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Abstract 

In this paper, the integration of mutual information (MI) 
and fuzzy model is proposed to predict stock indexes 
with complex and non-linear characteristics. Technical 
indicators are considered as initial input candidates and 
significant inputs are determined by MI-based input se-
lection method. To identify the structures and parame-
ters of fuzzy models simultaneously, cooperative ran-
dom learning particle swarm optimization (CRPSO), 
proposed by Zhao et al., is used. To confirm the effec-
tiveness, the proposed method and comparison methods 
are applied to the Korea Composite Stock Price Index 
(KOSPI). The experimental results show that the pro-
posed method, on average, outperforms other compari-
son methods. 

Keywords: Stock index prediction, Mamdani-type 
fuzzy model, Mutual information, Sequential forward 
input selection, Cooperative random learning particle 
swarm optimization (CRPSO) 

1. Introduction 

Stock index forecasting is one of the most challenging 
and difficult tasks within the field of financial time-
series predictions. Since accurate stock index predic-
tions improve investors' stock market returns, it is a 
very important research topic and has received great 
attention. Stock market analysis might be roughly cate-
gorized into fundamental analysis and technical analy-
sis. In fundamental analysis, it is assumed that stock 
index movement depends on corporate profits, macro-
economic conditions, political environments, etc. On 
the other hand, in technical analysis, it is supposed that 
the required information for stock price prediction has 
already been reflected in the stock index. Therefore, it 
is believed that historical index and volume data analy-
sis are all that is needed for stock index forecasting. 

Daily stock time-series shows complex, non-linear 
and non-stationary characteristics because it is influ-
enced by various factors such as economic indicators 
(e.g. bank rate, bank exchange rate, quarterly earnings 
reports, etc.), psychological factors, government in-
volvement and political issues. Therefore, conventional 
time-series approaches (e.g. AR, ARMA, ARIMA, etc.), 
based on the linear and stationary figures within a target 
series, are generally less accurate. Recently, artificial 
intelligence-based methods such as artificial neural 
networks (ANNs), support vector regression (SVR), 

and fuzzy systems have been successfully applied for 
stock index forecasting. 

ANNs have powerful multi-dimensional non-linear 
mapping abilities. Moreover, for constructing ANNs, 
prior domain information is not required and only in-
put-output data pairs are needed. Because of these ad-
vantages, ANNs have been widely used for stock index 
forecasting. 

Ticknor [1] proposed a Bayesian regularized ANN to 
forecast financial market behavior. In [2], the authors 
proposed the design of a model based on ANN, allow-
ing short term predictions of stock closing prices future 
behavior. Chang et al. [3] developed an integrated sys-
tem by combining dynamic time windows, case-based 
reasoning, and neural networks for stock trading deci-
sion support. In [4], a time-series prediction model was 
developed by combining non-linear independent com-
ponent analysis (NLICA) and neural networks, which 
was proposed to forecast Asian stock markets. Bisoi 
and Dash [5] presented a simple feed-forward dynamic 
neural network comprising one or more layers of dy-
namic neurons for predicting stock price indices and 
profit from one day ahead to 30 days in advance. 

If derivative-based optimization methods are em-
ployed to train ANNs, there is always the risk of trap-
ping in local minimum. Furthermore, it is difficult to 
determine the structure (the number of hidden layers 
and neurons) of ANNs systematically. In other words, 
ANNs based on the empirical risk minimization princi-
ple may suffer from over-fitting problems. 

By contrast, SVR, originally introduced by Vapnik, 
has a global optimum and exhibits better prediction ac-
curacy due to its implementation of the structural risk 
minimization principle, which considers both the train-
ing error and the capacity of the regression model [6]. 
SVR has been successfully applied in different prob-
lems of time-series prediction such as demand forecast-
ing, traffic flow prediction, and financial time series 
forecasting [7]. 

