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Abstract

We propose using fuzzy time series (FTS) to fore-
cast the future performance of returns on portfolios.
We model the portfolio selection problem by means
of possibilistic moments, and approximate the un-
certainty of the return on a given portfolio by trape-
zoidal fuzzy numbers.

Some modifications into the classical models of
FTS, based on weighted operators, allow us gener-
ating trapezoidal numbers as forecasters of the per-
formance of portfolio returns. We incorporate our
proposals into classical FTS methods and analyze
their effectiveness with respect to FTS models with
a possibilistic interval-valued mean approach, using
historical returns on assets from the Spanish stock
market.

Keywords: Fuzzy Time Series, Possibilistic mo-
ments, Portfolio Selection, Forecasting

1. Introduction

Since the introduction of portfolio selection prob-
lem by Markowitz in 1952, a lot of different models,
approaches and procedures have been developed in
order to suitable managing the uncertain behavior
of markets, the experience or beliefs of experts and
investors wishes. The origin of modern portfolio
theory is the mean-variance probabilistic model [1];
where the trade-off between return and risk of the
investment is the goal for the decision maker, using
probability theory and mathematical optimization
as the main tools for achieving an efficient port-
folio. The process of selecting an optimal portfo-
lio may be divided into two stages: the first stage
starts with observation of the behavior of returns
on assets, incorporating the experience and knowl-
edge of experts, and finalizes with beliefs about the
future performance of available portfolios (through-
out the individual performance of securities and the
jointly performance of the portfolio). The second
stage concerns the procedures designed for finding
and select the portfolio which is optimal with re-
spect to one single or multiple objectives, fulfilling
the requirements imposed by the investor.

We can find several and suitable Soft Comput-
ing approaches to the portfolio selection problem in
the two stages of the selecting process: in the mod-
eling of beliefs and the incorporation of imprecise
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knowledge, for the approximation of uncertain per-
formance of future returns on assets and portfolios
and in the development of optimization procedures,
mainly through fuzzy mathematical programming
techniques and evolutionary algorithms [2, 3, 4, 5].

Fuzzy modeling of time series has been proposed
by Song and Chissom [6, 7, 8], introducing time-
variant and time-invariant models to forecast the
enrollment of students at Alabama University. The
major points in their modeling approach is related
to the partitioning of the universe of discourse, the
establishment of fuzzy relationship from the fuzzy
time series and the process of forecasting and de-
fuzzification of the outputs [9]. Concerning the
partitioning of the universe of discourse, different
proposals to determine suitable intervals have been
considered, in such a way that the determination
of effective length of intervals affects forecasting re-
sults in fuzzy time series [10, 11]. To state appro-
priate fuzzy relationships is also critical in FTS, a
very interesting approach is proposed in [12], where
the weighted fuzzy time series model considered re-
current fuzzy relationships for the assignation of
weights of each individual relationship, which out-
perform the forecasting. However, with respect
to forecasting proposals most authors follows the
scheme originally suggested by Song and Chissom.
In our context, fuzzy approaches for solving time
series problems have been applied in stock indices
forecasting and for modeling business cycles (see,
for instance, [12, 13, 14, 15, 16]). While forecasting
returns on a given portfolio has not been treated in
previous researches.

Usually the proposed forecasts by current fuzzy
time series models are looking for a single-point
value just like the output of classical time series
methods. But, for ranking portfolios we need to
know not only their expected return but a measure
of the investment risk. In previous works, we have
deal with LR-type fuzzy numbers as useful approx-
imation of the uncertainty of returns on individual
assets or a given portfolio, for which possibilistic
moments allow us to calculate the value, the ambi-
guity and some significantly properties of the fuzzy
number [17, 5, 18]. In the present research our main
goal is designing a fuzzy time series modeling ap-
proach for providing trapezoidal fuzzy numbers as
forecasts of future performance of return on a given
portfolio, using the historical data set of portfo-
lio returns. In our opinion this information will



be useful to the decision analyst once it has been
incorporated into the fuzzy mathematical portfolio
selection models, which usually approximates the
future performance of returns without considering
their temporality. Additionally, to work with trape-
zoidal fuzzy numbers will allow us to analyze both
expected return and risk of a particular investment,
which is an appropriate financial approach to the
fuzzy portfolio selection problem.

