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Abstract

In a previous work we proposed to enhance the per-
formance of FARC-HD fuzzy classifier in multi-class
classification problems using decomposition strate-
gies. This synergy was further improved by intro-
ducing n-dimensional overlap functions in the learn-
ing algorithm and the inference of FARC-HD in-
stead of the product t-norm.
In this work, we extend this methodology to FU-

RIA algorithm aiming at analyzing the behavior
of the new Fuzzy Reasoning Method with overlap
functions, using both decomposition strategies and
the baseline FURIA. We also compare the results
obtained by this new combination with those ob-
tained in the synergy presented in our previous work
for FARC-HD.

Keywords: Fuzzy Rule-Based Classification Sys-
tems, Decomposition strategies, Overlap functions,
Aggregations, One-vs-One, Multi-classification

1. Introduction

There are multiple techniques to solve classifica-
tion problems in the field of pattern recognition.
Among them, Fuzzy Rule-Based Classification Sys-
tems (FRBCSs) [1] offer very good performance
whilst providing interpretable models by using lin-
guistic labels in their rules.

In classification, two different types of problems
can be differentiated depending on the number of
classes considered: binary (two classes) and multi-
class problems (more than two classes). Normally,
facing a multi-class problem is more difficult due to
the the higher complexity of the definition of de-
cision boundaries. One way of addressing multi-
class problems is applying decomposition strategies
[2, 3], which divide the original problem into easier-
to-solve binary ones that are faced by independent
binary classifiers called base classifiers.

Among decomposition strategies [3], One-vs-One
(OVO) and One-vs-All (OVA) are the most com-
monly used ones. In OVO scheme the original prob-
lem is divided into as many binary sub-problems as
possible pairs of classes, whereas in OVA as many
sub-problems as classes in the original one are con-
sidered. In both strategies each binary problem is
solved by an independent base classifier. When clas-
sifying a new instance, all base classifiers are queried
and their outputs are combined to make the final

decision. This technique usually works better than
addressing the problem directly [2, 4, 5].

In our previous work [6], we proposed to apply de-
composition strategies to improve the performance
of FARC-HD fuzzy classifier [7] in multi-class prob-
lems. We showed that the outputs provided by
FARC-HD are not suitable for the aggregation pro-
cess carried out in decomposition techniques, due
to the usage of the product to model the conjunc-
tion. The reason is that, when aggregating small
values, the values returned by the product have a
low variation and tend quickly to zero. This effect
is even more accentuated when the number of ar-
guments increases, penalizing those rules with more
antecedents.

In order to solve these problems, the concept of
n-dimensional overlap function was introduced aim-
ing at modeling the conjunction in the fuzzy rules of
FARC-HD. These functions produce outputs with a
higher variation and without depending on the num-
ber of arguments, providing a significant improve-
ment when applying decomposition strategies.

In this work, we extend this methodology to an-
other state-of-the-art fuzzy classifier such as FU-
RIA [8], since it is one of the most accurate fuzzy
classifiers in the literature and its rule structure is
clearly different from that of FARC-HD. In this
manner, we study the behavior of n-dimensional
overlap functions when using FURIA algorithm.
To do so, we have adapted the Fuzzy Reasoning
Method (FRM) of FURIA to apply these functions.
We have tested this adaptation when facing directly
multi-class problems as well as when it is applied as
base classifier in OVO and OVA schemes.

In order to achieve well-founded conclusions, we
carry out an empirical study considering twenty nu-
merical datasets from the KEEL dataset repository
[9] and we support the results obtained using non-
parametric statistical tests, as suggested in the spe-
cialized literature [10]. In this study, we analyze the
influence of n-dimensional overlap functions in the
baseline FURIA and when it is used as base classi-
fier for both OVO and OVA decomposition strate-
gies. More specifically, we study the effect of these
functions on both the final performance and the rule
base. All the results obtained by this new combi-
nation have been compared against those obtained
with FARC-HD.

The structure of this contribution is as follows.
A brief explanation of FURIA and FARC-HD fuzzy
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classifiers is shown in Section 2. Section 3 describes
OVO and OVA decomposition strategies, along with
the two aggregation strategies for OVO considered
in this work. In Section 4 we recall the concept of n-
dimensional overlap functions and we describe the
adaptation of the FRM performed to use these func-
tions. The experimental framework and the analysis
of the results obtained are presented in Section 5.
Finally, in Section 6 we draw the conclusions.

