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Abstract

We state a problem concerning how to make an ef-
fective and proper decision in the presence of data
incompleteness. As an example we consider a medi-
cal diagnostic system where the problem of missing
data is commonly encountered. We propose and
evaluate an approach that makes it possible to re-
duce the influence of missing data on the final re-
sult and to improve the quality of the decision. The
process involves interval-valued fuzzy set modelling,
uncertaintification of classical methods, and finally
aggregation of the incomplete results. It was veri-
fied that the aggregation results in meaningful and
accurate decisions despite the missing data.

Keywords: missing data, incomplete information,
decision-making, uncertainty, aggregation, interval-
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1. Introduction

It is almost inevitable that empirical observations
and real-life research produce incomplete datasets.
Incomplete, or missing, data can occur for many
reasons, including malfunction of data-collecting
equipment, a survey respondent’s failure to respond
to a question, insufficient resources (time, money)
to collect all the data, and others. The important
point is that these reasons are natural and unavoid-
able, and thus the desire for complete datasets is
impossible to fulfil. Clearly, missing data can have
a significant effect on the conclusions that can be
drawn from the data, and so it becomes a crucial
issue to deal properly with missingness. In recog-
nition of this problem, missing data analysis and
decision-making under incomplete information has
recently become an important area of research [1, 2].

The present article is a contribution to the study
of decision-making in the presence of incomplete in-
formation. The subject of our research is a method
for supporting the medical diagnosis of ovarian tu-
mors [3]. Since collecting all the data about a pa-
tient is often very difficult, it is crucial that the di-
agnostic system can give meaningful and accurate
results even when some of the data is missing. We
present here a novel approach that makes this possi-
ble. A key feature of our approach is that we do not
use any of the known techniques for estimating miss-
ing data and data imputation, because these might
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Figure 1: Mortality from ovarian cancer in France,
Japan, Poland and Spain between 2000-2011 [4, 5].

significantly distort the final diagnosis. We also do
not propose any new diagnostic model specifically
for dealing with incomplete data, in order not to
introduce any additional complexity to modelling
and computation. Instead, we construct a general
method that makes it possible to adapt existing and
well-established diagnostic methods to make them
usable with incomplete data. In the remainder of
this article we describe particular components of our
approach in detail.

In Section 2 we give a short introduction to the
process of ovarian tumor diagnosis, and we state a
question concerning how to make an effective diag-
nosis when some attributes of patients are not given.
In Section 3 we propose a solution to this problem
which involves IVFS modelling, uncertaintification
of classical medical scales, and finally aggregation of
the incomplete results obtained. In Section 4 we de-
scribe in detail all the tools and methods that were
used, and we give a methodology for analysing and
comparing different aggregating methods. Section
5 contains conclusions drawn from our results and
indicates possible paths of further research.

2. Motivation

One of the major problems currently faced by
medicine is that of ovarian tumors. Statistics from
recent years show this to be a deadly disease among
women. The annual numbers of deaths due to ovar-
ian cancer in some countries are alarmingly high
and are still increasing (see Fig. 1). A tumor may
be either malignant or benign. We therefore have
to deal with a differential diagnosis (binary classifi-
cation) problem.

The correct classification of a tumor is particu-



larly important for two reasons. Firstly, the type
of tumor determines whether the patient must un-
dergo surgery. Secondly, incorrect indication of ma-
lignancy as benign causes deterioration of the pa-
tient’s health in the longer term and results in a
high risk of failure of surgery.

For this reason, a wide range of preoperative diag-
nostic models have been developed, where the goal
is to predict the type of malignancy. They vary
from basic scoring systems [6] , through rule-based
schemes [7] to machine learning techniques [8]. Both
the sensitivity and specificity of some models ex-
ceeds 90% in external evaluation [9, 10].

The total number of attributes, which charac-
terise a patient, amounts to a several dozen. They
describe features ranging from basic medical history
(such as menopausal status, age, contraception, tu-
mors in family, etc.) to ultrasonographic examina-
tion and blood markers.

The Table 1 presents the six most common preop-
erative models (two based on scoring systems [6, 11]
and four based on logistic regressions [8, 12, 13])
and a list of the attributes used. The attributes
are divided into two groups: objective medical his-
tory and others (which comprise subjective medical
history, ultrasound and blood markers). A detailed
description of ultrasound features can be found in
[14].

