16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

Information retrieval from interval-valued
fuzzy automata through K, operators

Inmaculada Lizasoain! Marisol Gémez? Cristina Moreno

3

!Department of Mathematics, Institute for Advanced Materials. Universidad Piblica de Navarra
2:3Department of Mathematics. Universidad Piblica de Navarra

Abstract

Here we study the notions of lattice-valued finite
state machine and lattice-valued fuzzy transforma-
tion semigroup when the lattice consists of all the
closed subintervals contained in [0, 1].

So, we can apply techniques of interval-valued
fuzzy sets to fuzzy automata. In particular, we
prove that Atanassov’s K, operators allow us to re-
trieve the information given by the transition func-
tions of the interval-valued automata. Moreover,
we analyze the functorial nature of these operators
and characterize those K, operators that provide
a fuzzy transformation semigroup from an interval-
valued one.

Keywords: Interval-valued fuzzy sets, finite state
machines, Atanassov’s K, operators, transforma-
tion semigroups.

1. Introduction

Fuzzy finite state machines (ffsm) and fuzzy trans-
formation semigroups (fts) have been widely studied
in the literature [10]. Unlike the crisp case, the ba-
sic idea in their formulation is that they can switch
from one state to another one to a certain truth
degree between 0 and 1.

So, a flsm is defined as a triple (@, X, u) where @
and X are finite sets and p is a map from Q x X x Q
to [0, 1]. In a similar way, a fts is defined as a triple
(Q,U,d) where Q is a set, U is a finite semigroup
and 0 : @ x U x @ — [0,1] is a map satisfying

d(q, uv,p) = V{é(q,u,r) No(r,v,p) | e QY

for any p, ¢ € Q and u, v € U.

Notice that neither initial nor final states are con-
sidered in these kinds of fuzzy automata.

Furthermore, the relationships between these au-
tomata have been deeply analyzed by different au-
thors [10], [7], [8]. Other ones pave the way to
consider any complete lattice as the truth struc-
ture of an automata (see [11], [9]). In [4] the truth
structure of the automata previously described (ff-
sms and ftss) is extended to any complete lattice
endowed with a t-norm and a t-conorm satisfying
both a finiteness and a distributive properties. As a
particular case the automata whose truth structure
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is the lattice of all the closed intervals contained in
L are analyzed.

Many recent studies have shown that the use of
intervals allows us to model some uncertainty sit-
uations occurring in practice [1], although the in-
formation retrieval from an interval lattice-valued
automaton is not always an easy task. However, in
the case that the truth structure consists of real in-
tervals, it is possible to use some kind of operators
to get a single value from each interval truth value
given by the transition function of the machine.

Moreover, most of the practical situations which
intervals are suitable in, use real number intervals.
So, this paper focuses on fuzzy finite state machines
and fuzzy transformation semigroups whose truth
structure is the lattice consisting of all the closed
intervals contained in [0, 1]. The novelty of this case
is that the information provided by the transition
functions of these automata can be retrieved by us-
ing a kind of Hurwicz aggregation functions [6], the
so called Atanassov’s K, operators. By means of
them, interval-valued fuzzy functions can be trans-
formed into the corresponding fuzzy functions. A
recent study of these operators can be found in [2]
in the case of dimension two and in [3] in higher
dimensions than two.

We study the behaviour of these operators act-
ing on the transition functions of interval-valued
automata. In particular, we characterize those K,
operators which allow us to obtain a fuzzy finite
state machine or a fuzzy transformation semigroup
starting from an interval-valued automaton.

Conversely, we characterize the functions between
fuzzy sets that provide an interval-valued fuzzy
transformation semigroup from two ordinary fuzzy
finite state machines in the natural way.

2. Interval-valued fuzzy finite state
machines and interval-valued fuzzy
transformation semigroups

Throughout this paper, L = (L, <p,A, V) will be
the lattice of all the closed subintervals contained in
the real interval [0, 1]. Any closed interval contained
in [0, 1] is denoted a = [ag, a1] and the partial order
<r in L is defined by

a<pb<=a) <byand a; <by.

In order to get distributivity of the t-norm with re-
spect to the t-conorm , the t-conorm considered will



be that given by the join, denoted by V and the t-
norm considered will be that given by the meet and
denoted by A.

We collect here the relevant material from [4] for
the case L = (L,<p,A,V) in order to make our
exposition self-contained.

