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Abstract

Interval AHP was proposed to express the deci-
sion maker’s vague evaluations on criteria by inter-
val weights from a given pairwise comparison ma-
trix. It has been extended to group decision prob-
lems. Three complementary approaches have been
proposed: the perfect incorporation approach for
counting out indubitably inferior alternatives and
the common ground and partial incorporation ap-
proaches for finding agreeable preference between
alternatives. In this paper, we enhance those ap-
proaches by working out conceivable compromise
and refinement. Compromise solution and refine-
ment solution can be found by solving linear pro-
gramming problems.

Keywords: analytic hierarchy process, group
decision-making, interval analysis, linear program-
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1. Introduction

Analytic Hierarchy Process (AHP) [1] provides a
useful tool to extract the decision maker’s evalua-
tion about the importance of criteria and alterna-
tives. It considers the hierarchy of the evaluation
but we focus on the estimation of weights of crite-
ria at the top level of the hierarchy in this paper.
Given a pairwise comparison matrix showing deci-
sion maker’s judgment on the relative importance
between criteria, weights of criteria are estimated.
However, the human judgment is vague in nature
so that the given pairwise comparison matrix is of-
ten inconsistent. The consistency index is defined
and used to evaluate the reliability of the estimated
weights. If the value of the consistency index is in
a certain range, the estimated weights are accepted
and used for the further decision analysis.

To cope with the vagueness, fuzzy and interval
approaches are proposed. In many of fuzzy ap-
proaches, a pairwise comparison matrix with fuzzy
components is used to represent the vagueness of hu-
man judgment on the relative importance between
criteria. Then a fuzzy weight vector is estimated
so as to approximate the fuzzy pairwise compari-
son matrix [2, 3]. Similarly, a pairwise comparison
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matrix with interval components is also used to rep-
resent the vagueness of human judgment. However,
a crisp weight vector consistent or nearly consistent
to a given interval pairwise comparison matrix is
estimated (see [4]).

On the other hand, in Interval AHP [5], an in-
terval weight vector is estimated from a given crisp
pairwise comparison matrix. This approach is based
on the idea that the decision maker’s evaluation is
vague so that the weights of criteria are expressed by
intervals and that the pairwise comparison matrix
is obtained by judgments with arbitrarily selected
values from the intervals. An interval weight vector
covering the given pairwise comparison matrix is es-
timated so as to minimize its total spreads. Later
Interval AHP is extended to treat interval pairwise
comparison matrices [6] but we treat only a crisp
pairwise comparison matrix in this paper.

In the previous paper [7], we proposed to apply
Interval AHP to group decision aiding. Three ap-
proaches have been proposed: the perfect incorpo-
ration approach for counting out indubitably infe-
rior alternatives and the common ground and par-
tial incorporation approaches for finding agreeable
preference between alternatives. However, neither
compromise of each decision maker nor a refinement
of the consensus dominance relation has been yet
introduced into those models.

In this paper, we introduce compromises of de-
cision makers and a refinement of the consensus
dominance relation. In the perfect incorporation
approach, decision makers compromise the perfect
incorporation of their opinions. In the common
ground approach, we refine the consensus domi-
nance relation by considering possible change of in-
dividual opinions. In the partial incorporation ap-
proach, decision makers compromise the precision of
individual opinions. By those proposed approaches,
we obtain dominance relations among alternatives
more useful in narrowing down the candidates. We
give a few numerical examples to demonstrate the
usefulness of the proposed approaches.

Differently from the soft consensus models [8] in
a fuzzy environment, the group decision aiding with
Interval AHP does not provide a method to achieve
a consensus dominance relation or a consensus solu-
tion but finds only an agreeable part of dominance



relation between alternatives utilizing the elastic-
ity of individual evaluations of criteria importance.
Therefore, this group decision aiding does not re-
quest the decision makers to update their pairwise
comparisons. Following this policy, compromises of
decision makers and a refinement of the consensus
dominance relation are introduced without request-
ing the decision makers to update their preferences.

This paper is organized as follows. In next sec-
tion, Interval AHP for crisp pairwise comparison
matrix and Group Interval AHP are briefly re-
viewed. In Section 3, we extend the perfect in-
corporation, common ground and partial incorpo-
ration approaches by introducing compromise and
refinement. A few numerical examples are given in
Section 4. In Section 5, we describe concluding re-
marks.