Our previous research indicated possible prob-
lems with the collection of data by a physician dur-
ing examinations [15, 16]. It is common that some
examinations might be omitted by a gynaecologist,
either due to their unavailability or because of med-
ical reasons. Data may be absent due to, for exam-
ple, the technical limitations of the healthcare insti-
tution, the high costs of a medical examination, and
the high risk of deterioration in a patient’s health
after a potential examination.

A common and rather straightforward approach
to managing lack of data is to exploit certain well-
established methods from the field of data imputa-
tion [17]. Undoubtedly in many research areas such
an approach is sufficient. Although imputing miss-
ing values seems to be adequate from the statistical
point of view, in medical applications such a solu-
tion must be applied with particular caution. When
human life is concerned, it is not so clear whether
we can consciously introduce new data which may
be subject to error.

Such lack of data means that a physician is not
able to calculate and use known diagnostic models,
since these require all of the data in order to make a
decision. As a result, the problem arises of objecti-
fication of the final diagnosis, which is particularly
significant in the case of examinations performed by
an inexperienced gynaecologist. For that reason, an
urgent question is how to construct a diagnostic sys-
tem that will be feasible in the absence of certain
data. In the remainder of this paper we investigate,
in particular, the following questions:
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e Is it possible to integrate the knowledge that
comes from many diagnostic scales to minimise
the impact of incomplete data?

e How can a balance be maintained between
effectiveness and decisiveness (diagnosability),
with particular regard to minimising the risk
of wrong decision due to the nature of the test
problem (in our case, medical diagnosis)?

3. Proposed approach

3.1. Patient model

In a classical approach, a patient is modelled as a
vector p in a space P. Let Dy, Do,..., D, be real
closed intervals denoting domains of attributes that
describe patients. We define a set P in the following
way P = Dy X Dy X ... x D,,. Then, a vector p that
describes a patient has the form p = (p1,p2, ..., Dn),
where p; € D;.

In this basic approach we require a full description
for each patient. In order to accept missing values
for some attributes we have to add a special element
to each domain which will represent them. We thus
construct sets Df = D; U {0} and a set P* defined
as P* = D] x ... x Dy. Now a patient is modelled
by a vector p* = (p3,...,p}), where pf € D7.

A major disadvantage of this approach is the need
to introduce a new, separate value to represent miss-
ing values (which are, in practice, commonly de-
noted by NA). Therefore in this paper we suggest a
different approach in which all the data are repre-
sented in the same, consistent way.

For each attribute D; we introduce its interval
version ﬁi = Ip,. Analogously as before we define
P =D xDyx..xD,. Consequently, for each
vector p* € P* we can define its interval equivalent

p € P which has the form p = ([Qljjl], cey [;Qn,?nDa
where

Pi
;= mind
deD;

The above definition of the vector p allows one to
describe each attribute of a patient by a numerical
interval, regardless of whether or not the descrip-
tion of an attribute was given. If the value was not
provided then the proposed representation has the
form of a set containing all possible values for the
attribute. If the value was given then it is repre-
sented by an interval reduced to a point. The main
advantage of such an approach is that all patients
can be described in the same, uniform way and can
be processed with the same diagnostic model. This
model is formally introduced in the next subsection.

ifp; 20
CIlne%xd ifp; =0.

i

ifp; 20 Di
if p;=0°Pi~

3.2. Uncertaintification of diagnostic scales

A diagnostic scale can be formalised as a function
m: P — [0,1]. The values returned by a function
indicate the malignancy of a tumor and are inter-
preted in the following way:



diagnostic models

group attribute SM [11] Alc. [6] LR1 [8] LR2[8] Timm. [12] RMI1 [13]
mi mao ms my ms me
age - - v v - v
objective  menopausal status v - - - Vg v
medical  ovarian cancer in family - - v - - -
history hormonal therapy - - v - - -
hysterectomy - - - - - v
pain during examination - - v - - -
lesion volume v - v - - -
internal cyst walls v - v v - -
septum thickness v - - - - -
echogenicity v v - - - -
localisation v - - - - v
ascites v - v v - v
other papillary projections - v - - -
solid element size - v v v - v
blood flow location - v v v - -
resistance index - v - - - -
acoustic shadow - - v v - -
amount of blood flow - - v - v -
CA-125 blood marker - - - - v v
lesion quality class - - - - - v

Table 1: Attributes used in the most common preoperative diagnostic models.

e m(p) > 0.5 — diagnosis towards malignant;

e m(p) < 0.5 — diagnosis towards benign;

e m(p) = 0.5 — indicates the impossibility of de-
termining the nature of malignancy.