The remaining content of this paper is organized
as follows. In Section 2, we review the fuzzy port-
folio selection problem when possibility theory have
been used to measure the uncertainty of future port-
folio returns. Section 3 provides a review of fuzzy
time series definitions and methods, including new
proposals for improving the fuzzy forecasting of
time series. Finally, in Section 4 we analyze the
comparative performance of classical fuzzy time se-
ries vs the proposed modifications using a historical
data set from the returns on assets of the IBEX35
(the stock index of the Spanish stock market). Con-
clusions are presented in Section 5.

2. Possibilistic portfolio selection models

The main approaches to the portfolio optimization
problem have the objective of maximizing the re-
turn on the investment with the counterpart of min-
imizing the risk of the inversion, being risk and re-
turn quantitative variables that held certain correla-
tion between them. Additionally, it is well accepted
that the future performance of investment is uncer-
tain, then fuzzy set theory have been widely used:
for describing the imperfect knowledge of asset re-
turns and other imprecise data affecting financial
stock markets, for modeling the selection problem
by means of fuzzy goals and constraints and for solv-
ing the corresponding optimization problems using
Soft Computing techniques. Our present work deals
with risky portfolios, whose uncertainty on their ex-
pected returns is modeled by using trapezoidal fuzzy
numbers.

The vector X = (1, ..., x, ) represents the alloca-
tion of the total budget over different risky assets,
x; being the fraction invested in asset 4, i =1, ..., n.
Let us represent the uncertainty regarding the re-
turn on a given portfolio, Px, using a trapezoidal
fuzzy number, Tx = (t;,t,,a,3). The core of
the trapezoidal fuzzy number Tx is the interval
[ti,t,] and the quantities « and S are their left-
and right-spreads, respectively. Additionally, we es-
timate the expected return on and the risk of the
investment by means of possibilistic interval-valued
means and fuzzy downside-risk of T'x, respectively
[19, 20, 21, 17]. Note that we directly approximate
the core and spreads of the trapezoidal fuzzy re-
turn on a given portfolio, instead of approximate
the returns on individual assets as trapezoidal fuzzy
numbers. This alternative approach to quantify un-
certainty of the portfolio returns, allows us to incor-
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porate a certain measure of the relationship among
the returns on the assets with respect to their con-
temporary behavior [22].

In the specific case of trapezoidal fuzzy numbers,
it can easily be checked that following the definition
of Dubois and Prade [19], the interval-valued mean
of Tx is the following interval:

Im(TX):[tl_O‘/Ztu"'ﬁ/ﬂ' (1)
This interval corresponds to the half-cut of Ty, and
it is also the f-weighted interval-valued possibilistic
mean introduced in [21] for the weighted function
f(y) = 1. Concerning the crisp modeling of the
expected return, we will use the middle point of
the corresponding interval-valued mean as the mean
value of Tx:
E(Tx) = (ti+tu)/2+ (B —a)/4 (2)

The f-weighted interval-valued possibilistic mean
value of a fuzzy number [21] can be considered as
a generalization of both the interval-valued mean
[19] and the interval-valued possibilistic mean [20],
using the weighting functions f(v) =1 and f(y) =
27, respectively. The authors also noted that their
definition of the f-weighted possibilistic mean value
coincides with the value of a fuzzy number (with
respect to the reducing function 0.5f) introduced
by Delgado et al. [23].

The downside risk of Px measures the failure
to achieve the interval-valued mean by using the
mean absolute semi-deviation, which penalizes only
the negative deviations of the expected return [17].
For a more detailed explanation of using these
fuzzy measures for the possibilistic portfolio selec-
tion problem readers are referred to [17], where
some relationships between different interval-valued
definitions are also presented.

