On distances derived from symmetric difference functions

Isabel Aguilós ${ }^{1}$, Tomasa Calvo ${ }^{2}$, Javier Martín ${ }^{1}$, Gaspar Mayor ${ }^{1}$, Jaume Suñer ${ }^{1}$
${ }^{1}$ University of Balearic Islands, Palma de Mallorca, Spain
${ }^{2}$ University of Alcalá, Alcalá de Henares, Spain

Abstract

Once introduced a definition of symmetric difference function on the unit real interval $[0,1]$, we consider a method to construct such functions based on a triplet formed by a t-norm, a t-conorm and a strong negation. Our main goal is to characterize those triplets that define symmetric difference functions which are distances.

Keywords: symmetric difference function, t-norm, t-conorm, strong negation, distance.

1. Introduction

Motivated by generalizations of the classical symmetric difference of sets, Alsina introduced in [3] (see also [5]) the idea of constructing distances from a t-norm T and its dual $T^{*}: T^{*}(a, b)=1-T(1-a, 1-b)$. Thus given a tnorm T, Alsina defines $d_{T}(a, b)=T^{*}(a, b)-T(a, b)$ if $a \neq b, d_{T}(a, a)=0$, and proves that "if a t-norm T is a copula then d_{T} is a distance". There are examples of continuous non-strict Archimedean t-norms that are not copulas and that generate distances (see [1]), proving that for continuous t-norms the reciprocal of the Alsina's result is not true. In [1] a characterization of those t-norms having zero region $\{(a, b) ; a+b \leq 1\}$ that induce distances is given, however the complete characterization of those t-norms that induce distances is still an open problem. The problem of generating distances from a more general pair (S, T) of a t -conorm and a t-norm is also studied in [1].

In the same way that the linguistic "or" has the functional model given by t-conorms, a functional model for the linguistic "either or" by means of symmetric difference functions can be considered (see [4]). By generalizing the classical expression of set theory "either A or $B^{\prime \prime}=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$, we can consider a class of symmetric difference functions of the form $\triangle(a, b)=S(T(a, N(b)), T(b, N(a))$ where T, S, N are a t-norm, a t-conorm and a strong negation respectively. Our main concern in this paper is to give a characterization of those triplets (T, S, N) such that the symmetric difference functions \triangle associated to them are distances.

In Section 2 basic definitions, examples and results are presented. Section 3 contains all the main results of the contribution.

2. Preliminaries

We begin with the definitions of t-norm, t-conorm and copula, and some properties and basic examples (see [5] and [7]).

Definition 1 Let us consider functions $T, S:[0,1]^{2} \rightarrow[0,1]$. We say that T is a t-norm if it is increasing in each variable, commutative, associative and has neutral element 1. We say that S is a t-conorm if it is increasing in each variable, commutative, associative and has neutral element 0 .

Definition 2 A function N from $[0,1]$ onto itself is a strong negation if it is decreasing and involutive ($N^{2}=i d$).

Given a strong negation N, the N-dual t-conorm of a t-norm T is $T^{*}(a, b)=N(T(N(a), N(b)))$. Given a t-norm T, a t-conorm S, and a strong negation N, we say that (T, S, N) is a De Morgan triplet if T and S are N-dual.

Example 1 Basic t-norms are the minimum $M(a, b)=\min (a, b)$, the product $\Pi(a, b)=a b$, the Eukasiewicz t-norm $W(a, b)=\max (a+b-1,0)$ and the drastic t-norm

$$
Z(a, b)=\left\{\begin{array}{cc}
a & \text { if } b=1 \\
b & \text { if } a=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Their dual t-conorms (with respect to the classical strong negation $N(a)=1-a)$ are, respectively, the maximum $M^{*}(a, b)=\max (a, b)$, the probabilistic $\operatorname{sum} \Pi^{*}(a, b)=a+b-a b$, the Lukasiewicz t-conorm or bounded sum $W^{*}(a, b)=\min (a+b, 1)$ and the drastic t-conorm

$$
Z^{*}(a, b)=\left\{\begin{array}{cc}
a & \text { if } b=0 \\
b & \text { if } a=0 \\
1 & \text { otherwise }
\end{array}\right.
$$

Note that, for any t-norm T and t-conorm $S, Z \leqslant$ $T \leqslant M \leqslant M^{*} \leqslant S \leqslant Z^{*}$.

Proposition $1 A$ continuous t-norm T is Archimedean $(T(a, a)<a$ for all a in $(0,1))$ if and only if it has an additive generator, that is, a strictly decreasing and continuous function $f:[0,1] \rightarrow[0, \infty]$ with $f(1)=0$ such that

$$
T(a, b)=f^{(-1)}(f(a)+f(b))
$$

where $f^{(-1)}:[0, \infty] \rightarrow[0,1]$ is the pseudo-inverse of f, defined by

$$
f^{(-1)}(a)= \begin{cases}f^{-1}(a) & \text { if } a \leqslant f(0) \\ 0 & \text { otherwise }\end{cases}
$$

An additive generator is defined up to a positive multiplicative constant. On the other hand, if f is an additive generator of a continuous Archimedean t-norm T, then T is strict (strictly increasing on $\left.[0,1)^{2}\right)$ if, and only if, $f(0)=\infty$.