As mentioned, the existing diagnostic scales operate
on complete dataset only. The most straightforward
way to generalise them to accept missing values is
to extend P to P*; then m : P* — [0,1]U{0}. Such
an approach is simple but not interesting — a scale
would not return any diagnosis whenever data were
missing.

It seems to be much more appropriate to operate
with the interval representation of a patient that
was proposed in the previous section. We utilise
a classical method of extending real functions to
interval values [18] to obtain a new, uncertaintified
diagnostic scale m : P Tjo,1) defined as:

n(p) = {m(p) :Vicicu b, <pi <P}

(2)

{mir} m(p), max m(p)} .
pED

where by p € p we denote that p is an embedded
vector of p.

The resultant interval represents all of the pos-
sible diagnoses that can be made based on a pa-
tient description in which every missing value was
replaced with all possible values for that attribute.
The more incomplete the description, the more un-
certain the diagnosis. However, it is worth not-
ing that in many cases it is still possible to make
a proper diagnosis, since some amount of missing
values is acceptable and will not affect the final re-
sult significantly. This is one of the basic advan-
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tages that distinguishes our approach from simple
P* modelling.

3.3. Diagnosis modelling

The diagnostic model defined by (2) can conve-
niently be described within a framework of interval-
valued fuzzy set (IVFS) theory. IVFSs were de-
signed to represent uncertain (incomplete) informa-
tion, in contrast to standard fuzzy sets, which model
imprecision. Let X be a finite crisp set called the
universe of discourse, and let Zj,; be the set of
all closed sub-intervals of [a,b], where a and b are
real numbers. Then an IVFS is a mapping A:X >
Zj0,1)- An interval A(z) = [A(z), A(z)] € Zjo,1) is un-
derstood to contain the true, however incompletely
known, membership degree of an element x in A.
This corresponds to the interpretation of an inter-
val 7 (p) which defines the boundaries of a possible
diagnosis for a patient.

Thus a diagnostic model m can be interpreted as
an IVFS on the universe P. A value 7(p) denotes
an interval membership degree to which a given pa-
tient p can be classified as a malignant case accord-
ing to the model m.

A diagnosis in the form of an interval has its ad-
vantages and drawbacks. An advantage is that such
a model gives a diagnosis even in the presence of
missing data. A drawback is that the diagnosis is
often uncertain and not so easy for a physician to
apply. A major problem is thus how to efficiently
support a physician in making a final diagnosis un-
der incomplete information.

In order to solve this problem we make the follow-
ing observation. As Table 1 shows, different scales,



denoted by my,...m,, use different attributes de-
scribing the patient, and are therefore subject to
different levels of uncertainty. The main idea is
thus to improve the final diagnosis by taking ad-
vantage of the diversity of diagnostic scales. Given
n scales 1y, . ..M, we construct a function Agg :
IVFS" — IVFS. Its result Agg(my,...m,) is a
new IVFS that gathers and integrates information
from the input sets. Thanks to this interpretation
we immediately see the relationship with the issues
of group decision-making and information aggrega-
tion [19].

An n-argument interval-valued fuzzy aggregation
operator is a mapping Agg : Zjo,1" — Zjo,1] with the
following properties [20]:

1.if g € z; for all ¢ € 1,.. then

7 -1,
Agg(gh 7:077,) g Agg(f;h "'7*%7’7,)7
2. Agg([1,1],...,[1,1]) = [1,1],
ol

3. Agg([0,0], ..., [0,0]) = [0,0] ,.

Recent research has led to the construction of
many interval-valued fuzzy sets aggregation meth-
ods [21, 22, 20, 23]. The most commonly used aggre-
gation methods in group decision making are based
on the weighted arithmetic average [19]. We pro-
pose to use different IVFS aggregation methods to
improve the quality of diagnosis as well as to min-
imise the impact of the lack of data and uncertainty
in decision-making.

In the medical decision-making problem, the fi-
nal diagnosis obtained from an aggregation oper-
ator must indicate whether a tumor is malignant
or not. However, supporting a decision in a case
where there is not enough information may lead to
a wrong diagnosis. Thus we accept a situation in
which no diagnosis recommendation is made. The
conversion of interval diagnosis into final diagnosis
(binarisation) is very important and may influence
overall efficacy.