3. Fuzzy Time Series

The classical time series forecasting methods can
not deal with problems in which the values of
time series are linguistic terms represented by fuzzy
sets. So, Song and Chissom [6] developed fuzzy
time series to overcome this drawback. Let us
briefly review some definitions of FTS introduced
in [7, 8,9, 24].

Definition 1. Let U = {uy, ..., u,, } the universe
of discourse. A fuzzy set A of the universe of dis-
course U can be defined as follows:

A= fA(Ul)/ul + fA(u2)/u2 + ...+ fA(um)/um (3)

where u; is an element of U, f4 is the membership
function of A, fa : U — [0,1] denotes the member-
ship degree of u; in the fuzzy set A for i =1,...,m.

Definition 2. Let Y (¢) a subset of real numbers,
being the universe of discourse in which fuzzy sets
fi(t) are defined. Let F(t) be a collection of f;(¢t),



i = 1,2,..., then F(¢) is called a fuzzy time series
on Y(t),t=..0,1,2,....

Definition 3. Let F(t —1) = A; and F(t) = A;.
The relationship between two consecutive observa-
tions, F'(t—1) and F(t), referred to as a fuzzy logical
relationship, is denoted by F(t — 1) — F(t) or by
A; — Aj, where A; is called the left-hand side and
A; the right-hand side of the fuzzy logical relation-
ship.

Fuzzy logical relationships with the same fuzzy
set located in the left-hand side of the relationships
can be further grouped into a fuzzy logical relation-
ship group [24].

Definition 4. Suppose that there are fuzzy log-
ical relationships in such a way that A; — Aj,
A; — Ajs, and so on, they can be grouped into a
fuzzy logical relationship group A; — Aj1, Ajo, ...

3.1. Fuzzy time series forecasting methods

Since the publication of the works of Song and
Chissom [6, 7, 8] many methods have been proposed
for forecasting fuzzy time series. The basic steps of
the forecasting process in fuzzy time series are the
following:

1. Partitioning the universe of discourse. Which
includes the definition of the universe of dis-
course U and the number and length of the
intervals.

2. Defining the fuzzy sets on U and fuzzifying time
series with the use of these fuzzy sets. Fuzzifi-
cation step using Def. 1.

3. Establishing fuzzy logical relationships from the
fuzzy time series. These relationships are based
on the historical data and permit to derive
fuzzy logical relationship groups.

4. Calculating the forecast values. Locate the lin-
guistic value of the last observed data point
(left-hand side) and use the midpoint of each
linguistic value at the right-hand side of its
fuzzy logical relationship for calculate the fore-
cast: the arithmetic mean of all these mid-
points.

Let us introduce Chen proposals [9] and the mod-
ifications suggested by Huarng [10, 24] in order to
establish the partitioning of U in the first step. In
the Chen method, the universe of discourse U is
defined from min and max data values: D,,;, and
Dyyaz, respectively (obtained among all historical
data D;, i = 1,...,N); in such a way that U =
[Dmin — d1, Dz + da], being di and ds two small
numbers. Once the length of the universe of dis-
course is determined, U can be partitioned into sev-
eral equal length intervals (usually seven intervals).
Huarng [10] observed that the length of the inter-
val affects the accuracy of the forecasting results,
then he proposed two methods for determining
the unequal length of intervals: Distribution-based
length method (named Huarng-1) and Average-
based length method (named Huarng-2).
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1. Distribution-based length method.

(a) Calculate all the absolute differences be-
tween D;y; and D; fromi=1,...,. N — 1,
as the first differences and compute the
average of the first differences.
Determine the base for the length of inter-
vals by following an heuristic rule, taking
into account the average of the first differ-
ences.

According to the assigned base, choose as
the length of intervals the largest length
that is smaller than at least half of the
first differences.

(b)

()

2. Average-based length method.

(a) Since the average of the first differences
between D;;; and D; may not necessar-
ily fulfill the heuristic rule, the averaged-
based length is set to taking one-half of
the average as the length.

