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Abstract

Once introduced a definition of symmetric difference
function on the unit real interval [0,1], we consider
a method to construct such functions based on a
triplet formed by a t-norm, a t-conorm and a strong
negation. Our main goal is to characterize those
triplets that define symmetric difference functions
which are distances.
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1. Introduction

Motivated by generalizations of the classical sym-
metric difference of sets, Alsina introduced
in [3] (see also [5]) the idea of construct-
ing distances from a t-norm 7 and its dual
T : T*(a,b) =1—T(1 — a,1 —b). Thus given a t-
norm 7', Alsina defines dr(a,b) = T*(a,b) — T'(a, b)
if a # b,dr(a,a) = 0, and proves that "if a t-norm
T is a copula then dr is a distance". There are
examples of continuous non-strict Archimedean
t-norms that are not copulas and that generate
distances (see [1]), proving that for continuous
t-norms the reciprocal of the Alsina’s result is not
true. In [1] a characterization of those t-norms
having zero region {(a,b);a + b < 1} that induce
distances is given, however the complete character-
ization of those t-norms that induce distances is
still an open problem. The problem of generating
distances from a more general pair (S,7) of a
t-conorm and a t-norm is also studied in [1].

In the same way that the linguistic "or" has the
functional model given by t-conorms, a functional
model for the linguistic "either or" by means of sym-
metric difference functions can be considered (see
[4]). By generalizing the classical expression of set
theory "either A or B" = (ANB°)U(BNA°), we can
consider a class of symmetric difference functions
of the form A(a,b) = S(T(a,N(b)),T(b,N(a))
where T,S,N are a t-norm, a t-conorm and a
strong negation respectively. Our main concern
in this paper is to give a characterization of those
triplets (T, S, N) such that the symmetric difference
functions A associated to them are distances.
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In Section 2 basic definitions, examples and re-
sults are presented. Section 3 contains all the main
results of the contribution.

2. Preliminaries

We begin with the definitions of t-norm, t-conorm
and copula, and some properties and basic examples
(see [5] and [7]).

Definition 1 Let us consider functions
T,S:[0,1)> — [0,1]. We say that T is a t-norm
if it is increasing in each wvariable, commutative,
associative and has neutral element 1. We say that
S is a t-conorm if it is increasing in each variable,
commutative, associative and has neutral element
0.

Definition 2 A function N from [0, 1] onto itself is
a strong negation if it is decreasing and involutive
(N? =id).

Given a strong negation IV, the N-dual t-conorm
of a t-norm T is T*(a,b) = N(T(N(a),N(b))).
Given a t-norm 7', a t-conorm S, and a strong nega-
tion N, we say that (T, S, N) is a De Morgan triplet
if T and S are N-dual.

Example 1 Basic t-norms are the minimum
M (a,b) = min(a,b), the product II(a,b) = ab, the
Lukasiewicz t-norm W (a,b) = max(a+b—1,0) and
the drastic t-norm

a ifb=1,
Z(a,b)=4¢ b ifa=1,
0 otherwise.

Their dual t-conorms (with respect to the classical
strong negation N(a) = 1—a) are, respectively, the
mazimum M*(a,b) = max(a,b), the probabilistic
sum IT*(a, b) = a+b—ab, the Lukasiewicz t-conorm
or bounded sum W*(a,b) = min(a + b,1) and the
drastic t-conorm

a ifb=0,
Z*(a,b)=<¢ b ifa=0,
1 otherwise.

Note that, for any t-norm 7" and t-conorm S, Z <
T<MLM <S<Zx



Proposition 1 A continuous t-norm T s
Archimedean (T(a,a) < a for all a in (0,1))
if and only if it has an additive generator, that
is, a strictly decreasing and continuous function

f:10,1) = [0, 00] with f(1) =0 such that

T(a,b) = fV(f(a) + f(D)),

where f(~1): [0, 00] — [0,1] is the pseudo-inverse of
f, defined by

f(,l)(a) _ { gil(a)

An additive generator is defined up to a positive
multiplicative constant. On the other hand, if f is
an additive generator of a continuous Archimedean
t-norm T, then T is strict (strictly increasing on
[0,1)?) if, and only if, f(0) = cc.

if a < £(0),

otherwise.