Kazem et al. [6] proposed a forecasting model based 
on SVR, chaotic mapping, and the firefly algorithm to 
predict stock market prices. Kao et al. [7] developed a 
stock price forecasting model, NLICA-SVR, which first 
uses NLICA for pre-processing to extract features from 
forecasting variables. Xiong et al. [8] investigated the 
possibility of forecasting an interval-valued stock price 
index series over short and long horizons using multi-
output SVR. Yeh et al. [9] proposed a regression model, 
which integrates multiple-kernel learning and SVR to 
deal with the stock price forecasting problem. In [10], a 
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two-stage architecture for better stock price prediction 
was employed. The self-organizing map was first used 
to decompose the whole input space into regions. After 
decomposing data points into several regions, SVR was 
applied to forecast stock indices. 

To apply SVR to forecasting problems appropriately, 
the type of kernel functions and associated kernel hy-
per-parameters must be properly selected in advance. If 
kernel functions and hyper-parameters are not deter-
mined correctly, forecasting performance may be de-
graded. 

Although ANNs and SVR have shown excellent 
forecasting performance, there are black box problems 
that these model’s operational principles cannot be un-
derstood and explained intuitively. Fuzzy systems, on 
the contrary, are good at explaining their operation 
principle in the form of readable fuzzy if-then rules [11]. 
In other words, fuzzy models’ operating mechanisms 
are intuitive and easily understood by designers. 

Huang et al. [11] described the application of the hi-
erarchical co-evolutionary fuzzy system for predicting 
financial time series. To construct an accurate predic-
tive model, a form of generic membership function 
(MF), named irregular shaped MF, was employed and a 
hierarchical co-evolutionary genetic algorithm was 
adopted. Chang and Fan [12] developed a novel ap-
proach that integrates the wavelet and TSK fuzzy rule-
based systems for stock price prediction. The proposed 
framework combined several soft computing techniques 
such as wavelet transform, TSK fuzzy system, data 
clustering, simulated annealing, and k-nearest neighbor. 
Hassan et al. [13] proposed a new type of adaptive 
fuzzy inference system with a view to achieve im-
proved performance for forecasting non-linear time se-
ries by dynamically adapting the fuzzy rules with the 
arrival of new data. Zarandi et al. [14] presented a four-
layer fuzzy multi-agent system architecture to develop a 
hybrid artificial intelligence model based on the coordi-
nation of intelligent agents performing data pre-
processing and function approximation tasks for next-
day stock price prediction. 

In this paper, the integration of mutual information 
(MI) and fuzzy systems for one-day ahead stock index 
forecasting is proposed. Several technical indicators, 
widely used in technical analysis, are considered as 
model’s initial input candidates and relevant inputs, 
highly correlated with model’s output, are determined 
by MI. With the selected inputs, Mamdani-type models 
which are more intuitive and transparent than TSK-type 
are constructed. To identify structure and parameters of 
fuzzy models at the same time, cooperative random 
learning particle swarm optimization (CRPSO), which 
was proposed by Zhao et al. [15], is employed. CRPSO 
is a variant of standard particle swarm optimization 
(PSO). The structure and parameters of the fuzzy mod-
els are encoded into a particle and evolve together so 
that the optimal structure and parameters can be 
achieved simultaneously [15]. Extracted fuzzy if-then 
rules are easily interpreted by human and they might be 
evaluated by human expertise (rule evaluation). It is al-
so possible to add expert’s knowledge-based fuzzy rules 
to rulebase of fuzzy systems. To verify the effectiveness, 

the proposed methods, ANN and SVR are applied to the 
Korea Composite Stock Price Index (KOSPI) from 1 
January 2011 to 31 December 2013. The experimental 
results show that our method outperforms other com-
parison methods and the predicted index values by our 
method are close to the real values. 

The remainder of this paper is organized as follows. 
Section 2 explains the estimation of MI and its use for 
input selection. Section 3 describes the automatic fuzzy 
model extraction method using CRPSO. Section 4 
shows the experimental results and Section 5 presents 
concluding remarks and future works. 

2. Mutual information for input selection 

In this section, input subset selection method for model 
construction using MI is explained. When conducting 
system modeling, it is essential to determine significant 
inputs strongly correlated with output among numerous 
potential inputs. Using too many inputs lowers model’s 
transparency, increases the number of parameters that 
must be identified, and raises the risk of over-fitting. 