2. Fuzzy Rule-Based Classification Systems

In order to generate the knowledge base, a fuzzy
rule learning algorithm is applied using a train-
ing set DT composed of P labeled examples xp =
(xp1, . . . , xpn), p = {1, . . . , P}, where xpi is the
value of the i-th attribute (i = {1, 2, . . . , n}) of the
p-th training example. Each example belongs to a
class yp ∈ C = {C1, C2, ..., Cm}, where m is the
number of classes of the problem.
In the rest of this section we describe the two

FRBCSs considered in this work, that is, FARC-
HD (Section 2.1) and FURIA (Section 2.2).

2.1. FARC-HD

FARC-HD (Fuzzy Association Rule-based Classifi-
cation model for High-Dimensional problems) [7] is
a fuzzy association rule-based classifier. The rule
structure used by FARC-HD is the following:

Rule Rj : If x1 is Aj1 and . . . and xnj is Ajnj

then Class = Cj with RWj

(1)

where Rj is the label of the j-th rule, x =
(x1, . . . , xn) is a vector representing the example,
Aji ∈ Li is a linguistic label modeled by a triangu-
lar membership function (where Li = {Li1, . . . , Lil}
is the set of linguistic labels for the i-th antecedent,
being l the number of linguistic labels in this set),
Cj is the class label and RWj is the rule weight
computed using the certainty factor defined in [11].
The learning algorithm of FARC-HD is composed

of three steps:

1. Fuzzy association rule extraction for classifica-
tion: Fuzzy rules are obtained building a search
tree for each class. The number of linguistic
terms in the antecedents is limited by the max-
imum depth of the tree.

2. Candidate rule pre-screening: The most inter-
esting fuzzy rules are selected from the rule
base obtained in the previous stage applying
a pattern weighting scheme.

3. Genetic rule selection and lateral tuning: An
evolutionary algorithm is used both to tune the
lateral position of membership functions and
to select the most accurate rules from the rule
base generated in the previous steps.

In order to classify a new example xp =
(xp1, . . . , xpn), FARC-HD applies the following
Fuzzy Reasoning Method:

1. Matching degree. The strength of activation of
the antecedent part for all rules in the rule base
with the example xp is computed.

µAj (xp) = T
(
µAj1(xp1), . . . , µAjn(xpn)

)
(2)

2. Association degree. The association degree of
the example xp with each rule in the rule base
is computed.

bj(xp) = µAj
(xp) ·RWj (3)

3. Confidence degree. The confidence degree for
each class is computed.

confc(xp) =
∑

Rj∈RB; Cj=c
bj(xp), c = 1, 2, . . . ,m

(4)

4. Classification. The class that obtains the high-
est confidence degree is predicted.

Class = arg max
c=1,...,m

(confc(xp)) (5)

2.2. FURIA

FURIA (Fuzzy Unordered Rule Induction Algo-
rithm) [8] is an extension of RIPPER algorithm [12]
that makes use of fuzzy rules instead of conventional
rules. The rule structure in FURIA is as follows:

Rule Rj : If x1 is AIj1 and . . . and xnj
is AIjnj

then Class = Cj with RWj

(6)

where AIji is a trapezoidal membership function
corresponding to the variable i defined as AIji =
(φs,Lji , φ

c,L
ji , φ

c,U
ji , φ

s,U
ji ), being (φc,Lji , φc,Uji ) and (φs,Lji ,

φs,Uji ) the lower and upper bounds of the core and
the support, respectively. In this case, RWj is com-
puted using the m-estimate for m = 2 [13]. Note
that, in contrast to FARC-HD, each trapezoidal
membership function is specific to each antecedent.

The learning algorithm of FURIA is composed of
the following stages:

1. Learn a rule set for each class using RIPPER
algorithm. This phase is divided into the build-
ing and the optimization phase.

2. Fuzzification of rules generated by RIPPER.
The interval representing each antecedent is re-
placed by a trapezoidal membership function
(Eq. (6)) applying a greedy algorithm. To
do so, the quality of each fuzzification is com-
puted in terms of rule purity. We must remark
that the rule purity is obtained by adding the
membership degrees of positive and negative
instances to the antecedent, and thus no t-norm
is involved in this step.
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When classifying a new example, FURIA applies
the same FRM as FARC-HD (Eq. (2)-(5)), but
using trapezoidal membership functions (µAI

ji
) in-

stead of triangular ones. If the example is not
covered by any rule, a rule generalization process
(stretching) is performed.