2. Interval AHP and Group Interval AHP

2.1. Interval AHP

We introduce Interval AHP for multiple criteria de-
cision problem with a single decision maker as the
basis for treating a group decision problem with
m decision makers and n criteria. For simplic-
ity and the consistency of notation with subse-
quent sections, we define M = {1,2,...,m}, N =
{1,2,...,n} and N\j = N\{j} = {1,2,...,5 —
1,7+ 1,...,n} for j € N. In this subsection, we
describe Interval AHP for the problem of decision
maker k € M.

In AHP, the decision problem is structured hi-
erarchically as criteria and alternatives. At each
node except leaf nodes of the hierarchical tree, a
weight vector for criteria or for alternatives is ob-
tained from a pairwise comparison matrix Ay given
by decision maker k£ € M. We concentrate on the
estimation of a weight vector for criteria with re-
spect to the decision maker k.

We first describe the estimation of a weight vector
wy = (wkhwkg,...,wkn)T from a given pairwise
comparison matrix,

1 e Ak1n

Ak = . QAfij . ’

Aknl [ 1

(1)

where we assume the reciprocity, i.e., ar;; = 1/akij,
i,j € N. Because the (i,j) component ag;; of
Ay shows the relative importance of the i-th crite-
rion over the j-th criterion, theoretically, we have
Qi = wki/wkj, 1,] € N. If ALijy 1,] € N
are obtained exactly, the strong transitivity a;; =
ariarlj, 4,J,0 € N should be satisfied. However,
human evaluation is not very accurate so that the
strong transitivity is not satisfied. In the conven-
tional approach [1], axij, 7,7 € N are assumed to
be approximations of wy;/wy;. wy is estimated
as the normalized eigenvector corresponding to the
maximal eigenvalue, because the nonnegativity of
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the eigenvector corresponding to the maximal eigen-
value is guaranteed by Perron-Frobenius theorem.
There is the other popular way to estimate wy. It
is the geometric mean method [3]. To evaluate the
consistency of the given pairwise comparison ma-
trix, the following consistency index is used:

)\max*n
cl.=——
n—1

; (2)

where A\pax 1S the maximal eigenvalue of Ag. If C.1.
is not greater than 0.1, it is often considered that
the obtained vector wy, is acceptable.

To this estimation problem, the idea of inter-
val regression analysis [9] was applied. In this ap-
proach, we assume that decision maker k’s eval-
uation is not very accurate to be expressed by a
unique weight vector wj but intrinsically vague
so that the weight vector has a range. There-
fore, the non-fulfillment of the strong transitivity
is not regarded as inconsistency but due to the in-
trinsic variety of possible weight vectors. Accord-
ingly, we consider an interval weight vector W =
(We1, Wha, ..., Wipn)T instead of a weight vector w,
where Wy, = [wh,wi], i € N and wf, < wp,
1 € N. To fit the given pairwise comparison matrix,
we require the interval weight vector W to satisfy

L R
ggakijg ]El,l,]EN,Z<]. (3)
wkj wkj

We note that by the reciprocity, ari;; = 1/akij,
i,j € N, we only consider 4,7 € N such that i < j.
The set of interval weight vectors W, satisfying (3)
is denoted by W(Ay). Moreover, corresponding to
normalization condition of wy, in the conventional
AHP, we require the interval weight vector W, to
satisfy

> wi+wy =1, i €N, (4)
JEN\i

Z wij—kw};gl, 1€ N.
JEN\i

(5)

(4) and (5) ensure that, for any wy; € Wi, there
exist wy; € Wy, j € N\i such that ZjGN\i w; +
wy; = 0 (see [7]). Namely, any values in Wy, i €
N are meaningful (there is no ineffective subarea
in Wy). The set of interval weight vectors Wy
satisfying (4) and (5) is denoted by WN.

Under conditions (3), (4) and (5) as well as
e < wk <wl i€ N, we calculate a suitable Wy,
where € is a very small positive number. The wider
each W; is, the easier W;, i € N satisfy (3), (4)
and (5). The narrower interval weights give clearer
preferences in the comparison of alternatives. Then
we minimize the following total widths of interval
weights W;, ¢ € N:

dWy) = Z(U%R

i€EN

—wZL).