Definition 1. An interval-valued fuzzy finite state
machine (ivffsm) is a triple M = (@, X, u), where
(@@ and X are nonempty finite sets, called the set of
states and the set of input symbols respectively, and
u:Q x X x@Q — L is the membership function of
an interval-valued fuzzy set.

Definition 2. Let M = (Q,X,u) and N =
(P,Y,v) be ivffsms and let f : @ — P and h :
X — Y be a pair of maps. Then (f, h): M — N is
an ffsm homomorphism if

(g, z,p) <p v(f(q), h(x), f(p))

for any ¢, p € Q and xz € X.

An duffsm isomorphism is an ivffsm homomor-
phism (f, h) such that both f and h are bijective.

The ivffsm homomorphism (f,h) is said to be
strong if, for any ¢, p € Q and z € X,

v(f(a); h(z), f(p)) = \/nlg,z,7) | f(r) = f(p)}-

Notice that if (f, h) : M — N is a strong ivifsm
homomorphism and f is one-to-one, then

wla,z,p) =v(f(q), h(@), f(p))
for any ¢, p € @ and x € X.

Recall that any collection of objects,
{A,B,C,...}, together with a collection of
morphisms, {C(A4, B), C(B,(C),...} satisfying both

1. For any object A, the identity map, id4, be-
longs to C(A, A).

2. If f€C(A,B) and g € C(B,C), then the com-
position go f € C(4,C),

is a category (see [5]).

Theorem 3 ([4] Theor. 3.5). The set of all the
interval-valued fuzzy finite state machines together
with the fffsm homomorphisms constitutes a cate-

gory.

Definition 4. An interval-valued fuzzy transfor-
mation semigroup (ivfts) is a triple G = (Q, U, 0),
where @ is a nonempty finite set, U is a finite semi-
group and 0 : Q X U x Q@ — L is a map satisfying
the following conditions:

(TS1) If U is a semigroup with an identity element
e then

M%am={

ifp=gq
ifp#q

(TS2) 6(q,uwv,p) = V{d(q,u,m)AS(r,v,p) | r € Q}
for any p, g € Q and u, v € U.

1

0L (p, ¢ € Q).
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An ivits (Q,U,0) is called faithful
u, v e U,

if, for any

d(q,u,p) = 0(q,v,p)

for any ¢, p € Q = u = .

Remark 5 ([4] Prop. 4.6). Let (Q, U, ) be an ivfts.
The equivalence relation ~ defined in U by means
of

u~v <= 6(q,u,p) =0(q,v,p)

for every ¢, p € @) is a congruence and hence the

triple (Q,U/~,9) is a faithful ivfts, where the map
0:Qx U/ )xQ—L

is defined by &(g, @, p) = (g, u,p) for any p, ¢ € Q,
u € U.

Definition 6. Let G = (Q,U,6) and H = (P, V, p)
be ivftss. An dufts homomorphism from G to H is a
pair (f, %) such that

1. f:Q — P is a map.

2. ¥ : U = V is a semigroup homomorphism.

3. If both U and V are semigroups with identity
elements, e; € U and ey € V, then ¥(e1) = es.

. 0(q,u,p) <p ©(f(q),¥(u), f(p)) for any ¢, p €
Qand u e U.

>~

An ivfts homomorphism (f,¢) : (Q,U,d§) —
(P,V,p) is called an dufts isomorphism if both f
and v are bijective.

The ivfts homomorphism (f,v) is said to be
strong if, in addition, for any ¢, p € Q and u € U,

e(f(@), 9 (w), f(0) = \{8(a, u,7) | f(r) = f(p)}-

Notice that if (f,¢) : (Q,U,d) — (P, V,¢) is a
strong ivfts homomorphism and f is one to one,
then for any ¢, p € Q and v € U,

6(q,u,p) = @(f(q), ¥(u), f(p))-

Theorem 7 ([4] Theor. 4.3). The set of all the
interval-valued fuzzy transformation semigroups to-
gether with the ivfts homomorphisms constitutes a
category.

Let M = (Q,X,u) be an ivifsm. From now on
we will denote by

1. X* the set of all the words of elements of X
of finite length, including the empty word .
The binary operation given by the concatena-
tion makes X* a non-finite semigroup with A
as its identity element.

