 0.72 0.65
AH - - - 0.92 0.85
H - - - - 0.92
VH - - - - -

The type-1 fuzzy sets fusion process stops when
the user-defined threshold is greater than the sim-
ilarity values (α < 0.85). The prototypes associ-
ated with fuzzy prototypes embedded in the IT2FS
are aggregated in order to get only one that repre-
sent them. The methodology defined by [15] is used
to establish the type-1 fuzzy prototypes embedded
within the IT2FS. Table 8 and Fig. 6 show the re-
sulting fuzzy prototypes, two represented through
T1FS (Low and average), and one represented
through IT2FS.The IT2FS fuzzy prototype embeds
two type-1 prototypes (AH , H, VH).

Table 8: Final Similarity Matrix
L A (AH ,(H,VH ))

L - 0.75 0.55
A - - 0.8

(AH ,(H,VH )) - - -

Table 9 shows the parametric definition of the
three prototypes. For each prototype, a panel of
experts defined three evolution sectors (S1, S2 y S3).
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Table 9: Parametric Definition of the Prototypes
Prototypes

Domain Low Average High
S1 S2 S3 S1 S2 S3 S1 S2 S3

Per. of correctness problem 8 25 42 55 63 71 79 87 96
Min. per. correct/problem 0 17 33 51 60 68 75 84 93
Max. per. correct/problem 16 32 50 59 67 74 83 92 100
attempts/problem 3 2 1 2 1 1 2 1 1
Time (seconds) /problems 106 50 22 100 41 20 100 30 18
hint / problem 2 1 0 1 0 0 1 0 0

Figure 6: Fuzzy prototypes represented through IT2FS

4.3. Estimation of student academic
performance

The following set of characteristics has been selected
by a panel of experts as relevant to predict the stu-
dents’ academic performance:

• Cognitive ability: the ability of the stu-
dent to solve problems (high/0.8, average/0.5,
low/0.2)).
• Interpretation: the ability to understand the
problem, it refers to the capacity of the stu-
dent to interpret the problem (high/0.75, aver-
age/0.45, low/0.15).
• Difficulty Level of the problem: high/0.85, Me-
dia/0.45, low/0.15.

For example, when the student registers to the
system for the first time, the teacher introduces the
following values: cognitive ability: average/0.5, in-
terpretation: high/0.75, complexity of the problem:
average/0.45. In this way, a unique value to define
this new student is obtained by applying an aggre-
gation function over these values (S = 0.56). The
student (S) has a positive affinity with the proto-
type average and the prototype high (see Fig. 6).
The affinity degree with prototype average is ob-
tained using the classic procedure defined in the
literature, for this example the obtained value is
0.45 (µaverage = 0.45). The affinity degree with
prototype high (FOUhigh) is computed through the
affinities of the new case with the UMF (Upper
Membership Function) and the LMF (Lower Mem-
bership Function). The UMF and the LMF are
type-1 membership functions. To obtain the LMF
is necessary to calculate its height and its center
according to the equations defined by Liu-Mendel
[15] (Eqs. 11 and 12). For the above example,
µUMFhigh

= 0.55 and µLMFhigh
= 0.

The parametric definition of the new prototype
(Table 10), i.e., the estimation of student’s academic
performance, is obtained by the linear combination
(Eq. 2) of the parametric definition of the previ-
ously defined prototypes (see Table 9).

Table 10: New student estimated performance
Domain S1 S2 S3
Per. of correctness average/ problem 68 76 85
Min. percentage of correctness/ problem 64 73 82
Max. percentage of correctness/ problem 72 81 88
Num. attempts/problem 2 1 1
Time (seconds) /problem 100 35 19
hints / problem 1 0 0

Table 11 shows the obtained prototypes after ap-
plying different aggregation operators on embedded
prototypes in IT2FS. However, only resulting pro-
totype obtained through max operator covers the
complete domain so that it was used.

These results obtained using fuzzy prototypes
represented by IT2FS are better than the obtained
by the method on type-1 FDPs. Therefore, the
IT2FS method represents the students’ academic
performance with more flexibility than the system
based on T1FS.

5. Conclusions and Future Works

This paper introduces an extension of the Fuzzy
Deformable Prototypes to improve the capacity to
manage the imprecision of existing data. The pro-
posed method aims to model and predict the aca-
demic performance of the students who use a Web-
based tutoring systems. Interval Type 2 Fuzzy Sets
were used to handle the imprecision of the academic
data caused by the overlapping between the fuzzy
representations of prototypes.

As future work, it will be developed a predictive
model that allows predicting the evolution of the
students’ academic performance along its academic
course.
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Table 11: Estimated mark with prototypes type 1 and prototypes type 2
Type 1 prototype Type 2 prototype Real perfor-

mance
x µaverage µhigh Estimated

mark
µaverage µhigh Estimated

mark
0.47 0.9 0 57 0.9 0.1 66 63
0.52 0.65 0 41 0.65 0.35 71 69
0.56 0.45 0 28 0.45 0.55 76 72
0.68 0 0.68 59 0 0.71 62 60
0.72 0 0.4 35 0 1 96 93
0.77 0 0.15 13 0 0.63 55 60
0.83 0 0.35 30 0 0.45 39 35
0.88 0 0.1 9 0 0.6 52 50
0.92 0 0.4 35 0 0.4 35 30
0.96 0 0.2 17 0 0.2 17 15
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