In view of the importance of matching the aggre-
gation operator to a specific problem, in this paper
we propose a methodology that allows one to inves-
tigate how different aggregation operators cope with
those problems. It makes it possible to obtain the
characteristics of the operator and to assess the de-
gree of usefulness in a given decision problem. Since
the main issue considered here is the possibility of
making decisions under incomplete data, the pro-
posed assessment methodology specifically focuses
on this issue.

4. Results and discussion

4.1. Methodology description

The main goal of the proposed methodology is to
simulate the decision-making process in a real de-
cision problem. In supporting medical diagnosis, a
very important problem is the possibility of missing
data. Hence the proposed methodology is aimed at
evaluating aggregation operators used to cope with
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lack of data. For this purpose, an essential element
of the methodology is to simulate different levels
of missing data. In order to better reflect the re-
ality we have divided the attributes that describe
the patient into two separate groups: those that are
subject to obscuration and those that are not. This
separation naturally exists in many problems, in-
cluding the problem of medical diagnosis, because
some data about the patient, such as age and other
objective data from the medical history, are always
available to the physician.

For the purpose of our research we have adopted
some assumptions. Firstly, in order to avoid bias,
we assume that the dataset on which the evaluation
is carried out has an equal distribution of positive
and negative cases. To achieve this state, at each
iteration we randomly select an equal number of pa-
tients within each class. This also allows us to re-
duce the iteration time and to increase the random-
ness of the procedure. Secondly, the evaluation can
only apply to diagnostic scales based on mathemat-
ical models that are simple enough to be efficiently
computed after the extension to interval values. An-
other assumption is that we consider levels of miss-
ing data in the range of 0 — —50%, because higher
levels are unacceptable in practice. The quality of
medical diagnosis is most often described by five
basic statistics: accuracy (ACC), sensitivity (SEN),
specificity (SPEC), positive predictive value (PPV)
and negative predictive value (NPV). Therefore, the
methodology is aimed at the simple calculation of
these parameters.

The evaluation process can be described as fol-
lows. For each level of missing data, assessment
of the efficacy of aggregation operators is repeated
N times. The input data for each repetition is a
complete dataset which conforms to the adopted
assumptions. In each such iteration two subsets of
instances (positive and negative) are drawn inde-
pendently. Both of them are subjected to a process
of obscuration, which involves random erasure of
attribute values from the dataset so that the total
level of missing data corresponds to the target level
of obscuration (OL). The data is next converted to
interval form according to equation (1) and passed
to uncertaintified diagnostic scales.

The results of all uncertaintified diagnostic scales
are represented as IVFSs. The list of those IVFSs
forms an input to the aggregation operators. Each
operator synthesises the input diagnoses in accor-
dance with its principle of operation. The result of
the aggregation is an IVF'S representing the synthe-
sised diagnosis. In order to make the final diagnosis
it is required to perform a binarisation process. The
resulting diagnoses are compared with reference val-
ues in order to calculate the necessary statistics.
The final statistics for a given level of missing data
are calculated by averaging the results of all itera-
tions. A diagram of the evaluation process appears
in Fig. 2.
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Figure 2: Visualisation of the evaluation process.
Data flow is represented as arrows and boxes repre-
sent operations on data.

4.2. Evaluation and results analysis

Our study group consisted of 268 women diagnosed
and treated for ovarian tumor in the Division of Gy-
naecological Surgery, Poznan University of Medical
Sciences, between 2005 and 2012. Among them,
62% were diagnosed with a benign tumor and 38%
with a malignant tumor. At each iteration we
selected 50 patients for the positive and negative
groups. All patients had no missing values in the
attributes required by the diagnostic scales. The
dataset is described in detail in [10].

In the evaluation we used six different uncertain-
tified diagnostic scales 11, ..., 1. These scales were
obtained from the basic scales listed in Table 1 by
applying the uncertaintification process described
by (2).

For the experiment we chose the simplest meth-
ods of aggregation, which base on weighted aver-
age, sum and intersection of sets, and majority vote.
Such methods are most often used in the problem of
group decision making [19]. However, the authors
are aware that these methods do not cover recent
research in that field.