3. Decomposition strategies

Decomposition strategies [3] divide the original
multi-class problem into binary problems, which are
faced by independent base classifiers. These strate-
gies are valid both for classifiers that only work
with two classes and those with multi-class support.
Even in the latter case, better results are obtained
when decomposition strategies are applied [2].

3.1. One-Versus-One (OVO) strategy

OVO strategy divides the original m class problem
into m(m − 1)/2 binary sub-problems (all possible
pairs of classes). Each binary problem is faced by
an independent base classifier which distinguishes a
pair of classes {Ci, Cj}. In order to classify a new
example, all base classifiers are queried and each one
returns a pair of confidence degrees rij , rji ∈ [0, 1]
in favor of classes Ci and Cj , respectively. These
outputs are stored in the score-matrix R:

R =


− r12 · · · r1m
r21 − · · · r2m
...

...
rm1 rm2 · · · −

 (7)

Since each binary sub-problem is addressed by an
independent base classifier, we need to normalize
the score-matrix R to obtain a new one, R̂, in which
all confidence degrees are within the same range of
values:

r̂ij =
{ rij

rij + rji
if rij 6= 0 or rji 6= 0

0.5 if rij = rji = 0
(8)

Finally the outputs of base classifiers are aggregated
and the predicted class is obtained.
In this work we consider two well-studied aggre-

gation methods in the literature:

• Voting strategy (VOTE) [14]. Each base clas-
sifier gives a vote for its predicted class. The
class having the largest number of votes is given
as output:

Class = arg max
i=1,...,m

∑
1≤j 6=i≤m

sij (9)

where sij is 1 if r̂ij > r̂ji and 0 otherwise.

• Non-Dominance criteria (ND) [15]. The score-
matrix is considered as a fuzzy preference rela-
tion. Then the non-dominance degree is com-
puted, being the winning class the one with the

highest value:

Class = arg max
i=1,...,m

{
1− max

j=1,...,m
r′ji

}
(10)

where R′ is the strict score-matrix (after nor-
malization).

3.2. One-Versus-All (OVA) strategy

OVA decomposition divides anm class problem into
m binary sub-problems. Each binary sub-problem
is addressed by an independent base classifier which
distinguishes one of the classes from the remaining
ones, learning the model using all examples of the
training set. In this manner, the examples of the
class to be distinguished are considered as positives,
whereas the rest are labeled as negatives. When
classifying a new example, all base classifiers are
queried and each one returns a confidence degree
ri ∈ [0, 1] in favor of the class Ci. These outputs
are stored in the score-vector R:

R = (r1, . . . , ri, . . . , rm) (11)

For the same reason as in OVO, we need to normal-
ize the score-vector with respect to the confidences
obtained by each classifier for the negative class
(stored in another score-vector R). Once we ob-
tain both vectors, the normalized score-vector (R̂)
is computed as follows.

r̂i = ri
ri + ri

(12)

Finally, the class with the highest confidence will be
predicted.

4. Adapting the FRM of FURIA to model
the conjunction with n-dimensional
overlap functions

In this work we study the behavior of n-dimensional
overlap functions in FURIA and we compare it with
that obtained in FARC-HD.

First, we recall the definition of n-dimensional
overlap function.

Definition 1 [6] A n-dimensional function O :
[0, 1]n → [0, 1] with n ≥ 2 is a n-dimensional over-
lap function if the following properties hold:

1. O is symmetric.

2. O(x1, . . . , xn) = 0 if and only if
n∏
i=1

xi = 0.

3. O(x1, . . . , xn) = 1 if and only if
n∏
i=1

xi = 1.

4. O is increasing.

5. O is continuous in each of the variables.
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Figure 1: Values returned by the different overlap functions.

Since n-dimensional overlap functions fulfill sim-
ilar properties to those of t-norms, we can ap-
ply overlap functions to model the conjunction, as
shown in our previous work [6]. In this contribu-
tion, we propose to adapt the FRM of FURIA using
these functions. Due to the fact that FURIA ap-
plies the same FRM as FARC-HD, the adaptation
carried out in FURIA is the same as that performed
in FARC-HD. In this manner, we replace the prod-
uct used in the computation of matching (2) and
association (3) degrees by a n-dimensional overlap
function:

• Matching degree:

µAI
j
(xp) =

O
(
µAI

j1
(xp1), µAI

j2
(xp2), . . . , µAI

jnj

(xpnj
)
)
(13)

• Association degree:

bj(xp) = O
(
µAI

j
(xp), RWj

)
(14)

We must remark that, contrary to FARC-HD,
this adaptation does not affect the learning process
of FURIA, because it does not make use of the in-
ference in the learning process.