MI measures the information content in input varia-
bles with respect to the model output, without making 
any assumption on the model, and it also has the ad-
vantage of detecting non-linear relationships between 
variables while some other popular criteria such as cor-
relation coefficients are essentially limited to linear de-
pendencies [16], [17]. 

This study uses a sequential forward input selection 
method based on MI measurement. 

 
2.1. Definitions of mutual information 

Let X and Y be one- or multi-dimensional continuous 
random variables. If the joint probability density func-
tion (PDF) μX,Y is given, the marginal PDF of X and Y 
can be calculated by 
 

,( ) ( , )X X Yx x y dy    (1)

 
and 
 

,( ) ( , ) .Y X Yy x y dx    (2)

 
By Shannon’s information theory, the uncertainty on 

Y is calculated by its entropy defined as 
 

( ) ( ) log ( ) .Y YH Y y y dy    (3)

 
If we get the information about Y from knowing X, 

the uncertainty on Y is calculated by conditional entro-
py defined as 
 

( | ) ( ) ( | )X YH Y X x y X x      

log ( | ) .Y y X x dydx 
(4)

 
The joint uncertainty of the (X, Y) pair is calculated 

by joint entropy defined as 
 

625



, ,( , ) ( , ) log ( , ) .X Y X YH X Y x y x y dxdy    (5)

 
The MI between X and Y can be defined by (6), and 

can be considered as a measure of the amount of 
knowledge on Y provided by X (or conversely on the 
amount of knowledge on X provided by Y) [17]. 
 

( , ) ( ) ( | ).I X Y H Y H Y X   (6)
 

As we can see from the above equation, the MI is the 
decrease of the uncertainty on Y once we know X [18]. 
By the properties of the MI and entropy, eq. (6) can be 
rewritten as 
 

( , ) ( ) ( ) ( , )I X Y H X H Y H X Y    (7)
 
and 
 

,
,

( , )
( , ) ( , ) log .

( ) ( )
X Y

X Y
X Y

x y
I X Y x y dxdy

x y




 
   (8)

 
Therefore, in order to compute MI between X and Y, 

joint PDF between X and Y should be estimated. 
 

2.2. Estimation of the mutual information using k-
nearest neighbors 

To estimate the joint PDF μX,Y, histogram-based or ker-
nel-based PDF estimation method is commonly used. 
However, their usage is commonly limited to functions 
of one or two variables because the number of samples 
needed for PDF estimation increases exponentially with 
the number of variables [19]. In this study, k-nearest 
neighbor-based MI estimation method proposed by 
Kraskov et al. [20] is used. 

To estimate MI, input-output data pairs {zi = (xi, yi), i 
= 1,..., n} of target system should be collected. The col-
lected data pairs zi = (xi, yi) are assumed to be inde-
pendent and identically distributed realizations of a ran-
dom variable Z = (X, Y). The maximum norm used for 
comparison of any pairs z = (x, y) and z' = (x', y') is de-
fined by 
 

 ' max ' , ' .   z z x x y y  (9)

 
The basic idea is to estimate I(X, Y) from the distanc-

es in spaces X, Y and Z from zi to its k-nearest neighbors, 
averaged over all zi [19]. Let us define zk(i) = (xk(i), yk(i)) 
the kth nearest neighbor of zi, where xk(i) and yk(i), input 
and output parts of zk(i), do not need to be kth nearest 
neighbor of xi and yi. Let us denote 
 

( ) ( ),X Y
i i k i i i k id d   x x y y  

( )and .Z
i i k id  z z

(10)

 

Obviously,  max , .Z X Y
i i id d d  Sequentially, the 

number X
in of points, whose distance from xi is strictly 

less than Z
id is counted, and similarly the number Y

in of 

points, whose distance from yi is strictly less than Z
id is 

counted. In [20], it was proved that MI can be accurate-
ly estimated by 
 

 
1

1ˆ( , ) ( ) 1
N

X
i

i

I X Y k n
N

 


     

 1 ( ),Y
in N  

(11)

 
where ψ is the digamma function defined as 
 

'( )
( ) ln ( ),

( )

t d
t t

t dt
 

  


 (12)

 
and 
 

1

0
( ) .t ut u e du

      (13)

 
The digamma function satisfies the recursion equa-

tion ψ(t + 1) = ψ(t) + 1/t and ψ(1) = C where C = –
0.5772156...is the Euler-Mascheroni constant. 