The t-norm IT is strict with additive generator
f(a) = —loga, and the t-norm W is non-strict
with additive generator f(a) =1 — a.

If T is a mnon-strict continuous Archimedean
t-norm  with additive generator f, then
N(a) = f7Y(f(0) — f(a)) is a strong negation
that we call associated to T'. Note that T'(a,b) =0
if, and only if, b < N(a).

We recall here also the definition of distance.

Definition 3 A function d: X x X — [0,00) is a
distance on the set X if the following properties are
satisfied, for all a,b,c € X:

1) d(a,b) =0 if and only if a = b,
2) d(a,b) =d(b,a),
3) d(a,b) < d(a,c) +d(c,b).

3. Symmetric difference functions and
distances

Definition 4 A function A : [0,1]x[0,1] — [0, 1]
is a symmetric difference function (SDF) if it sat-
isfies for any a,b € [0,1] :

A1) Aa,b) = Ab,a),
A2) Ala,a) =0, Aa,0) =a, N(a) = A(a,l) is a
strong negation.

Definition 5 Given T, S, N a t-norm, a t-conorm,
and a strong negation (not necessarily a De Morgan
triplet), we define the function:

A(avb) = S(T(CL,N([))),T(N(CL),Z))) (1)

Next result was mentioned without proof in [2].
For the sake of completeness, we have included it in
this paper.

Proposition 2 A is o SDF if,
T(a,N(a)) =0 Va € [0,1].

and only if,
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In this case we say that A is the SDF associated
to the triplet (T, S, N).
Proof If A is a SDF, then 0 = A(a,a) =
S(T(a,N(a)), T(N(a),a)) and thus T(a,N(a)) =
0 Va € [0,1].
Let us suppose now that T'(a, N(a)) = 0,Va € [0,1].
Then

Aa,a) = 8(T(a, N(a)), T(N(a),a)) = S(0,0) = 0

On the other hand,

A(a,0) = S(T(a,N(0)),T(N(a),0)) = S(a,0) =a
and
A(a,1) = S(T(a,N(1)),T(N(a),1))
= S(0,N(a)) = N(a)

Finally,
Afa,b) = S(T(a,N(b)),T(N(a),b))

= S(T(N<a)7 b)v T(a7 N(b)))

= S(T(b,N(a)),T(N(b),a)) = A(b,a)

Example 2 The SDF associated to the triplet
(W, W*,1 — id) is the usual distance on [0,1]:
A(a,b) = la —b|.

We are interested in those triplets (7, S, N) such
that A defined in (1) is a distance.

Proposition 3 Given a triplet (T, S, N), the func-
tion A\ defined in (1) is a distance if, and only if,
the following conditions hold:

i) T(a,b) =0 if, and only if, b < N(a).

it) For all x € [0,1] and any €,§ € R such that
0<e<1-—2,0<06<1—N(z), the following
inequality holds (see Figure 1)

T(z+e N(x)+9) <T(x,N(x)+)+T(z+e,N(x))
(2)

Figure 1: The points involved in the condition (2).

Proof We know that A is symmetric. Let us
suppose now that the conditions i) and ii) hold
and let us prove that A is a distance. First



of all, we have from condition i) that A(a,a) =
S(T(a,N(a)), T(N(a),a)) = S(0,0) = 0. On the
other hand, if A(a,b) = 0, then T(a,N(b)) =
T(N(a),b) = 0 and from condition i), a < b and
b < a, thus a = b. Now we have to prove the trian-
gular inequality, that is, A(a, b) < A(a,c)+ A(e, b).
From i) we can write

T(a, N(b))

a )) ifb<a
T(N(a),b)

A(a,b){ ifa<b
By symmetry, we can suppose that a < b; thus we
have to consider three cases: a < b < c,c<a <b
and @ < ¢ < b. The triangular inequality
for the first two cases follows immediately
from the increasingness of 7. Let us consider
now the case a < ¢ < b. We have to prove
that T(N(a),b) < T(N(a),c) + T(N(c),b).
This inequality follows from (2) just by taking
z=DN(c),e=N(a)— N(c)and 6 =b—c.