In this work we have considered five different n-
dimensional overlap functions:

• Product (PROD): The returned value is the
product of input values. It recovers the original
case of FARC-HD and FURIA.

O(x1, . . . , xn) =
n∏
i=1

xi (15)

• Minimum (MIN): Returns the minimum of
input values. This is a t-norm as well, but

unlike the product, the minimum satisfies the
idempotency property.

O(x1 . . . , xn) = min(x1, . . . , xn) (16)

• Harmonic mean (HM): The returned value
is the harmonic mean of input values if all of
them are different than zero and 0 otherwise.
O(x1, x2, . . . , xn) =

n
1
x1

+ . . .+ 1
xn

if xi 6= 0, for all i = 1, . . . , n

0 otherwise.
(17)

• Geometric mean (GM): Returns the geo-
metric mean of input values.

O(x1, x2, . . . , xn) = n

√√√√ n∏
i=1

xi (18)

• Sine (SIN): This overlap function returns
higher values than means.

O(x1, . . . , xn) = sin
(
π

2

(
n∏
i=1

xi

)α)
(19)

where α ≤ 1
2n . In the experiments carried out

in Section 5, we take α = 1
2n .

Among the considered overlap functions, first we
have the product and the minimum as representa-
tive of t-norms, where the minimum satisfies the
idempotency property. Then, we consider the har-
monic and geometric means, which return higher
values than t-norms and they also satisfy the idem-
potency. Finally, we have the SIN, whose outputs
are greater than those of the means.

In Fig. (1a) we can observe the values returned
by each overlap function when aggregating a value
with 1, whereas Fig. (1b) shows the values returned
when aggregating a value with itself.
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5. Experimental study

The two main objectives of the experimental study
are the following:

1. To analyze the performance of n-dimensional
overlap functions in both baseline FURIA and
decomposition strategies, comparing it with
that obtained in FARC-HD.

2. To compare the impact of n-dimensional over-
lap functions on the rule base of FURIA and
FARC-HD.

In the remainder of this section we present the
experimental framework (Section 5.1), the analysis
of the performance of each method (Section 5.2),
and the impact on the rule base (Section 5.3).

5.1. Experimental framework

In order to carry out the experimental study we
have considered twenty datasets selected from the
KEEL dataset repository [9]. In Table 1, we present
a summary of the features of all datasets, indicat-
ing for each one the number of examples (#Ex.),
number of attributes (#Atts.), number of numeri-
cal (#Num.) and nominal (#Nom.) attributes, and
the number of classes (#Class.).

Table 1: Summary of the features of the datasets
used in the experimental study.

Id. Dataset #Ex. #Atts. #Num. #Nom. #Class.

aut autos 159 25 15 10 6
bal balance 625 4 4 0 3
cle cleveland 297 13 13 0 5
con contraceptive 1473 9 6 3 3
eco ecoli 336 7 7 0 8
gla glass 214 9 9 0 7
hay hayes-roth 132 4 4 0 3
iri iris 150 4 4 0 3
new newthyroid 215 5 5 0 3
pag pageblocks 548 10 10 0 5
pen penbased 1100 16 16 0 10
sat satimage 643 36 36 0 7
seg segment 2310 19 19 0 7
shu shuttle 2175 9 9 0 5
tae tae 151 5 3 2 3
thy thyroid 720 21 21 0 3
veh vehicle 846 18 18 0 4
vow vowel 990 13 13 0 11
win wine 178 13 13 0 3
yea yeast 1484 8 8 0 10

We have used a 5-fold stratified cross-validation
model, i.e., we randomly split the dataset into five
partitions of data, each one containing 20% of the
examples, and we employed a combination of four
of them (80%) to train the system and the remain-
ing one to test it. Additionally, in each partition
we consider three different seeds for the execution
of each method. In order to correct the dataset
shift (when the training and test data do not fol-
low the same distribution [16]), we have used the
Distribution Optimally Balanced Cross Validation
procedure [17], instead of the commonly used cross-
validation.

In order to support the quality of the methods
we apply non-parametric statistical tests [10]. More
specifically, we use the Wilcoxon rank test to com-
pare two methods, the Friedman aligned ranks test
to check whether there are statistical differences
among a group of methods and the Holm post-hoc
test to find the algorithms that reject the null hy-
pothesis of equivalence against the selected control
method.