The value of k directly affects the quality of estimat-

ed ˆ( , ).I X Y If the value chosen for k is 

small, ˆ( , )I X Y has a large variance and a small bias. If 

the value chosen for k is large, ˆ( , )I X Y has a small vari-

ance and a large bias. In this study, k will be set as 
commonly used value, k = 6. 
 
2.3. Sequential forward input selection using mutu-

al information 

Let {(xi, yi), i = 1,..., n} be a collected learning dataset, 
where x = [x1, x2,..., xm]T is m-dimensional initial input 
vector, y is the desired model output, and n is the num-
ber of learning data pairs. Collected learning datasets 
are used for sequential forward input selection method-
based on MI. 

Firstly, the input x1st that maximizes the MI value in 
one-dimensional input space is selected by 
 

  1st
ˆarg max , ,   1 .

j

j
x

x I x y j m    (14)

 
After then, in two-dimensional input space, m – 1 in-

put combinations are considered. Second best input x2nd 
is determined by 
 

  2nd 1st
ˆarg max ( , ), ,

j

j
x

x I x x y  

1 ,  1st.j m j  
(15)

 
Same procedures are repeated until the following 

condition is satisfied: 
 

  1st th
ˆ , , ,kI x x y   (16)
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  1st th ( 1)th
ˆ , , , ,    2, , 1.k kI x x x y k m   

 
If the above condition is satisfied, the expansion of 

input space is stopped and the kth relevant input xkth is 
decided by 
 

  th 1st 2nd ( 1)th
ˆarg max ( , , , , ), ,

j

k k j
x

x I x x x x y   

 1 ,  1st, 2nd, , ( 1)th .j m j k   
(17)

 
After finishing above procedures, we can get the best 

input combination x1st, x2nd,..., xkth for prediction model-
ing. 

3. CRPSO-based fuzzy model 

3.1. Cooperative random learning particle swarm 
optimization 

CRPSO, which was proposed by Zhao et al., employs 
several sub-swarms to search the space and the useful 
information is exchanged among them during the itera-
tion process [15]. In CRPSO, at each iteration, velocity 
vectors are updated by 
 

, , 1 1 , ,( 1) ( ) ( ) ( )[ ( ) ( )]i j i j i j i jt w t t c t t t   v v r y x  

2 2 , 3 3 ,ˆ ˆ( )[ ( ) ( )] ( )[ ( ) ( )],j i j r i jc t t t c t t t   r y x r y x
(18)

 
where vi, j(t) and vi, j(t + 1) is the velocity vector of i-th 
particle (i = 1, , n) of j-th sub-swarm (j = 1, , m) at 
iteration t and t + 1, respectively, w(t) is the inertia 
weight, c1, c2 and c3 are acceleration constants, r1(t), 
r2(t) and r3(t) are uniform vector random variables at 
the range of [0, 1] at iteration t, xi, j(t) is the position 
vector of i-th particle of j-th sub-swarm at iteration t, yi, 

j(t) is the best position that i-th particle of j-th sub-
swarm has visited until now, ˆ ( )j ty is the best position 

that entire particles of j-th sub-swarm have visited until 
now, and ˆ ( )r ty is the randomly selected best position 

among ˆ ( ).j ty For further details of standard PSO and 

CRPSO, see references [15], [21], [22]. 
 