According to the assigned base, round the
length as the appropriate | and compute
the number on intervals, m.

(b)

So, following the Huarng proposals there are m
intervals and m fuzzy sets (u; and A;, resp.), and
each observation in the training data set has a re-
lated fuzzy set (linguistic value). If the observed
value is located in the range of u;g, then it belongs
to fuzzy set with a greater membership value (usu-
ally A;0). The fuzzy sets, A; for i = 1,...,m, for
the universe of discourse U are defined by using Eq.
(3). For all fuzzified data we state the fuzzy logical
relationships using Defs. 3 and 4.

Note that the main differences between Chen and
Huarng FTS methods are in the rules for the par-
titioning and determining the length of intervals,
since the authors also use the same definitions in
the intermediate steps and the same rules for calcu-
lating the crisp forecasts. Other authors introduce
alternative procedures to provide a partition of the
universe of discourse into intervals of unequal length
[11, 15]; their proposals for Step 1 are based on fuzzy
clustering techniques and information granules and
they can improve the crisp forecast accuracy.

Alternatively, Yu [12] modifies Step 3, establish-
ing fuzzy logical relationships which incorporate
chronologically-determined weights in order to re-
flect recurrence; Yu FTS method also uses its par-
ticular weighted average in the defuzzification pro-
cess. Following this research line, Cheng et al [25]
propose weighting the relationships among the dif-
ferent fuzzy sets (based on frequency), and Lee et
al [26] present other modified weighted versions of
Yu FTS method.

On the other hand, Liu [27] FTS forecasting
method also maintains the partitioning of the
universe of discourse suggested by Huarng (the
average-based length method), but calculates the
forecasted outputs as trapezoidal fuzzy numbers,
using the endpoints of the intervals u;.



In this paper we propose several modification of
the above procedures. Firstly, in Step 2 the algo-
rithm defines the membership function of every lin-
guistic value A; as a trapezoidal fuzzy number; sec-
ondly, it builds the fuzzy forecast using the following
heuristic rules:

1. If the fuzzy logical relationship group of A; is
empty, A; — (), the procedure builds a trape-
zoidal fuzzy number with all values belonging
to Ag

2. If the fuzzy logical relationship group of A;
goes to Ay, the procedure builds a trapezoidal
fuzzy number with all values that belongs to
Ag.

3. If the fuzzy logical relationship group of A;
goes to many Agi, Aka, ..., Agr, the procedure
builds a trapezoidal fuzzy number with all val-
ues that belongs to Ag1, Ak, ..., Ag. Taking
into account the frequency of each one-to-one
relationship using the observed data set.

Finally, in order to compare this weighted fuzzy ap-
proach with the classical FTS forecasting propos-
als, the procedure calculates the weighted average
of the possibilistic mean values of the trapezoidal
fuzzy numbers representing the right-hand side lin-
guistic values as a pointwise forecast. We include
these modifications of Steps 2 and 4 into the meth-
ods of Chen and Huarng, which are denoted with
the surname -weighted, in order to analyze if they
provide any improvement in the forecasting accu-
racy.

4. A simulation experiment

In order to check the predictive accuracy of the fore-
cast methods described in the previous section we
run a simulation experiment. We randomly select
portfolios built by considering the returns on n = 23
assets included in the IBEX35, the Spanish stock
market index. We introduce some usual constraints
for selecting feasible portfolios. In order to obtain
more diversification in the investment we impose an
upper bound u to the proportion of the investment
on each asset, namely u = 0.3, so we are demanding
to each portfolio X = (z1,...,x23) that x; < 0.3 Vi,
and we also introduce a cardinality constraint for
the purpose of control, namely K = 7, being K the
number of assets included in the portfolio with pos-
itive proportion of investment, portfolio size. Then,
Our set of feasible portfolios is the subset of the
simplex of the 23-dimensional real space subject to
the conditions given by the above constraints and
the condition of total investment: Zfil x; = L.