(6)



Consequently, the interval weight vector W is esti-
mated by solving the following linear programming
problem:

mi%mize{d(Wk) | Wi € W(AR) nWN,

6<w}§wR i€ N}

1

(7)

The set of optimal solutions and the optimal value
to this problem is denoted by WPM+ and czk, respec-
tively.

Once an interval weight vector W, is obtained,
we define a dominance relation between alternatives
under the assumption that utility scores u;(o,) of
alternatives o, in view of each criterion are given.
Sugihara et. al [5] and Guo and Tanaka [10] pro-
posed a dominance relation based on the overall in-
terval scores. We use the dominance relation pro-
posed by Entani and Inuiguchi [7] because it consid-
ers all possible weights suitable for the given matrix
Aj. We use two dominance relations defined by

0p 7F 0y & AW, € WPME Jw € Wi eTw = 1;

> wilui(op) — ui(og)) >0, (8)
1EN
0p T 0g & AW, € WPME v € Wy eTw = 1;

S wiluiloy) —uilog)) 20, (9)

i€EN

where e = (1,1,...,1) € R™.

2.2. Group Interval AHP
2.2.1. Application to group decision making

We assume there are m decision makers giving their
own pairwise comparison matrices Ag, k € M. We
assume utility scores w;(0,) of alternatives o, in
view of each criterion are given. Then we apply In-
terval AHP only to determine the interval weights
on criteria. The individual interval weight of de-
cision maker k on the ¢-th criterion is denoted by
Wii = [wh,wik] (k € M, i € N). The indi-
vidual interval weight vector is denoted by W =
(Wr1, Wha, ..., Win)T.  Our problem is to obtain
a consensus interval weight W; = [w}, w}] on the
i-th criterion among the group of decision makers.
The consensus interval weight vector is denoted by
W =Wy, Wa,...,W,)T.

Entani and Inuiguchi [7] have proposed three ba-
sic approaches: the perfect incorporation approach
for counting out indubitably inferior alternatives
and the common ground and partial incorporation
approaches for finding agreeable group preference
between alternatives. In this paper, we enhance
those approaches by working out conceivable com-
promise and refinement. In this section, we briefly
describe those approaches.
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2.2.2. Perfect incorporation of all individual
opinions

The first approach is a perfect incorporation of all
individual opinions [7]. In this approach, a consen-
sus interval weight vector includes all individual in-
terval weight vectors. Namely, a consensus interval
weight vector W is calculated as an optimal solu-
tion to the following linear programming problem:

minimize {d(W) | W D W, W € WN,

Wi e WPMe ke M}, (10)

It is shown that this problem is equivalent to

minimize {d(W) | W 2 W,

Wy e WPMe ke M}, (11)
Let dp be the optimal value of (11). Then the op-
timal solution set is defined by

W = {W | d(W) < dp, W D W,
W € WPMk | | e M. (12)
Using the perfect incorporation consensus, we de-
fine a dominance relation between alternatives by

op Zp 04 if and only if VW € Wp, Vw e W

such that eTw =1, Z w;(u;(op) —ui(oq)) > 0.
ieN
(13)

This dominance relation is simply called the ‘perfect
dominance relation’ and o, ZZp 04 can be verified by
solving a linear programming problem [7]. For the
perfect dominance relation, we have

op Zp 04 implies Vk € M, o, =7 04.  (14)
From (14), if o, Zp 04, we know that all decision
makers agree to opinion that o, is not worse than o,
by all means, i.e., the opinion that o, is not worse
than o, is very strongly supported. However, when
there is a wide range of diverse opinions, W € Wp
tends to be very wide so that almost no dominance
is obtained. In such cases, this approach does not
work well. On the other hand, if decision mak-
ers have similar and precise opinions, this approach
works well to narrow down the candidates by eras-
ing dominated alternatives.