Conversely, let us suppose now that A is a
distance.  Since A(a,a) = 0, we have that
T(a,N(a)) = 0 for all a, and the monotonicity of
T gives that T(a,b) = 0 if b < N(a). Now, if
T(a,b) = 0 for b > N(a), let ¢ = N(b). Thus
A(b,c) = S(T(a,N(c)), T(N(a),c)) = S(0,0) = 0,
which is impossible since a > ¢. Now we have
to prove the condition ii). Let us consider z €
0,1,0 < e < 1—-12,0 < § < 1-— N(z) and
a=N(z+¢€),b=N(z)+0 and ¢ = N(z). Thus we
have that a < ¢ < b and the triangular inequality
gives

T(z+e, N(x)+0) = T(N(a),b)
< T(N(a),c)+T(N(c),b)

= T(x+eN(z))+T(x,N(z)+9)
which is (2). "

Remark 1

i) If we take e =1 —a,0 =1— N(a) in (3), we
have 1 < a+ N(a), that is, N > 1 —id.
it) If we take § = 1 — N(a), we have a + € <
a+T(a+¢€ N(a)), that is, T(a+¢€,N(a)) > €.
Analogously, T'(a, N(a) + 0) > 6. Thus, if we
take N =1 —id, we have T > W.
i) If A\ is a distance, then

0 ifa="b
A(a,b) =< T(N(a),b) ifa<b
T(a,N(b)) ifa>b

Observe that the values of A do not depend on
the t-conorm S.

w) Condition (2) can be expressed as a condition
of "restricted subadditivity":

T(udv) <T(u)+T(v) (3)
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for any u = w+ €, v = w—&—?, where w =
(a,N(?) is a vector "on the negation N, € =
(6,0),d =(0,6),0<e<l-a0<d<1-
N(a), andu®v=u+v— w.

Proposition 4 Let (T, N) satisfying the conditions
in Proposition 3. If T is continuous on the graph of
N ({(z,N(x));x € [0,1]}), then it is continuous on
all its domain.

Proof Let us suppose that T is discontinuous at
(a,b) with b > N(a). Thus either T'(-,b) is discon-
tinuous at a or T'(a,-) is discontinuous at b. Let us
suppose first that T'(-, b) is right-discontinuous at a.
Then there exists A > 0 such that

T(a+€b) —T(a,b) > AVe >0

From condition (2) we have T'(a + €¢) < T(a,b) +
T(a+ €, N(a)), that is

A T(a+€,b) —T(a,b)
T(a+¢€,N(a))
T(a+e¢,N(a)) —T(a,N(a))

I IAIA

for all € > 0, and thus 7" is not right-continuous at
(a, N(a)).

Let us suppose now that T(-,b) is left-
discontinuous at a. Then there exists A > 0 such
that

Ve > 0,T(a,b) —T(a—€,b) >\

)
From condition (2) we have T'(a,b) <
T(a,N(a—¢)), that is

T(a —€b) +

A T(a,b) — T(a —¢€,b)
T(a,N(a—¢))
T(a,N(a —¢€)) —T(a,N(a))

for all € > 0. Then, from the continuity of N, we
have

[ IAIA

A <T(a,N(a)+¢)) = T(a,N(a))

for all € > 0, and thus T is not right-continuous at

(a, N(a)).

The proof for the case of T(a,-) is completely
analogous and it has been omitted. m

Proposition 5 Given a triplet (T, S,N) with T a
continuous t-norm, the function A\ defined in (1) is

a distance if, and only if, the following conditions
hold:

i) T is a non-strict archimedean t-norm with as-
sociated negation N.

ii) The function f~1(1 —id) is subadditive, where
f is the normalized additive generator of T

(f(0)=1).