3.2. Mamdani-type fuzzy model 

 The typical multi-input single-output Mamdani-type 
fuzzy model is composed of a set of fuzzy if-then rules 
and each rule, which consists of an antecedent part and 
a consequent part, is expressed by 
 

Ri: If x1 is 1
iA and x2 is 2

iA and and xm is i
mA  

Then y is Bi, i = 1,..., Nmax

 
where xj (j = 1, , m) and y are crisp input and output 
variables, respectively, i

jA and Bi are linguistic values 

defined by fuzzy sets, and Nmax is the maximum number 
of fuzzy rules. The MF of i

jA is a Gaussian MF defined 

as 
 

2

2

( )
( ; , ) exp ,

2( )
i
j

i
j ji i

j j j iA
j

x c
x c 



     
  

 (19)

 
where i

jc and i
j , premise parameters, correspond to the 

center and the width of the MF, respectively. The out-
put MF , ( ),iB

y is also a Gaussian MF. The output of 

Mamdani-type fuzzy model is computed by the centroid 
of area defined as 
 

'

'

( )
ˆ ,

( )

BY

BY

y y dy
y

y dy




 


 (20)

 
where ' ( )B y is the aggregated output MF, which is de-

fined as 
 


1 2max

' 1 2
1,...,

( ) max min ( ), ( ),i iB A Ai N
y x x  


   

, ( ), ( ) .i i
m

mA B
x y  


(21)

 
3.3. Encoding scheme of fuzzy systems 

Generally, two successive tasks are performed for fuzzy 
model construction: structure identification and parame-
ter optimization. In the structure identification step, 
fuzzy rules are generated and boundaries of MF param-
eters’ search space are fixed, and clustering algorithms 
(e.g. k-means, fuzzy c-means, etc.) have been common-
ly used. Parameter optimization is to optimize premise 
and consequent parameters of fuzzy model and deriva-
tive-based and derivative-free algorithms (e.g. steepest 

2011.1 2011.2 2011.3 2011.11 2011.12 2012.1 2012.2 2013.32012.12 2013.1 2013.2 2013.122013.11… … …

⁞

: Learning dataset : Validation dataset

Dataset Index

1st:

2nd:

3rd:

12th:

⁞

Fig. 2: Preparation of learning and validation dataset (walk-forward testing) 
 

Parameter of Rule 1 … Parameter of Rule i … Parameter of Rule Nmax

1 1 2 2, , , , , ,i i i i i i
m mc c c   ,i ic  iL

Fig. 1: Coding scheme for extraction of Mamdani-type fuzzy 
model. 
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descent, genetic algorithm, simulated annealing etc.) 
could be employed. 

In this study, structure and parameter identification 
are carried out simultaneously by CRPSO. Fig. 1 shows 
coding scheme for simultaneous structure and parame-
ters optimization process. As shown in Fig. 1, premise 
and consequent parameters and labels are encoded into 
a particle. If label Li is bigger than zero, then i-th fuzzy 
rule is activated. Otherwise, the rule is discarded. All 
the activated fuzzy rules are included in rulebase and 
used for inference. 

4. Experimental results 

4.1. Data preparation 

In this research, KOSPI time-series data from 1 January 
2011 to 31 December 2013 is used to verify the perfor-
mance of MI-based fuzzy models. Fig. 2 shows the sep-
aration scheme of the learning and validation datasets, 
and similar ways (walk-forward testing) were also used 
in [23]. Table 1 lists technical indicators widely used in 
technical analysis of stock markets, and Table 2 sum-

marizes the parameter settings of technical indicators. 
The format of initial input candidates and output of 

learning dataset is [x1, x2,…, x14; y], where x1, x2,…, x14 
are technical indicators listed in Table 1 and y is C(t + 
1), closing price at time t + 1. Before selecting relevant 
inputs explained in Section 2, all input and output vari-
ables are normalized at the range of [0, 1] as 
 

min
norm

max min

,
x x

x
x x





 (22)

 
where x is the original value of input or output variable, 
xmax and xmin are the maximum and minimum values of 
the original value, respectively, and xnorm is the normal-
ized value. 
 
4.2. Model construction 

As explained in Section 2.3, relevant inputs, x1st, x2nd,…, 
xnth, used for prediction model construction are selected 
among 14 initial input candidates, x1, x2,…, x14. Nor-
malized learning datasets are used to calculate MI val-
ues. Fig. 3 shows the results of applying MI-based se-

 
Table 1: Technical indicators used as initial input candidates. 