2.2.3. Taking common ground with all individual
opinions

The second approach is taking common ground with
all individual opinions [7]. In this approach, a con-
sensus interval weight vector is included in all indi-
vidual interval weight vectors. This approach works
only when there is a normalized interval vector W
such that W C (N, ., W for some W, € WDPMy
k € M. We note that this condition is stronger than
Niers Wi # 0 for some W, € WPMe k€ M. In
this approach, a consensus interval weight vector W



is calculated as an optimal solution to the following
linear programming problem:

maximize {d(W) | W C W, W € WN

Wi e WPMe | ke M}, (15)
Let dc be the optimal value of (15). Then the op-
timal solution set is defined by

We = {W | d(W) > dc, W C W,
W eWN W, e WPMe | ke M}, (16)
Two dominance relations = and 2 between
alternatives by the common ground consensus are
defined by

op =¥ o, if and only if IW € Wg, Jw e W

such that eTw =1, Z w;(u;(0p) — ui(og)) > 0,
iEN
(17)
0, 7% 04 if and only if YW € Wg, Yw € W

such that eTw =1, Z w;(u;(0p) — ui(og)) > 0.
iEN
(18)

Those relations are called a ‘weak common domi-

nance relation’ and a ‘strong common dominance
. ) 8 . W S

relation’, respectively. o, & o4 and o, 2 04 can

be verified by solving linear programming problems.
For those dominance relations,

0, 72 0,4 implies 0, =& oy, (19)
0, & o, implies Vk € M, o, 7ZF 04, (20)
0p Z& 0, implies o, 2. 0. (21)

If o, =& 04, we know that all decision makers agree
to the opinion that o, is not worse than o, in some
way, i.e., the opinion that o, is not worse than o,
can be supported somehow by all decision makers.
If 0, =2 o4, we also have o, =¥ o,, and thus all
decision makers can somehow support the opinion
that o, is not worse than o,. However o, =2 o, is
usually stronger than o, =& o, because o, i% 0q
implies o, is not worse than o4 for all w € |JWe
while o, i\CN o4 implies o, is not worse than o, for
at least one w € (JWc. 0, =2 0, is equivalent to
0p =& 0, when |J W is a singleton, i.e., a singleton
{w} is a unique member of Wc.

We may have o, =& o, and o, =& o, at the
same time. This makes the comparison between al-
ternatives o, and o, difficult. Then we use strong
common dominance relation =2 for finding agree-

able group preference between alternatives.

2.2.4. Partial incorporation of all individual
opinions

The third approach is a partial incorporation of all
individual opinions [7]. In this approach, a con-
sensus interval weight vector is a normalized inter-
val vector intersecting with all individual interval
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weight vectors. Namely, a consensus interval weight
vector W is calculated as an optimal solution to the
following linear programming problem:

minimize {d(W) | w, € WN W, W e WN
W, e WPMe ke M, eTw, = 1}.
(22)
It is shown that this problem is equivalent to

minimize {d(W) | w, € W N Wy,
W, e WPMe ke M, eTw, = 1}.
(23)
Let JQ be the optimal value of (23). Then the op-
timal solution set is defined by

Wq = {W | d(W) < dq, w, € WNW,,
Wi e WOMe ke M, eTw, =1}, (24)
Using the partial incorporation consensus, we de-
fine a dominance relation between alternatives by

op Zq 04 if and only if VW € Wq, Vw e W

such that eTw =1, Z w; (ui(op) — ui(oq)) > 0.
ieN
(25)

This dominance relation is called the ‘partial domi-
nance relation’. o, 7Zq 04 can be verified by solving
a linear programming problem [7]. For the partial
dominance relation, we have

0p 7q 0q implies Vk € M, o, 7 o (26)
If o, ZZq 04, we know that all decision makers agree
to the opinion that o, is not worse than o, in some
way, i.e., the opinion that o, is not worse than o,
can be supported somehow by all decision makers.
However, when there is a very wide range of diverse
opinions, W € Wq tends to be wide so that domi-
nance relation is ineffective. In such cases, this ap-
proach does not work well. However, by the partial
dominance relation, we find agreeable preference be-
tween alternatives.