2. |u| the length of any word u € X*.

3. u*:Q x X* x @ — L the map defined for any
q, p € Q, as follows

(a)
1,
Or,

ifp=gq

u%m%m={ itp g



(b) M*(Q,U‘T,p) = \/{u*(qm,r)/\u(r,x,p) |
r € Q} for every u € X* and x € X.
Notice that pu*(q,z,p) = p(q,z,p) for any x €
X and any q, p € Q.
4. X*/and p* : Qx(X*/)xQ — L are defined
like in Remark 5.

Theorem 8 ([4] Theorem 5.1). Let M = (Q, X, i)
be any wffsm. The triple (Q, X*/~, u*) is a faithful
ivfts, denoted by G(M).

Remark 9. Recall that a fuzzy finite state machine
(ffsm) is a triple (Q, X, p) with pp: Q@ x X x Q —
[0, 1].

If we consider the fuzzy finite state machines (ff-
sms) with the ffsm homomorphisms, it is clear that
they constitute a category.

Similarly, a fuzzy transformation semigroup is a
triple (Q, U, ¢) where the map 6 : @ xU x Q — [0, 1]
satisfies (TS1) and (T'S2) with respect to the t-norm
A and the t-conorm V in [0, 1].

It is easy to see that the set of fuzzy transforma-
tion semigroups (ftss) together with the fts homo-
morphisms constitutes another category.

Moreover, in the same way as in the case of in-
tervals (see [10]), we can define a map G map-
ping each fism M = (Q,X,u) to the faithful fts
G(M) = (Q, X* [, 7).

For simplicity of notation, we use the same sym-
bol * for both the interval-valued and the fuzzy set
cases.

Notation: For any set Z, any map p: Z — L and
any z € Z, we will write u(z) = [uo(2), p1(2)]. So
we denote p = [uo, 1], where p; : Z — [0, 1] for
i€ {0,1}.

Lemma 10 ([4] Lemma 6.12). Let Q be a finite
set and U a finite semigroup. Consider a map 6 :
QxUxQ — L. Then, (Q,U,0) is an interval-valued
fuzzy transformation semigroup if and only if both
triples, (Q,U,do) and (Q,U, 1), are fuzzy transfor-
mation semigroups. Moreover, if either (Q,U,dp)
or (Q,U,61) is faithful, then (Q,U,0) is faithful as

an ivfts.

Proposition 11 ([4] Prop. 6.14). Let (Q,U,0) and
(P, V,) be uftss. Let f: Q — P be a map and
v U — V a semigroup homomorphism (verifying
that ¥(e1) = es whenever U and V' have identity
elements, e1 and es, respectively). Then:

1. (f,) - (Q,U,0) = (P,V,¢) is an ivfts homo-
morphism if and only if (f,4) : (Q,U,dy) —
(P, Vo) and (f,¢) : (Q,U,61) — (P,V, 1)
are homomorphisms between the fuzzy transfor-
mation semigroups considered.

2. (f,v):(Q,U,0) = (P, V,y) is a strong homo-
morphism between ivftss if and only if the maps
<f7,(/}> : (Q7Ua60) - (P7V77900) and (fvz/}) :
(Q,U,61) — (P,V,p1) are strong homomor-
phisms between the fuzzy transformation semi-
groups considered.
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If M = (Q,X,p) is an ivifsm, we can consider
the flsms My = (Q, X, po) and My = (Q, X, u1).

Hence G(My) = (Q, X*/~,, 1g) is a faithful fuzzy
transformation semigroup with u ~¢ v <=

wo(q, u,p) = pg(q, v, p) for every ¢, p € Q.

Analogously G(M;) = (Q, X*/~,, u) is a faithful
fuzzy transformation semigroup with u ~, v <=

11 (g, u, p) = pi(g,v,p) for every q, p € Q.

The following result shows the relationship be-
tween the pair of ftss G(My), G(M7) and the ivfts
G (M) obtained from the same ivifsm M.

Theorem 12 ([4] Theor. 6.20 and 6.21). Let M =
(Q, X, 1) be an ioffsm and G(M) = (@, X*/., i)
as defined in Theorem 8. Consider My = (Q, X, po)
and My = (Q,X,m1), ffsms and G(My) =
(Q,X*/zo,ﬂé) and G(Ml) - (QaX*/%U/[lk)i the
faithful ivftss defined in Remark 9. Then p* =
(15, 1) and the quotient X* /o = X* [(xormy)-

3. Generation of ivffsms and ivfts from
fuzzy finite state machines and fuzzy
transformation semigroups

Throughout this section, for each set Z, we denote
by FS(Z) the set of all the fuzzy sets defined on Z.