Proof If A is a distance, then the condition
i) of Proposition 3 proves that T is a non-strict
archimedean t-norm with associated negation N.
Let now f be the additive generator of T with

f(0) = 1. Thus N(a) = f~(1 — f(a)) and the
expression of A becomes
0 ifa=b
Aa,b) = ¢ fH(1 = fla)+ f(b) ifa<b
f7H A+ fla) = fb) ifa>D

that is, A(a,b) = f~1(1 — |f(a) — f(b)|). Now the
triangular inequality for the case a < ¢ < b becomes
FH = (f(a) = f(0) < F7H1 = (f(a) — f(0))) +
FTHI = (f() = £(b))). If we take u = f(a) — f(b)
and v = f(c) — f(b), we obtain

A A= (w+o) <70 -u)+ fH(1-0)

for all u,v > 0 such that u+v < 1. Thus f_l(l—id)
is subadditive.

Conversely, let us suppose now that the condi-
tions i) and ii) hold. From previous results, we
only have to prove the triangular inequality of A.
But this result comes immediately from the above
reasoning. [

Remark 2

i) Note that (T,S,N) does not need to be a De
Morgan triplet.

ii) The function f=1(1 —id) is subadditive if, and
only if, 1 — f is superadditive.

iii) If the t-norm T is a copula and A is a dis-
tance, then f is convexr and thus f~1(1 — id)
is superadditive. Then f~1(1 —id) is additive,
thus f~1(1 —1id) = id and therefore f = 1 —id,
that is T =W.

iv) Let us observe that the if f~*(1 —id) is subad-
ditive then N > 1 — id.

Proposition 6 If the additive generator f of T
is concave, then the condition i) of Proposition 5
holds. The converse is not true, in general.

Proof If f is concave, then f~! and h = f~!(1—id)
are also concave. Since h(0) = 0, the function h is
subadditive. To prove that the converse is not true,
let us consider f = g~!, where g(a) = —a® + a? —
a+ 1. The function f is not concave (since g is not
concave), but f~1(1—id) = g(1—id) is subadditive.
Thus the concavity of f is not a necessary condition
for (2) to hold. "

Example 3 The generator of the Yager t-norms,
fla) = (1 —a)* where 0 < X\ < 1, is a concave
function. The associated distance is

Aa,b) = f7HL = |f(a) = f(B)])

= 1= (1= = (= p
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The generator of the
ta(a) =1 — lﬁl((lljf;)), is a concave function for any
A € (—1,0). The associated distance is

Sugeno-Weber t-norms,

Aa,b) f7HL = 1f(a) = f)])
2 eap{nay I i3e

Proposition 7 Let us consider a triplet (T,S, N)
such that T'(a,b) = 0 if, and only if, b < N(a). If
N is concave and T is concave in each variable on
its positive region, then the condition (2) holds.

Proof Let a € [0,1], and €, € R such that
0 < e <1-4a0 < § < 1-N() Ifwe

take a = %, then we can write

(a+eN(a)=a-(a+eN(a)+d§)+(1—a) (a+
€, N(a+¢)).

Analogously, we (a,N(a) + §) =

o -(a+e, N(a)+0)+(1—a')-(N(N(a)+6), N(a)+9),
a—N(N(a)+5)

where O/ = m

Since T is concave and it equals 0 on the negation
N, we have T(a+e€, N(a)) > a-T(a+e, N(a)+6) and
T(a,N(a)+96) > o' -T(a+¢€ N(a)+0). By adding
this two inequalities, we obtain T'(a + €, N(a)) +
T(a,N(a)+9) > (a+a')-T(a+e,N(a)+9). Thus, if
we prove that a+a’ > 1, we will have the condition
(2). Now a straightforward calculation proves that
a+a’ > 1 is equivalent to
(a—N(N(a)+6))-(N(a)—N(a+e¢€)>€-d

and this inequality holds since N is concave (see
Figure 2). "

N(a)+0
N(a)

Figure 2: The points involved in the proof of Propo-
sition 7.

Remark 3 Under the conditions above, condition
(2) plus T concave in each variable in its positive
region do not imply that N is concave. Moreover,
condition (2) plus N concave do not imply that T is
concave in each variable in its positive region. Let
see two examples.