3. Enhanced Group Interval AHP by
Compromise and Refinement

3.1. Compromise in perfect incorporation of
all individual opinions

When the total width cip of consensus interval
weight vector is big, the perfect dominance relation
Zp would not be very useful because o, ZZp 04 does
not hold for many pairs of alternatives. To enhance
the usefulness of the obtained dominance relation,
we consider compromise consensus interval weight
vector. To decrease the total width of consensus in-
terval weight vector, we ask the decision makers to
compromise the perfect incorporation of their opin-
ions by reducing the incorporated part of opinions.
Let rp be the reduction rate of incorporated part
of opinions. The conventional perfect incorporation



approach incorporate whole part of individual opin-
ions, i.e., rp = 0. We increase rp from 0 to 1 so as to
minimize the total width of compromised consensus
interval weight vector and to obtain a sufficiently
useful dominance relation.

Then the compromised consensus interval weight
vector V is obtained by solving the following linear
programming problem:

minimize {d(V) |V D Vi, Vi C Wy,
d(Vi) > (1 —rp)dy, Vi € WN,
Wi e WPMe | ke MY, (27)

where Vi, is the incorporated part of individual in-

terval weight vector and can be seen as compro-

mised individual interval weight vector.

Let dp(rp) be the optimal value of Problem (27).
Then the optimal solution set is defined by

Ve(rp) ={V [ d(V) < dp(rp), V 2 Vi,
Vi €Wy, d(Vy) > (1 —rp)dy,
VkEWN, WkEWDM’“, kGM}. (28)

Using the compromised perfect incorporation
consensus, we define a dominance relation between
alternatives by

op Zp 0q if and only if YV € Vp(rp), Vw € V
such that eTw =1, Z wy(u;(op) — ui(og)) > 0.
iEN
(29)

This dominance relation is simply called the
‘rp-compromised perfect dominance relation’ and
0p 7 04 can be verified by solving a linear pro-
gramming problem:

minimize {Z wi(ui(op) — ui(og)) ‘

iEN
weV, VeVp(rp), eTw= 1}. (30)

If the optimal value of Problem (30) is non-negative,
0p Zp 0g holds.
When 0 < rb < 7 < 1, we have

~ —

dp = dp(0) > dp(rp) > dp(rp) > dg = dp(1)

(31)

0, Zp 04 if and only if 0, =% o4, (32)

0, 7q 04 if and only if 0, i o, (33)
1 2

0p Zp 04 implies 0, =¥ 04, 0p P 04 (34)

From (34), rp-compromised perfect dominance
relation refines the perfect dominance relation.
However, we do not mnecessarily have o, =Zp
0211’ implies o, z;‘l’ 04. This is because the optimal
solution of Problem (27) may jump from an extreme
point to another by a change of rp.
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3.2. Refining the strong common
dominance relation

When there is a normalized interval vector W such
that W C (,cpy Wi for some Wy € WDPMy
k € M, we try to find agreeable preference between
alternatives by the strong common dominance rela-
tion z% The strong common dominance relation
=2, does not always satisfy the completeness (com-
parability) so that we usually have pairs of alterna-
tives (op,0,) such that o, 2% o, and o, Z% 0,. In
this case, alternatives o, and o4 are indifferent by
the weak common dominance relation. Namely, de-
cision makers hesitate to declare which alternative
is better for such pairs of alternatives. To suggest a
probably agreeable preference between each of such
alternative pairs, we propose a refinement of the
strong common dominance relation i%

To refine the strong common dominance relation
i%, we suppose a probable revision of the individual
interval weight vector. More concretely, we suppose
that each decision maker narrows down his/her in-
terval weight vector gradually focusing on a normal-
ized weight vector located in his/her interval weight
vector. We presume that each decision maker will
select a normalized weight vector (focus point) near
the center of his/her interval weight vector. Un-
der this presumption, we solve the following linear
programming problem to define the focus point:

minimize { Z Z Ski | A(W) > de,
kEM €N
W C W, WeWN, W, e WM,
1
5(“’115: +wie) — wri < S,
1

L R .
Wiy — §(wkl +wyy) <S4y © €N,

wg € Wy, eka =1, ke M}, (35)