We consider two fuzzy finite state machines,
M =(Q,X,n) and N = (Q, X,v), and two maps,
fog: FS(Z) x FS(Z) — FS(Z), satisfying that
fluv) < g(p,v).

We provide a way of building an ivffsm,
(Q, X, [f(u,v), g(pr,v)]) and then a faithful ivfts
from it, (Q, X*/~, [f(u,v), g(u,v)]*). Moreover we
characterize the cases in which, starting from the
maps p* and v*, the same ivfts is obtained.

Theorem 13. Let M = (Q,X,u) and N =
(Q, X, v) be fuzzy finite state machines and let f, g :
FS(Z) x FS(Z) — FS(Z) be maps satisfying that

fu,v) < g(p,v). Then
1. The triple (Q, X, [f,9)(uw)) is an
interval-valued  fuzzy  finite  state  ma-

chine, where If, 9l (ur) (@ 2,p) =
[, v) (g 2, p), 9(p,v) (g, z,p)].
2. The map [f’g}?u,l/) QX X*xQ — L is equal

to [f(*uw)’ gz‘W,)], where
f(*#vl’) = (f(ﬂ, V))* ’ gat,u) = (g(/j,jlj))*

and [f, 91(,..) = [f (ks v), g(p, v)]"

8. If f(u*,v*) < g(p*,v*), the map [f, gl(uvv)
Q x X* x Q — L satisfies (TS1) and (TS2) if
and only if

[fa g](,u,*,y*) = [f(*/_L,u)7 gzﬂ,u)]’

In that case, the  faithful fts
(Q, X"/, [f0ys ) defined as in Re-

mark 5 is the faithful quotient of the idvfts



(Q, X*/~,[f, 9] 9y ))s where the equivalence
relation =~ is deﬁned i X* by

" { W (¢,u,p) = u*(a,v,p) and }
v*(¢,u,p) = v*(q,v,p)
for every q,p € Q.

Sketch of proof. The first item is immediate.
the second one, it is enough to prove that

For

[f7 g]zku7y) (q7 U,p) = [f(th’/) (q7 uap)7 ga‘»”) (q7 U,p)],

which can be made by using induction on the length
of the word wu.

For the left-to-right proof of the third item,
Lemma 10 assures that both f(,« ,-) and g(,« =
satisfy (TS1) and (TS2). Then, by using induc-
tion on the length of u, it is easy to prove that
fw v (@ u,p) = f(, (@, u,p) for every q,p € Q
and v € X*, and the analogous equality for the map
g.

The right-to-left proof is based on that [f, g] 2‘%”)
satisfies (TS1) and (TS2) consequently,
[f, 9l(u=, v+ also does.

In this case, an equivalence relation can be well-
defined in X*/~ by [u]x = V]~ &

m(p*7u*)(Qv [ul~,p) = m(m,w)((b [v]~,p)
for every ¢,p € Q

~ [f?g](;t*,l/*)(Q7u7p) =
for every ¢,p € Q.

and,

[f7 g](#*,u*)(Qv ’va)

It can be -carefully checked that the faith-
ful quotient given by this equivalence rela-
tion, (Q,[X*/x]=,[[f, 9] )]=), agrees with
(Q,X*/~, [f(# ) g(u V)]) defined in the statement

above.
O

Remark 14. Let M = (Q, X, pu) and N = (Q, X, v)

be fuzzy finite state machines.

1. Assume that p < v. We consider the opera-
tors f and g given respectively by f(u,v) = p
and g(pu,v) = v for any p, v € FS(Q X
X x Q). Then (Q,X,[u,v]) is an ivifsm and
(Q, X*/~, 1, v]*) is a faithful ivfts such that

(@, X7/ [ ") = (Q, X7/ [, v¥]).

2. The triple (Q,X, [p, pVV]) is an ivifsm and
(Q, X*/ ) [, pVV]*) is ,u\/z/] ) is a faithful ivfts equal to
(Q, X*/, ", (pVr)*]). However, in general

(1", (pvv)*] # [u

which does not always satisfy (TS2).