 Name of indicators Formulas 

x1 
Simple moving 
average (SMA), SMAn(t) 1

( ) ( 1) ( 1) 1
SMA ( ) ( 1)

n

n
i

C t C t C t n
t C t i

n n 

     
   

  

x2 
Weighted moving 
average (WMA), WMAn(t) 

( ) ( 1) ( 1) ( 1)
WMA ( )

( 1) 1n

nC t n C t C t n
t

n n

      


   



  

x3 
Exponential moving 
average (EMA), EMAn(t) 

EMA (1) (1),

EMA ( ) ( ) (1 )EMA ( 1),  for 1
n

n n

C

t C t t t 

    

  

x4 Momentum, Momn(t) C(t) ‒ C(t ‒ n + 1) 

x5 Stochastic %K, StoKn(t) 
( ) LL ( )

StoK ( ) 100
HH ( ) LL ( )

n
n

n n

C t t
t

t t


 


 

x6 Stochastic %D, StoDm(t) StoDm(t) = ‘SMA, whose window size is m, of StoKn(t)’ 

x7 
Relative strength 
index (RSI), RSIn(t) 

100
RSI ( ) 100

1 RS ( )n
n

t
t

 


 

x8 MACD line, MACDL(t) MACDL(t) = EMA12(t) – EMA26(t) 
x9 Signal line, SignalL(t) SignalL(t) = ‘9-days EMA of the MACD line’ 

x10 William %R, WillRn(t) 
HH ( ) ( )

WillR ( ) 100
HH ( ) LL ( )

n
n

n n

t C t
t

t t


 


 

x11 
Commodity channel 
index (CCI), CCIn(t) 

TP( ) SM ( )
CCI ( )

0.015 MD ( )
n

n
n

t t
t

t





 

x12 
Rate of change (ROC), 
ROCn(t) 

( ) ( 1)
ROC ( ) 100

( 1)n

C t C t n
t

C t n

  
 

 
 

x13 
Volume rate of 
change (VROC), VROCn(t) 

( ) ( 1)
VROC ( ) 100

( 1)n

V t V t n
t

V t n

  
 

 
 

x14 
Accumulation/Distribution 
line (A/D line), ADL(t) 

ADL(1) = MFV(1), 
ADL(t) = ADL(t – 1) + MFV(t), for t > 1 

where C(t), L(t), H(t) and V(t) are the closing price, low price, high price, and volume at time t, respectively, α is a smoothing fac-
tor which is commonly calculated by 2

1 ,n  LLn(t) = min{L(t), L(t ‒ 1),…, L(t ‒ n + 1)}, HHn(t) = max{H(t), H(t ‒ 1),…, H(t ‒ n 

+ 1)}, RSn(t) is the ratio of total (or average) gains to total (or average) losses in the last n days defined 

by 1

1

Gain( 1)

Loss( 1)
RS ( ) ,

n

i
n

i

t i

n
t i

t 



 

 




( ) ( 1),  if ( ) ( 1)
Gain( ) ,

0,                       otherwise

C t C t C t C t
t

   
 


( ) ( 1),  if ( ) ( 1)
Loss( ) ,

0,                       otherwise

C t C t C t C t
t

   
 


TP(t) is the typi-

cal price calculated by ( ) ( ) ( )

3TP( ) ,C t H t L tt  
1

SM ( ) TP( 1) / ,
n

n i
t t i n


   1

MD ( ) TP( 1) SM ( ) / ,
n

n ni
t t i t n


    MFV(t) is 

money flow volume calculated by MFV(t) = MFM(t) × V(t), MFM(t) is money flow multiplier defined 

by    ( ) ( ) ( ) ( )

( ) ( )MFM( ) .
C t L t H t C t

H t L tt
  

  
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quential forward input selection method to 1st dataset in 
Fig. 1. As we can see from Fig. 3, in this case, the ex-
pansion of input space is halted at 3-dimension and x2, 
x5, and x3 are sequentially selected. In other words, x2, 
x5, and x3 are used to learn the model for 1st dataset. 