Example 4 Let N be a strong negation. Let us
consider the (left-continuous but not continuous) t-
norm My given by

MN(a,b)z{ 0 ifb< N(a)

min(a,b) ifb> N(a) 4

It can be proved that for any t-conorm S,
(My,S,N) defines a distance through (1) if, and
only if, N > 1 —id. This distance is given by

0 ifa=10b
min(N(a),b) ifa<b
min(a, N(b)) ifa>b
In the case when N = 1 —id (My_;q = T™™, the
nilpotent minimum), this distance becomes

A(a,b) =

0 ifa=10b

b ifa<ba+b<l1
Ala,b) =< 1—a ifa<ba+b>1

a ifa>ba+b<1

1-b ifa>ba+b>1

(see Figure 3).

Figure 3: Structure of the distance A(a,b) in Ex-
ample 4, for the case N =1 — id.

The following result can be found in [6].

Proposition 8 Given a strong negation N, the t-
norms T such that

1) T(a,b) =0 when b < N(a)
2) T s positive and continuous in the region
{(a,b):b> N(a)}
have the form
0,
if b< N(a)
a+(B-a)T (52 52),
if b> N(a),max(a,b) < (o # )

T(a,b)

min(a, b),
if b> N(a),max(a,b) >

5
where 0 < a < f < 1,N(a) = B, and T zsgc)z
continuous and non-strict archimedean t-norm with
zero region {(a,b) : b < NP(a)}, where NP is the
strong negation defined by NP (a) = W
(see Figure 4).
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Remark 4

i) Ifa=0and B =1, then N¢s =N, and T is a
continuous and non-strict archimedean t-norm
with zero region {(a,b) : b < N(a)}.

it) The case o = B (point of symmetry of the nega-
tion N ) means that T has the form:

0 ifb < N(a)
T(a,b) = { min(a,b) ifb> N(a),
max(a,b) >
that is, T = My .
min(a, b)
2 1
3
(%)
0
11
3
0
| |
| |
1 2
3 3

Figure 4: The structure of the t-norm in Propo-
sition 8 for « = 1/3,8 = 2/3 and N = 1 — id,
where () stands for a + (f — o) T} (g:g, %)

According to Proposition 3, Proposition 5, and
Example 4, we have

Proposition 9 For the t-norms T of the form
given in (5), the function A\ defined in (1) is a dis-
tance if, and only if, the following conditions hold:

i) N>1—1id.
it) 1—f is superadditive, where f is the normalized
additive generator of the t-norm Ty (with o #

B)-

4. Conclusions

We present a full description of those triplets
(T,S,N), T at-norm, S a t-conorm and N a strong
negation, such that the symmetric difference func-
tion A(a,b) = S(T(a,N()), T(b,N(a)) is a dis-
tance.

Acknowledgements

The authors acknowledge the support of the Span-
ish DGI grants TIN2013-42795-P, TIN2014-56381-
REDT and Programa pont La Caixa d’ajut a grups
de recerca (2014).



References

[1]

[7]

I. Aguilé, J. Martin, G. Mayor, J. Suner:
On  distances derived from  t-norms.
Fuzzy Sets and Systems, In press, 2014,
doi:10.1016/j.£ss.2014.09.021

I. Aguilé, T. Calvo, J. Martin, G. Mayor, J.
Suner: Distancias y Multidistancias Derivadas
de Operadores de Diferencia Simétrica. Proc.
of Estylf 2014, pp. 309-314, 2014.

C. Alsina: On some metrics induced by copu-
las. In: Walter (Ed.), General Inequalities 4, p.
397, 1984.

C. Alsina, E. Trillas: On the symmetric differ-
ence of fuzzy sets. Fuzzy Sets and Systems 153,
pp- 181-194, 2005.

C. Alsina, M.J. Frank, B. Schweizer: Associa-
tive Functions: Triangular Norms and Copu-
las. World Scientific Publishing Company, Sin-
gapur, 2006.

S. Jenei: New family of triangular norms
via contrapositive symmetrization of residu-
ated implications. Fuzzy Sets and Systems 110,
pp. 157-174, 2000.

E. P. Klement, R. Mesiar, E. Pap: Triangular
Norms. In: “Trends in Logic - Studi Logica Li-
brary”, 8. Kluwer Academic Publishers, 2000.

637