3. The triple (@, X, [uAv, p]) is an ivifsm and
(Q, X*/~, [uAv, p]*) is a faithful ivits equal to
(Q,X*/~, [(uAV)*, p*]). However, in general

[(uAv)™s @] # [ nv®, vrl,

which does not always satisfy (TS2).

, VYT
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4. Generating ffsms from ivifsms and ftss
from ivftss.

We study here the way of generating ffsms and fts
starting from an ivffsm and an ivts respectively.
Throughout this section we consider the family
of Attanasov’s K, operators, which is the family of
maps
{Ko:L—=[0,1]|0< a <1},

where each K, is defined by K,([ao,a1]) = ao +
alay — agp).

It is easy to check that this family satisfies the
following properties:

1. If ap = a1, then K,([ao,a1]) = ap for any « €

[0, 1].

2. Ko([ag,a1]) = ap and K1 ([ag,a1]) = a; for any
[ao,al] eL.

3. Whenever [ag,a <L [bo,b1],  then

b1]) for any « € [0, 1].
1, then K,([ap,a1]) <

Notation: Let Z be any set and y : Z — L any
map. For any a € [0, 1], denote by K, (1) the map
from Z to [0, 1] given by

(Ka(p)) (2) = Ko (1(2)) -

Lemma 15. Let o € [0,1].
tions are equivalent:

The following asser-

1. K, (avb) = K, (a)V K, (b) for anya, b € L.
2. Ka = KO or Ka = Kl.
3. K, (anb) = K, (a)AK, (b) for anya, b € L.

Using the previous Lemma, we can obtain the
next result

Theorem 16. Let a € [0,1].
ments are equivalent:

The following state-

1. (Q,U, K,(0)) is a fuzzy transformation semi-
group for every iwfts G = (Q,U,9).
2. Ka = Ko or Ka = Kl.

The next results analyze the functorial behaviour
of operators K,. Recall [5] that a functor F from
the category C to the category D is an operator
satisfying:

1. F assigns an object F(A) in D to each object
AinC,

2. F assigns a morphism F(f) € D (F(A), F(B))
to each morphism f € C(A, B),

3. F(ida) = idp(a) for any object A in C.

4. F(go f) = F(g) o F(f) to each f € C(A,B),
g€ C(B,C).

If F and G are functors from the category C to
the category D, a natural transformation from F to
G is a family of morphisms in D,

{04 : F(A) — G(A) | A is an object of C},



such that, for any f € C(A, B), the diagram

commutes.

A natural transformation is called a natural equiv-
alence if §4 is an isomorphism for any object A in
C.

Proposition 17. Consider a € {0, 1} and the map
F,, which maps each ivfts G = (Q,U, ) to Fo(G) =
(Q,U,K,(8)) and each ivfts homomorphism (f,h)
to Fo(f,h) = (f,h). Then F, is a functor from the
category of the ivftss to the category of the ftss.

Proposition 18. For any « € [0, 1], the map D,
which maps each ivffsm M = (Q, X, u) to the ffsm
D, (M) =(Q, X, Ky(p)) and each ivffsm homomor-
phism (f,h) to the ffsm homomorphism Dy (f, h) =
(f,h) is a functor from the category of the ivffsms
to the category of the ffsms.

Moreover, for any ivffsm M = (Q, X, 1), the pair
(idg, idx) is a ffsm homomorphism from Dy (M) to
Dg(M) if 0 < a < g < 1. In fact, there exists
a natural equivalence from the functor D, to the
functor Dg.

The previous results allow us to build several
faithful ftss starting from an ivffsm M by using K,
operators.

Theorem 19. Let M = (Q,X,u) be an ivffsm.
For any o € [0,1], the triple G(Dy(M)) =

(Q,X*/za,(Ka(,U))*) is a’fa‘ZtthZ ftS

Proof. Do (M) = (Q,X,K,(p)) is a ffsm by
Proposition 18. Then the triple G (D,(M)) =
(Q, X*/~., (Ko(p))") is a faithful fts by Remark

9. Notice that, for any « € [0, 1], the equivalence
relation ~, in X* is given by

u Ry v = (Ko(p)" (g,u,p) = (Ka(pr))" (¢,v,p)
for every ¢, p € Q. O

Another way of getting ftss from an ivffsm M is
by means of the ivfts G(M).