Let § be the optimal value. Considering the possi-
bility that Problem (35) has multiple optimal solu-
tions, the reduced consensus interval weight vector
V with reduction rate r¢ is calculated as an op-
timal solution to the following linear programming
problem:

maximize {d(V) |V C Vy, V € VN,
d(Vy) < (1 —rg)ds, Vi C Wy,
W C Wy, WeWN W, e WPMk,
Z Zski S §a d(W) 2 Cin
keM ieN
Wiy — Sk < = (Wi + wis) < Wei + Sk,
Wi — sk < = (VF; + 0R) < Wi + S

wy € Wy, ezrwkil, i € N, ]CEM}. (36)

Let do(rc) be the optimal value of Problem (36).
Then the optimal solution set to Problem (36) is



defined by

Ve(re) = {d(V
VewN, d(vy) <

ZZSmSS d(W )>dc,

KEM iEN
L R

Wi — Ski < (Wi +wp;) < Wiy + Sk,
L |, R

Wi — Ski < = (v + V) < Wi + Sk,

wr € Wy, ecwi=1,1€ N, ke M}. (37)

V € Ve(re) is the reduced consensus interval
weight vector which is composed of a common part
among the refined individual interval weight vectors
Vi, k € M. Each decision maker is assumed to
refine the individual interval weight vector into an
interval weight vector with 100r¢c% narrower width
whose center value vector is similar to the original
center. In other words, the larger r¢, the more ro-
bust against the individual refinement a normalized
weight vector v € V € Ve (re).

Using the refined common ground consensus, we
define a dominance relation between alternatives by

p ¢ 0q if and only if VYV € Ve(re), Vw e V
such that eTw = 1, Z w; (u;(op) — ui(og)) > 0.
ieN
(38)

This dominance relation is simply called the ‘r¢-
refined strong common dominance relation’ and
0p 7 04 can be verified by solving a linear pro-
gramming problem:

minimize {Z wi(ui(0p) —

i€EN

wifoy)) |
weV, VeV(re), etw= 1}. (39)
If the optimal value of Problem (39) is non-negative,

0p ¢ 0g holds.
When 0 < 1§, < 73 < 1, we have

do = dc(0) > do(rg) > dp(rd), (40)

0p 7S¢ 04 if and only if 0, Z2 o4, (41)
1 2

0p 7c 0g implies 0, =5 04, 0p T 04 (42)

From (42), we know that r¢-refined strong common
dominance relation refines the strong common dom-
inance relation as its name suggests. However we

1
¢
do not always have o, ic 04 implies 0, 7 0g-

3.3. Compromise in partial incorporation of
all individual opinions

When the total width JQ of consensus interval
weight vector is not sufficiently small, the partial
dominance relation 7Zg would not find any strict
domination for several pairs of alternatives. Espe-
cially when decision makers’ opinions widely spread,
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many pairs of alternatives are incomparable. In or-
der to obtain a clearer ranking, we refine the partial
dominance. To decrease the total width of consen-
sus interval weight vector, we ask the decision mak-
ers to compromise on the individual interval weight
vectors by relaxing the minimal total widths. Let rq
be the relaxation rate of the individual total width.
By this relaxation, more interval weight vectors be-
come candidates for the individual interval weight
vector and we assume that the decision maker can
accept each of them.

Then the compromised consensus interval weight
vector V is obtained by solving the following linear
programming problem:

minimize {d( )| wr € VNV,
e Wy = 1 d(Vk) (1 + ’I“Q)dk7

Vi € W(Ak) WN, ke M}, (43)

where V' is the compromised individual interval
weight vector. We note that V' € WN is satisfied
at the optimal solution. When rq =0, V and V7,
k € M equal to the usual common ground consensus
W and usual individual interval weight vectors Wy,
k € M, respectively. We consider rq > 0. When
rq is sufficiently large, we have d(V)) = 0 at the
optimal solution to Problem (43).