Each portfolio X in the simulation experiment is
obtained by the following procedure:

Step 1. A realization of the uniform distribution
on the simplex of dimension K is computed us-
ing the algorithm proposed in [5]. This step
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is repeated till every component of this K-
dimensional vector is smaller than the upper
bound. The output is a vector p = (p1,...,PK)
with components belonging to the open inter-
val (0,u) and fulfilling that ZZK=1 p; = 1.

Step 2. K assets are selected by simple sampling
from the n available.

Step 3. Finally, the portfolio X is obtained assign-
ing the p values to the K selected assets and
the zero value to the other assets.

This procedure ensures that each portfolio has been
uniformly selected from the feasible set.

The training data set consists of 151 weekly re-
turns on those assets observed throughout the time
window January 2011 to December 2013, being the
return on asset ¢ at week ¢ defined as follows:

Ty = 100(Pm — P(tfl)i)/Pti

fort=2,...,152and ¢ = 1,...,23, where P;; is the
closed price of asset i at Wednesday of week ¢. For
every selected portfolio X we evaluate its weekly
return on at each Wednesday as follows:

23
’I“t(X) = Z Tti s
i=1

We are going to used the first 150 returns on port-
folio Px as training data set and will use them to
predict the next return.

4.1. Forecasting the return on a single
portfolio

As an example of the forecast analysis of those port-
folios we are going to summarize the forecast of
Portfolio #1, the first simulated one, using Chen
and Chen-weighted methods. Figure 1 shows the
time series of returns on Portfolio #1.

-5

-10

100 150

Figure 1: Trace of the time series of returns on Port-
folio #1.

In order to apply Chen’s forecasting method [9],
the universe of discourse is partitioned into seven
intervals, all of equal length and with the first one
beginning at —14.05; those intervals allows us to
define the seven fuzzy sets which are the linguistic



Lin. value Midpoint Rel. Group Forecast
Ay -12.2 Aj -5.00
Agy -8.6 Ag, Ay, Ag -1.36
As -5.0 A, ..., A -1.36
Ay 14 Ag,... Az 0.45
As 2.3 As,...,A7 2.27
Ag 59 Ay, ..., A -3.17
Ay 9.5 Ay, ..., A 2.27

Table 1: Intermediate results in Chen forecasting
method.

values of the linguistic variable 'return’. Those fuzzy
sets and the midpoint of their related intervals ap-
pear in the first two columns of Table 1. The third
column shows the fuzzy logical relationship groups
while the last column shows the crisp point fore-
cast, which is the arithmetic mean of the midpoints
of the linguistic values belonging to the respective
fuzzy logical relationship group.

Let us denote by 7(; 4, the return on Portfo-
lio #m observed at time t. Then, the last ob-
served value in the training set of this time series
is r(150,1) = 1.39, which belongs to the fifth in-
terval, so its fuzzyfied linguistic value is As, and
applying results in Table 1 the crisp point fore-
cast is 71(151,1) = 2.27. Since the actual observed
value was r(151,1) = —0.01, the prediction error is
€11 = TA1(151,1) —ras1,1) = 2.28.

Alternatively, we realize that the elements in
each fuzzy logical relationship group appears with
very different frequencies; for example the relation
As — A3 was observed only five times while the re-
lation A5 — A4 has a frequency of 20 times along
the training set. We use this information in the
so-called Chen-weighted method, which takes into
account those frequencies, and provides as point-
wise fuzzy forecast a weighted average of the lin-
guistic values of the linguistic variable 'return’, with
weights proportional to the relative frequencies of
the elements in the corresponding fuzzy logical re-
lationship group. In addition, following [27] we de-
fine the membership function of the seven linguistic
values with trapezoidal numbers.