After selecting best input combinations, CRPSO-
based Mamdani-type fuzzy model extraction is per-
formed as described in Section 3. The parameters of 
CRPSO are set as follows: the maximum generation 
number is set as 1000, the number of sub-swarm is set 
as 3, population size of each sub-swarm is set as 30, the 
acceleration constants c1 is set as 1.5, c2 and c3 are set 
as 0.75, w(t) decreases linearly from 0.9 to 0.4 during 
the optimization process. Fig. 4 shows the example of 
the convergence behavior of CRPSO. 

The same procedures, as explained in Section 4.2, are 
applied to each prepared dataset in Fig. 1 and the results 
are presented at Section 4.3. 
 
4.3. Prediction results 

The mean absolute percentage error (MAPE) is used as 

a forecasting performance index. MAPE is defined as 
 

1

ˆ1
MAPE 100,

N
i i

i i

y y

N y


   (23)

 
where yi and ˆiy are the actual and predicted output val-

ues on i-th validation dataset and N is the number of 
validation data pairs. Table 3 lists the forecasting results 
of the proposed method, ANN and SVR in each dataset. 

Except for SVR model, in other models (fuzzy and 
ANN), each experiment is repeated 30 times in the 
same experimental environments and averaged MAPE 
values are listed. In Table 3, the best cases among 30 
experiments are given in parenthesis. ANN and SVR 
models are implemented using the MATLAB Neural 
Network Toolbox and the LIBSVM [24], respectively. 
In ANN, three layer feed-forward structure is employed, 
the number of the hidden layer’s neurons is fixed as 4, 
and Levenberg-Marquardt method is used for learning. 
In SVR, the radial basis function (RBF) kernel is used 
and hyper-parameters are determined by trial-and-error. 
As listed in Table 3, the proposed fuzzy model outper-
forms the comparison methods, SVR and ANN. The 
proposed method improves the averaged MAPE over 
SVR and ANN by 0.038% and 0.028%, respectively. 
Fig. 5 shows the prediction results of the best fuzzy 
models among 30 repeated experiments and Fig. 6 
shows the fuzzy if-then rules, input and output MF of 
the best extracted fuzzy model in 2nd dataset. As a result, 
the proposed CRPSO-based fuzzy model shows good 
non-linear mapping abilities, and is more transparent 
than ANN and SVR. 

5. Conclusions and future works 

In this research, the integration of MI and CRPSO-
based Mamdani-type fuzzy model was used to construct 
one-day ahead stock index forecasting model. Technical 
indicators commonly used in technical analysis were 
considered as initial input candidates, and significant 
indicators were selected by the MI-based sequential 
forward selection method. With the selected indicators, 
structure and parameter identifications were performed 
simultaneously by CRPSO. To investigate the effec-
tiveness, the proposed method, ANN and SVR were 
applied to KOSPI time-series dataset. As presented in 
Section 4, the proposed method outperformed on aver-
age against the other comparison methods. The extract-

Table 2: Parameter settings of technical indicators. 
Technical indicator Parameter setting 

SMAn(t), WMAn(t), EMAn(t) 
and Momn(t) 

n = 10 

StoKn(t) and StoDm(t) n = 10 and m = 3 
RSIn(t) and WillRn(t) n = 14 
CCIn(t) n = 20 
ROCn(t) and VROCn(t) n = 12 
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ed model structures composed of fuzzy if-then rules are 
more intuitive and transparent than black box models. 
Besides, the addition of domain expert’s knowledge-
based fuzzy if-then rules on rulebase is also possible. 

This paper only focused on one-day ahead stock in-
dex prediction and considered technical indicators as 
model’s inputs. In further studies, we will expand our 
method into long-term (e.g. 5days, 10days, 20days, etc.) 
prediction models and consider possibilities of employ-
ing economic exogeneous variables (e.g. interest rate, 
exchange rate, international oil and gold price, etc.), 
that might influence stock index movements, as input 
candidates of prediction models. 
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Fig. 6: Best extracted fuzzy model in 2nd dataset. 
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