Let dg(rq) be the optimal value of Problem (43).
Then the optimal solution set is defined by

Vqa(rq) ={V | Jw, e VNV,
d(V) < dq(rq), d(Vi) < (1+rq)ds,

efwy =1, Vi e W(A) NWN, ke M}. (44)

Using the compromised partial incorporation con-
sensus, we define a dominance relation between al-
ternatives by

Op tgg og if and only if VYV € Vq(rq), Vw e V
such that eTw = 1, Z w;(u;(op) —ui(oq)) > 0.
ieN
(45)
This dominance relation is simply called the
‘rq-compromised partial dominance relation’ and

0p igz 04 can be verified by solving a linear pro-
gramming problem:

minimize {Z w;(u;(op) —
ieN
weV, VeVy(rg), e w—l} (46)

ui(o,)) |

If the optimal value of Problem (46) is non-negative,
0p Ty’ 0g holds.
When 0 < réz < Té, we have

dAQ = JQ(O) > CZQ(T}Q) > CZQ(T(ZQ)a (47)

0p 7q 04 if and only if o, rﬁ% 0qs (48)
re e

0p 2Q 0q implies oy, iQQ 0Oq; Op f>\:QQ 0g- (49)

From (49), rq-compromised partial dominance re-
lation refines the partial dominance relation.



4. Numerical Examples

In this section, we demonstrate how the proposed
approach refines the dominance relations. We con-
sider the comparison of three alternatives o1, 05 and
o3 by four criteria C1, Cs, C5 and Cy by a group of
three decision makers DM, DM, and DMj3. The
utility scores of alternatives are given as in Table 1.

4.1. Case where no common ground exists

We consider pairwise comparison matrices of three
decision makers given as in Table 2. The minimal
total width cfk is shown at the bottom of each deci-
sion maker’s pairwise comparison matrix in Table 2.

Applying the perfect incorporation approach with
a suitable compromise, we obtain rp-compromised
perfect dominance relations from optimal values of
Problems (30) for all possible ordered pairs of al-
ternatives. Varying rp € [0,1] with step 0.2, we
calculated the optimal values of Problems (30) for
all possible ordered pairs of alternatives. In Table 3,
the optimal values of Problems (30) for all possible
ordered pairs of alternatives only for rp = 0, 0.6
and 1 are shown. On the left upper corner of each
small table of Table 3, the value of rp is shown. As
shown in Table 3, all values are negative. This im-
plies that opinion differences among three decision
makers are rather large, so that we did not succeed
in refining the perfect dominance relation.

Because common ground does not exist in this ex-
ample, we apply the partial incorporation approach
with a suitable compromise. Choosing several val-
ues of rq € [0,0.17], we calculated the optimal val-
ues of Problems (46) for all possible ordered pairs of
alternatives. In Table 4, the optimal values of Prob-
lem (46) only for rq = 0, 0.1 and 0.16 are shown. As
shown in Table 4, the partial dominance relation is
refined gradually. Moreover we recognize that oz is
better than the others from the compromised partial
incorporation consensus with rq = 0.16. However,
in this example, a total order is not obtained be-
cause we have multiple optimal solutions to Prob-
lem (43) when rq = 0.17 and the optimal values
of Problem (46) for comparison of 01 and o2 with
rq = 0.17 are both negative.

4.2. Case where common ground exists

We consider pairwise comparison matrices of three
decision makers given as in Table 5. The minimal
total width (fk is shown at the bottom of each deci-
sion maker’s pairwise comparison matrix in Table 5.
From values of cfk, k =1,2,3, we know that those
decision makers’ opinions are vague.

Applying the perfect incorporation approach with
a suitable compromise, we obtain rp-compromised
perfect dominance relations from optimal values of
Problems (30) for all possible ordered pairs of al-
ternatives. Varying rp € [0,1] with step 0.2, we
calculated the optimal values of Problems (30) for
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Table 1: Utility scores

Criterion
C; Cy C3 (4

o; | 0.7 1 0.3 0.2

oy | 0.75 0.1 1 1

03 1 0.3 045 0.8

Table 2: Individual pairwise com-
parison matrices (1)

DM, Cl CQ Cg 04
Cy 1 2 3 40
Cy - 1 2 30
Cs - - 1 20
Cy - - - 10

dy = 0.0833

DMy | C; Co C3 Cy
4 1 3 3 4
Cy - 1 3 30
Cs - - 1 40
Cy - - - 10

de = 0.2381

DMs Cl CQ Cg 04
Cy 1 1 4 60
Cy - 1 1 20
Cs - - 1 30
Cy - - - 10

ds = 0.3496

all possible ordered pairs of alternatives. In Table 6,
the optimal values of Problems (30) for all possible
ordered pairs of alternatives only for rp = 0, 0.6
and 1 are shown. On the left upper corner of each
small table of Table 3, the value of rp is shown. As
shown in Table 6, most of values are negative but
the value at (01, 02) of table for rp = 1 is positive.
This fact implies that the perfect dominance rela-
tion is refined by the compromise. However, for the
other pairs, the individual opinions are still different
or vague but we cannot make further compromise
in the perfect incorporation approach.