The configuration used for FARC-HD and FU-
RIA are the ones recommended by the authors:

• FARC-HD: 5 labels for each fuzzy partition, the
maximum tree depth is 3, minimum support of
0.05, minimum confidence of 0.8, populations
formed by 50 individuals, 30 bits per gene for
the Gray codification and a maximum of 20000
evaluations.

• FURIA: 2 optimizations and 3 folds.

5.2. Analysis of the performance of
n-dimensional overlap functions

Table 2 shows the average accuracy rate obtained
in testing by FARC-HD and FURIA. As we can ob-
serve, the results obtained by each baseline classifier
along with those achieved when they are used with
both OVA scheme and the two aggregation strate-
gies of OVO model (OVOND and OVOV OTE) are
presented. We show the performance of the five
overlap functions (PROD, MIN, HM, GM, SIN) for
each method, where the result of the best overlap
function is highlighted in bold-face.

Table 2: Average accuracy rate obtained in testing
by each method.

FARC-HD FURIA

PROD MIN HM GM SIN PROD MIN HM GM SIN

Baseline 80.37 80.17 80.11 79.89 79.98 80.56 80.55 80.46 80.49 80.12

OV A 79.92 80.27 80.48 80.13 79.97 80.39 80.38 80.40 80.36 80.41

OVOND 81.45 81.88 82.18 82.13 81.46 81.97 81.98 81.92 81.90 81.67

OVOV OT E 81.52 82.03 82.26 82.25 81.71 82.37 82.39 82.37 82.34 82.12

Table 3: Aligned Friedman and Holm tests to com-
pare the different overlaps in FARC-HD, OVA and
OVO.

FARC-HD OVA OVOND OVOVOTE

PROD 43.80 57.90 (0.128) 55.23 (0.327) 56.53 (0.269)
MIN 48.63 (0.967) 51.72 (0.282) 49.03 (0.708) 49.77 (0.672)
HM 50.22 (0.967) 38.23 40.52 40.95
GM 56.25 (0.699) 48.95 (0.282) 45.65 (0.708) 43.65 (0.768)
SIN 53.60 (0.856) 55.70 (0.170) 62.08 (0.075) 61.60 (0.097)

In order to study the differences among the over-
lap functions used in this work, we carry out the
Aligned Friedman test and the Holm post-hoc test,
whose results are shown in Tables 3 and 4. These
are grouped in columns according to the method
used to perform the comparison and in rows ac-
cording to the considered overlap function. The
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Table 4: Aligned Friedman and Holm tests to com-
pare the different overlaps in FURIA, OVA and
OVO.

FURIA OVA OVOND OVOVOTE

PROD 40.17 51.00 (1.000) 42.65 (0.871) 43.75 (1.000)
MIN 43.10 (0.750) 51.75 (1.000) 40.90 42.77
HM 50.90 (0.727) 50.00 (1.000) 48.05 (0.871) 44.50 (1.000)
GM 48.97 (0.727) 54.73 (1.000) 53.80 (0.479) 50.52 (1.000)
SIN 69.35 (0.006) 45.03 67.10 (0.018) 70.95 (0.008)

first column corresponds to the baseline classifier
execution using each overlap function, whereas the
second one shows the different overlap functions
over OVA model. The rest of columns correspond
to OVO model using ND and VOTE aggregation
strategies, respectively. The value of each cell is the
rank obtained with the Friedman aligned-rank test
that compares the different overlap functions for the
same method. The value shown in brackets is the
adjusted p-value obtained by the Holm test using
as control method the one having the smallest rank
in the same column, which is shown in bold-face.
The adjusted p-value is underlined when there are
statistical differences (α = 0.05).

Next, we analyze the behavior of n-dimensional
overlap functions in baseline FARC-HD and FU-
RIA, as well as when decomposition strategies are
applied in each of them.

• FARC-HD

– Baseline: Table 2 shows that the five overlap
functions obtain similar results when executing
the baseline FARC-HD algorithm. This situ-
ation is confirmed by the results obtained in
the Aligned Friedman test shown in Table 3,
where there are no statistical differences among
these functions. The reason is that FARC-HD
is able to maintain the classification accuracy
when using overlap functions, due to the fact
that they are involved in all stages of the learn-
ing process and the generated rules are general
enough to retain the discrimination capability.