The construction of a certain method of aggrega-
tion consists in making choices of aggregation strat-
egy and binarisation strategy. Moreover, methods
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D strategy of

aggregation weight calc.  binarization
A Interval avg. width margin
B Interval avg. entropy no margin
C Interval avg. constant no margin
D Lower bound avg. width margin
E Upper bound avg. width margin
F Center avg. width margin
G Center avg. entropy margin
H Intersection - no margin
1 Sum - no margin
J ‘ Majority vote - margin

Table 2: Selected aggregation methods.

based on weighted average require definition of the
weight of intervals. We evaluated 177 combinations
of the strategies, which will be described below.
Many of the resulting methods are similar and have
almost equal outcomes. For the sake of the pre-
sentation of evaluation results, we chose 10 meth-
ods of aggregation which are representative of their
groups. These 10 methods are presented in Table 2.

4.2.1. Aggregation strategy

Diagnoses for each patient are independent, it is
possible to perform aggregation per patient p;:

m(ps) = Agg(mai(Di), ..., me(Di)) -

The first group of aggregation operators (A-C) is
based on arithmetic mean with the use of interval
arithmetic:

i W(E) X &

i w(d)

The second group of operators (D-G) is based
on a weighted mean calculated with reference to a
representative of the interval. Selected strategies
in choosing representatives (rep) are the minimum,
maximum and centre of an interval:

2oimg w(di) - rep(d:)
D1 w(d)
The next two operators (H—I) are based on set-
theoretical sum and intersection:

wfn) =

Agg(®1, 22, ...

A

axn):

Agg(i‘h‘%Qu

n
Agg(i‘l,i‘g, a‘f:n) = U i‘i

i=1
and
n
Agg(21, 22, ., Bn) = ﬂ Z.
i=1
The last method (J) differs from the previous
ones in that firstly it binarises input intervals, and
after that it chooses the diagnosis which appeared

more frequently. In the case of a tie, a diagnosis is
not made.



4.2.2. Binarisation strategy

In our research we chose the simplest variant of in-
terval binarisation:

0 ifb<05+¢
Te([a,b]) =< 1 ifa>05—¢ (3)
NA  otherwise.

In this approach, an instance is classified as posi-
tive when the whole interval is greater than 0.5 with
respect to the margin e. The negative case is defined
similarly. In a case where the first or second condi-
tion is not met, it is not possible to make a decision.
For example, when the margin is set to ¢ = 0.025, a
diagnosis of [0.1, 0.3] will be classified as benign, but
for the interval [0.1, 0.6] it is not possible to make a
decision.

In our evaluation we arbitrarily chose two values
for e: 0 (no margin) and 0.025.

4.2.3. Weight calculation strategy

In our evaluation we selected three strategies for
choosing weights:

e constant value: w([a,b]) =1,
e interval length: w([a,b]) =b—a,
e normalised interval distance from 0.5 (en-

tropy):
0 ifa<05<b
w(la,b]) =< 2(a—0.5) ifa>0.5
2(0.5—b) otherwise.

4.2.4. Bvaluation

In each classification problem it is important to set a
baseline. In the case of ovarian tumor diagnosis, this
is achieved by means of a classifier which makes a
decision using only one attribute menopausal status
[10]. This classifier achieves 69% accuracy. The aim
of this operation is to set a lower bound — all meth-
ods of aggregation should be better than a baseline
classifier and single diagnostic scales. An aggre-
gation operator which has worse efficacy than the
lower bound is useless in practical applications.

Statistical evaluation, as well as implementation
the of proposed methodology, were performed using
R software, version 3.1.1 [24]. We set levels of miss-
ing data to vary from 0% to 50% with a 5% step
size. For each level we performed 1000 repetitions
of random data obscuration with other calculations.
With this number of repetitions the averaged results
are stable, so that it is possible to reliably analyse
them.

The most significant results are presented in Fig.
3. Diagrams (a) and (b) show how the aggrega-
tors and single diagnostic scales perform with an in-
creasing level of missing data. Diagram (a) presents
diagnostic accuracy (ACC) and diagram (b) shows
the percentage of patients for whom the decision

could be made. The upper and lower bounds of the
shaded regions in diagrams (a,b,d) correspond to
the largest and the smallest values achieved by the
diagnostic scales.