1.5

1.0

0.5

0.0

Figure 2: Membership function of the fuzzy forecast
for the the time series used in the example. The
midpoint of the 0.5 y-cut is the crisp forecast.
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Figure 2 shows the trapezoidal number rep-
resenting the membership function of the fuzzy
forecast obtained for the time series of Port-
folio #1. This number is a weighted aver-
age of the trapezoidal numbers representing the
seven linguistic values that compose the universe
of discourse; the weights are given by the vec-
tor (0.0,0.0,0.11,0.44,0.40,0.02,0.02) whose com-
ponents are the relative frequencies of the fuzzy logi-
cal relationship of As (the linguistic value of the last
observed value in the training set r(150,1) = 1.39)
with the other linguistic values into its relationship
group. The current crisp point forecast is the possi-
bilistic valued-mean of this trapezoidal fuzzy num-
ber, which is the midpoint of its y-cut, with v = 0.5
(Eq. 2).

The new crisp forecast is represented in Figure
2 with a bold point and takes the following value:
72(151,1) = 0.07. The prediction error obtained with
this proposal applied to the time series of returns
of Portfolio #1 is €12 = T2(151,1) — r(151,1) = 0.08,
sensibly smaller than the forecasting error obtained
using Chen forecasting method.

4.2. Results of the simulation experiment

In order to compare the performance of the above
forecasting proposal, we obtain a set of N = 1000
randomly simulated portfolios and forecast all of
them using the six forecasting methods described
in the previous section. For each portfolio X; and
every method M;, we compute the forecasting er-
ror e; j = @(151,%— T(151,i), being @(151,1‘) the fore-
cast and (151 ;) the actually observed return on that
portfolio. Figure 3 shows the boxplot description of
all those forecasting errors.

20

10
I

—0— J -
——— H |
o I 1

-10

T T
Chen Huarngl Huarng2 Chen_w

Figure 3: Boxplot description of the forecasting er-
rors obtained in the simulation experiment.

For the results of the simulation experiment, we
compute three accuracy measures: the arithmetic
mean of the observed errors, Bias = vazl eij/N;
the mean of their absolute values, MAD =
Zilil lei,;|/N, and the mean of the squared errors,

Huarngl_w Huarng2_w



Method Bias MAD MSE
Chen 3.65 5.13 81.33
Huarng-1 1.55 2.74 18.56
Huarng-2 1.58 2.68 18.26
Chen-weighted 0.77 1.70 13.48
Huarng-1-weighted -0.10 1.12 2.03
Huarng-2-weighted -0.13 1.13  2.07

Table 2: Forecasting accuracy methods obtained in
the simulated experiment.

MSE = Zfil efJ/N. The first measure is an esti-
mate of the bias of the method, ideally it should be
zero. The second and third measures are the mean
absolute error and the mean squared error, respec-
tively; both usual forecast accuracy measures. The
numerical results obtained are shown in Table 2.

Note that the first four methods produce fore-
cast errors that are very asymmetrical and more
dispersed than the last two methods (Huarng-
weighted), as Figure 3 explicitly shown. That be-
havior is also reflected in Table 2: the mean squared
errors of the two last methods are significatively
smaller than the MSE provided by the other meth-
ods.

5. Conclusion

We consider some classical Fuzzy Time Series meth-
ods in which we incorporate several modifications
in the process of forecasting and defuzzification of
the outputs, based on weighted operators. Our ap-
proach allows providing trapezoidal fuzzy numbers
which are better forecasts of future performance of
the return on a given portfolio, for which we fore-
cast return and risk. We have developed a simula-
tion experiment using a data set from the Spanish
stock market in order to analyze the effect of the
proposed modifications. In summary:

1. Every of the analyzed methods has been im-
proved using weighted means: the bias is closer
to zero and the MAD and MSE diminish sub-
stantially.

2. We did not found practical differences between
the results obtained with the two Huarng meth-
ods (Distribution-based length method and
Average-based length method), neither using
arithmetic means nor using weighted means.

3. In this simulation study, Chen method, with
intervals of the same length, has had the worst
performance concerning the forecasting errors.

Some future studies could focus on applying our ap-
proach on FTS methods using intervals of unequal
lengths.
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