Theorem 20. Let M = (Q,X,u) be an iyffsm.
For o € {0,1}, the triple Fo(G(M)) =
(Q, [X™/~Ja: [Ka(p¥)]a) is a faithful fts.

Proof. G(M) = (Q,X*/.,n*) is a faithful ivfts

by Theorem 8, where the equivalence relation ~ is
given in X* by

un~v <= p*(q,u,p) = p*(q,v,p) for every ¢, p € Q.

Proposition 17 assures that the triple F,(G(M)) =
(Q, X*/, Ko(u¥)) is a fts for a € {0, 1}, but

it is mnot mnecessarily faithful. At last, the

quotient Fo(G(M)) = (Q,[X*/ ]a; [Ka(p¥)la)
is a faithful fts, where [, = [a <=
Ko(p*)(q,u, p) = Ka(p*)(q, 0, p) for every ¢,p € Q
and [Ko(1%)]a(g; [@la,p) = Ka(p*)(q,,p) for any
q,p € Q and u € X*. O

In order to compare the ftss obtained in Theorems
19 and 20, we need the following lemma.

Lemma 21. Let o € [0,1]. The following asser-
tions are equivalent:

1. Ko(p*) = (Kao(w))* for any duffsm M =

(@Q, X, ).

2. K (u*) satisfies (TS1) and (TS2) in [0,1] for
any iffsm M = (Q, X, u).

3. Ka = KO or Ka = Kl.

Now we can prove

Theorem 22. Let M = (Q,X,u) be an ivffsm.
Then for a € {0,1}

G(Da(M)) = FQ(G(M))a
i.e, are equal as faithful ftss.

Proof. Consider o € {0,1}. We have to show that
the following diagram commutes:

(Q, X, 1) —2> (Q, X, Ka(p))

Gl |o

@ X 1) —=m(Q, X, (E()))

Firstly we obtain

G(Da(M)) = (Q, X™/x0s (Ka(p)*)

as in Theorem 19, where for u,v € X*,

u v
if and only if (Ka(1))" (¢,u,p) = (Ka(1))" (¢,v,p)
for every q,p € Q.

~
~ o

Now, if we consider F,(G(M)) =
(Q,[X*/~]a, [Ka(p¥)]a) as in Theorem 20, then

u~v

< u*(q,u,p) = u*(q,v,p) for every ¢,p € Q
<= for every ¢,p € Q

{ Ko(p*(q,u,p)) = Ko(p*(q,v,p)) and
Ki(p*(g,u,p)) = K1(p*(q,v,p))

Moreover, u is equivalent to v in [X*/.], if and

only if Ko(u*(q,u,p)) = Ko(p*(q,v,p)) for every
q,p € @ or equivalently

Ko(1*(q,u,p)) = Ko(u*(q,v,p)) for every ¢,p € Q.

Since Ko (p*) = (Ko(p))™ by using Lemma 21, we
conclude that the quotients X*/~_ and [X*/.]a
agree and so do the triples

(@ X" /x, (Ka(p))*) and (Q, [X™/ o, [Ka(p¥)]a)-
O



5. Conclusions and future research

In this paper the concepts of a lattice-valued fuzzy
finite state machine and a lattice-valued fuzzy trans-
formation semigroup are studied in the particular
case that the lattice is the set of all the closed in-
tervals contained in [0, 1] with the usual order. The
relationships obtained in [4] between these two con-
cepts are particularized to the special case of these
interval-valued fuzzy automata.

In addition, starting from an interval-valued
fuzzy finite state machine, it is proven that
Atanassov’s K, operators provide a fuzzy finite
state machine and then a fuzzy transformation
semigroup for each « € [0, 1].

However, starting from an interval-valued trans-
formation semigroup, the only Atanassov’s K, op-
erators that provide a fuzzy transformation semi-
group are Ky and Kj.

Conversely, the paper provides two different ways
of getting an interval-valued transformation semi-
group starting from two suitable fuzzy finite state
machines. It is proven that one of them is the faith-
ful quotient of the other one.

Regarding future lines of research, we will gen-
eralize the use of K, operators or generalized K,
operators to the study of fuzzy finite state machines
whose transition functions take values in the set of
the intervals contained in any lattice where the use
of weighted means has sense.
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