Diagrams (a) and (b) show that preserving
high diagnosability frequently prevents models from
achieving high accuracy, and vice versa. In order to
understand the relation between these two param-
eters, let us present individual aggregation opera-
tors on a plane. Diagram (c) shows a relationship
between diagnosability and accuracy for each level
of missing data. All points of a hypothetical ideal
aggregation operator would be localised in the up-
per right corner of the diagram (100% accuracy and
100% diagnosability). For this reason, a measure of
the quality of an aggregation operator for a given
level of missing data is defined as the Euclidean dis-
tance of such a point in the plane from the point
(100%, 100%):

Agg; Aggi

q(Aggi,OL) = \/(ACCOL —1)2+ (DIAGQE —1)2.

Diagram (d) presents a quality measure ¢ with re-
spect to levels of missing data. Smaller values of ¢
correspond to better diagnostic quality of a model.
From the diagram it can be seen that in practice it
is impossible to achieve a measure arbitrarily close
to 0.

4.2.5. Results summary

The developed methodology led us to the conclusion
that in the case of our medical diagnosis problem,
aggregation is useful as a tool to solve the problem
of missing data. Even the simplest methods pre-
sented in this paper achieved an efficacy which ex-
ceeded that of the individual diagnostic scales, both
in terms of accuracy and the number of diagnosed
patients, despite the missing data. There are three
interesting cases:

1. the result of aggregation is the achievement of
very high and stable accuracy (over 95%, re-
gardless of the level of missing data) at the cost
of a small number of patients for whom it was
possible to make a diagnosis (below 50%, less
than individual diagnostic scales) — see e.g. the
I operator;

2. the result of aggregation is the achievement of
very high diagnosability (over 90%) regardless
of the level of missing data, at the cost of de-
creasing accuracy with increasing level of miss-
ing data (accuracy might be even lower than is
achieved by individual diagnostic scales) — see
e.g. the F and F operators;

3. the result of aggregation is the achievement of
persistent high accuracy comparable to that
achieved by individual diagnostic scales, with
simultaneous high level of diagnosability (sig-
nificantly higher than achieved by individual
diagnostic scales) — see e.g. F'i G.

In the problem of ovarian tumor diagnosis, it ap-
pears that the most promising results were obtained
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Figure 3: Results of evaluation of selected aggregation methods. The shaded region indicates bounds of single
diagnostic methods. The dashed horizontal line in diagram (a) indicates the accuracy of the baseline classifier.

by aggregation operator F, as shown in diagram (d).
This operator is capable of maintaining high accu-
racy and diagnosability. Furthermore, its distance
from the optimal effectiveness point is the smallest
and increases very slowly with an increase in the
level of missing data. Its low sensitivity to lack of
data makes it a promising candidate in the search
for robust operators.

An interesting result is obtained in the case of
the operator H, which is based on set intersection.
In the case of complete data it is not able to make
any decision. This is because in such a situation
the intervals degenerate to single points, and the
intersection of such intervals is usually the empty
set.

The authors are aware that since the evaluation
was performed on the whole dataset with arbitrarily
chosen binarisation margins, general conclusions on
the performance of the presented aggregation op-
erators should not be drawn. To make the results
more reliable, performance should be validated on
a separate dataset with optimised aggregation pa-
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rameters.

5. Conclusions and further research

The results presented here are promising and show
that the competent selection and use of aggrega-
tion methods can significantly improve the quality
of decisions taken by a diagnostic system. The prob-
lem is particularly significant when the knowledge
is based on incomplete information. Proper selec-
tion of the method of aggregation is essential for
reducing the negative impact of data incomplete-
ness on the quality of decisions. Because the de-
sign of an aggregation method depends on the par-
ticular problem, extensive evaluation is needed on
each occasion. This can be done using our proposed
method.

This paper proposes a method for the uncertain-
tification of classifiers which may have broader ap-
plication in the study of the influence of incomplete
data on the quality of decisions. This issue will be
examined and described in more detail in the future.



In future work, we plan to study a broader range
of aggregation methods and determine guidelines on
their applicability to various problems. Generally,
performance measurement methods depend on the
domain of application. Thus we will also focus on
other statistics besides accuracy, such as sensitivity
and specificity.

It is important to note that there are still many
open problems related to the proposed approach.
Aggregation methods should be evaluated on many
common datasets in order to examine their charac-
teristics and properties. The results obtained by the
proposed approach should be compared with those
obtained with the use of imputation methods. Fi-
nally, it should be checked whether the proposed
approach easily scales to the multiclass classifica-
tion problem.

The results presented in this paper are promising
and provide a starting point for a broader analysis of
the problem of effective construction of aggregating
methods on sources with incomplete data.
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