In this example, a common ground exists. Then
we apply the common ground approach with a suit-
able refinement of the dominance relation. Varying
ro € [0,0.6] with step 0.2, we calculated the opti-
mal values of Problems (39) for all possible ordered
pairs of alternatives. In Table 7, the optimal values
of Problems (39) for all possible ordered pairs of al-
ternatives only for rc = 0, 0.4 and 0.6 are shown.
On the left upper corner of each small table of Ta-
ble 7, the value of r¢ is shown. As shown in Ta-
ble 7, the number of positive components in a small
table increases gradually as r¢ increases. This im-
plies that the strong common dominance relation is
gradually refined and finally it becomes a total or-
der at rc = 0.6. If the decision maker accepts this
refinement, we suppose that the opinion telling 0q
is the best and o5 is the worst is agreeable among



Table 3: Perfect dominance (1) Table 5:

Individual pairwise com-
parison matrices (2)

Table 6: Perfect dominance (2)

0 01 09 03 0 01 09 03

o1 - —0.1347 —0.1381 DM, | C; Cy C3 (4 o1 - —0.2803 —0.1671
09 | —0.2386 -  —0.1560 C, 1 3 1 50O 09 | —0.2296 - —0.1413
o3 | —0.1017 —0.0206  -O Co - 1 3 70 03 | —0.1246 —0.1344 -0
0.6 01 02 03 05 - - 1 90 0.6 01 02 03

o1 - —0.1190 —0.1270 Cy | - - - 10 o1 - —0.0961 —0.0640
09 | —0.1547 - —0.1032 d; = 0.5614 0y |—0.1632 -  —0.0857
o3 | —0.0688 —0.0122 - DM, | C; Cy C; C, o3 | —0.0896 —0.0334 -

1 01 09 03 CVl 1 1 5 3 1 01 09 03

o1 - —0.1151 —0.1287 Ca -1 1 90 01 - 0.0006 —0.0046
09 | —0.1547 - —0.1032 Cs - - 1 70 09 | —0.1391 - —0.0686
o3 | —0.0688 —0.0122 - Cy - - - 10O 03 | —0.0829 —0.0070 -

dy = 0.4070

Table 4: Partial dominance DMs | G5 G, Cs G Table 7: Strong common dominance
0 01 02 03 C, |1 3 1 30 0 01 02 03

o1 - —0.1151 —0.1287 C, - 1 5 90 01 - 0.0006 —0.0046
o2 | —0.1477 - —0.1105 Cs - . 1 70 0y | —0.1391 - —0.0686
oz | —0.0705 —0.0098 -O Cy _ _ _ 10 o3 | —0.0829 —0.0070 -
0.1 01 02 03 d3z = 0.6576 0.4 o1 09 03

o1 - —0.0479 —0.0957 o1 - 0.0040 —0.0029
o2 |—0.0828 - —0.0993 02 | —0.1045 - —0.0539
o3 | —0.0007 0.0347 - o3 | —0.0703 0.0068 -
0.16 01 02 03 0.6 01 09 03

o1 - —0.0132 —0.0737 01 - 0.0365 0.0144
o2 |—0.0390 - —0.0812 02 | —0.0596 -  —0.0329
o3 | 0.0338 0.0577 - o3 | —0.0464 0.0221 -

the group of decision makers. This is a case where
the proposed refinement works very well.

5. Concluding Remarks

We have extended three approaches of Group In-
terval AHP by introducing compromise and refine-
ment. Depending on the approach, methods for
compromise and refinement are different. By com-
promise, we show that the consensus dominance re-
lation is refined. The consensus dominance rela-
tions are obtained by solving linear programming
problems. The properties of the refined dominance
relations are shown. Giving the reasonable sugges-
tion to the decision makers toward the preference
revision in view of all opinions is one of the future
topic related to this study.
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