– OVO and OVA models: looking at Tables 2
and 3, we observe that the greater the overlap
function is, the better the results obtained are
(even though the GM is greater than the HM,
both of them return similar values). However,
the SIN does not provide a good performance
as it can return a value which is greater than
all the input values, losing part of the discrim-
ination capability. Thus, the overlap functions
that obtain the best results in almost all cases
are those returning the highest values preserv-
ing the idempotence property. As we can ob-
serve, this algorithm is able to take advantage
of the confidences provided by overlap func-
tions, since the classification accuracy is main-
tained when using these functions in the base-
line FARC-HD, as shown in [6].

• FURIA

– Baseline: according to Tables 2 and 4, the re-
sults obtained by all overlap functions are sim-
ilar when using FURIA (except with the SIN).
This is because overlap functions are not in-
volved in the learning algorithm of FURIA,
since all rules are generated by RIPPER and
the subsequent fuzzification process does not
apply any t-norm. Therefore, the rules gen-
erated when using different overlap functions
are the same. Moreover, the highly adjusted
trapezoidal membership functions (whose opti-
mization is not performed using t-norms) used
by FURIA return high membership degrees,
and hence the values returned by different over-
lap functions when aggregating large values are
more similar (see Fig. 1a and 1a).

– OVO and OVA models: Tables 2 and 4 show
that both OVO and OVA models obtain sim-
ilar results when using different overlap func-
tions. Although FURIA maintains the classi-
fication accuracy when using these functions,
the confidences provided by all of them are very
similar due to the highly adjusted trapezoidal
membership functions, as previously explained.
The exception is the SIN, due to the same rea-
sons as in the case of FARC-HD.

5.3. Impact of n-dimensional overlap
functions on the rule base

Table 5 shows the average number of antecedents
by rule and the average number of rules for each
baseline FRBCS, OVA and OVO models (using as
base classifier the same FRBCS).

As we can observe in Table 5, in the case of
FARC-HD, the usage of a greater overlap function
implies a growing trend in the number of rules,
which is necessary to maintain the discrimination
capability. On the other side, the number of an-
tecedents is similar in all overlap functions, even
though there is an upward trend when using greater
overlap functions.

In FURIA, however, overlap functions are not in-
volved in the learning process and consequently the
rules generated are the same for all overlap func-
tions, as shown in Table 5.

Regarding the differences between baseline and
decomposition strategies, Table 5 clearly shows that
the rule base becomes simpler when decomposition
strategies are applied. Since these strategies divide
the original problem into easier-to-solve binary sub-
problems, a lower number of rules and antecedents
is needed to solve each sub-problem. In the same
manner, the rule base in OVO is simpler than in
OVA because OVO scheme considers only the ex-
amples of two classes while OVA takes into account
all examples in the training set, increasing the com-
plexity of the decision boundary definition.
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Table 5: Average number of rules and antecedents.
avg. rules avg. antecedents

PROD MIN HM GM SIN PROD MIN HM GM SIN

FARC-HD Baseline 32.67 35.70 40.15 41.11 46.30 2.34 2.38 2.44 2.44 2.47
OVA 13.03 14.26 16.09 16.64 18.35 1.76 1.79 1.84 1.84 1.86
OVO 8.55 9.72 11.28 11.72 12.58 1.61 1.63 1.66 1.66 1.69

FURIA Baseline 16.54 16.54 16.54 16.54 16.54 2.76 2.76 2.76 2.76 2.76
OVA 7.95 7.95 7.95 7.95 7.95 2.05 2.05 2.05 2.05 2.05
OVO 4.50 4.50 4.50 4.50 4.50 1.58 1.58 1.58 1.58 1.58

6. Conclusions

The motivation of this work arises from the signif-
icant improvement found in FARC-HD when com-
bining n-dimensional overlap functions and decom-
position strategies. Specifically, we have extended
this methodology to FURIA with the aim of under-
standing the behavior of these functions in a differ-
ent FRBCS.

We have shown that FURIA is not able to take
advantage of the benefits provided by n-dimensional
overlap functions. Contrary to FARC-HD, although
FURIA preserves the classification accuracy when
applying overlap functions, the highly adjusted
fuzzy intervals return membership degrees that are
likely to be 0 or close to 1. This implies that the
differences among the values returned by different
overlap functions are smaller, and hence the behav-
ior of all overlap functions is similar in FURIA.
Besides the performance, we have analyzed the

effect of n-dimensional overlap functions on the rule
base of FURIA. We have shown that the rule base
of this FRBCS is not affected by the usage of these
functions, since they are not involved in its learning
process.
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