The t-norm Π is strict with additive generator $f(a)=-\log a$, and the t-norm W is non-strict with additive generator $f(a)=1-a$.

If T is a non-strict continuous Archimedean t-norm with additive generator f, then $N(a)=f^{-1}(f(0)-f(a))$ is a strong negation that we call associated to T. Note that $T(a, b)=0$ if, and only if, $b \leq N(a)$.

We recall here also the definition of distance.
Definition 3 function $d: X \times X \rightarrow[0, \infty)$ is a distance on the set X if the following properties are satisfied, for all $a, b, c \in X$:

1) $d(a, b)=0$ if and only if $a=b$,
2) $d(a, b)=d(b, a)$,
3) $d(a, b) \leqslant d(a, c)+d(c, b)$.

3. Symmetric difference functions and distances

Definition 4 A function $\triangle:[0,1] \times[0,1] \longrightarrow[0,1]$ is a symmetric difference function (SDF) if it satisfies for any $a, b \in[0,1]$:
$\triangle 1) \triangle(a, b)=\triangle(b, a)$,
$\triangle 2) \triangle(a, a)=0, \triangle(a, 0)=a, N(a)=\triangle(a, 1)$ is a strong negation.

Definition 5 Given T, S, N a t-norm, a t-conorm, and a strong negation (not necessarily a De Morgan triplet), we define the function:

$$
\begin{equation*}
\triangle(a, b)=S(T(a, N(b)), T(N(a), b)) \tag{1}
\end{equation*}
$$

Next result was mentioned without proof in [2]. For the sake of completeness, we have included it in this paper.

Proposition $2 \triangle$ is a SDF if, and only if, $T(a, N(a))=0 \forall a \in[0,1]$.

In this case we say that \triangle is the SDF associated to the triplet (T, S, N).
Proof If \triangle is a SDF, then $0=\triangle(a, a)=$ $S(T(a, N(a)), T(N(a), a))$ and thus $T(a, N(a))=$ $0 \forall a \in[0,1]$.
Let us suppose now that $T(a, N(a))=0, \forall a \in[0,1]$. Then

$$
\triangle(a, a)=S(T(a, N(a)), T(N(a), a))=S(0,0)=0
$$

On the other hand,

$$
\triangle(a, 0)=S(T(a, N(0)), T(N(a), 0))=S(a, 0)=a
$$

and

$$
\begin{aligned}
\triangle(a, 1) & =S(T(a, N(1)), T(N(a), 1)) \\
& =S(0, N(a))=N(a)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\triangle(a, b) & =S(T(a, N(b)), T(N(a), b)) \\
& =S(T(N(a), b), T(a, N(b))) \\
& =S(T(b, N(a)), T(N(b), a))=\triangle(b, a)
\end{aligned}
$$

Example 2 The $S D F$ associated to the triplet $\left(W, W^{*}, 1-i d\right)$ is the usual distance on $[0,1]$: $\triangle(a, b)=|a-b|$.

We are interested in those triplets (T, S, N) such that \triangle defined in (1) is a distance.

Proposition 3 Given a triplet (T, S, N), the function \triangle defined in (1) is a distance if, and only if, the following conditions hold:
i) $T(a, b)=0$ if, and only if, $b \leq N(a)$.
ii) For all $x \in[0,1]$ and any $\epsilon, \delta \in \mathbb{R}$ such that $0 \leq \epsilon \leq 1-x, 0 \leq \delta \leq 1-N(x)$, the following inequality holds (see Figure 1)

$$
\begin{equation*}
T(x+\epsilon, N(x)+\delta) \leq T(x, N(x)+\delta)+T(x+\epsilon, N(x)) \tag{2}
\end{equation*}
$$

Figure 1: The points involved in the condition (2).

Proof We know that \triangle is symmetric. Let us suppose now that the conditions i) and ii) hold and let us prove that \triangle is a distance. First
of all, we have from condition i) that $\triangle(a, a)=$ $S(T(a, N(a)), T(N(a), a))=S(0,0)=0$. On the other hand, if $\triangle(a, b)=0$, then $T(a, N(b))=$ $T(N(a), b)=0$ and from condition i), $a \leq b$ and $b \leq a$, thus $a=b$. Now we have to prove the triangular inequality, that is, $\triangle(a, b) \leq \triangle(a, c)+\triangle(c, b)$. From i) we can write

$$
\triangle(a, b)= \begin{cases}T(a, N(b)) & \text { if } b \leq a \\ T(N(a), b) & \text { if } a \leq b\end{cases}
$$

By symmetry, we can suppose that $a<b$; thus we have to consider three cases: $a<b<c, c<a<b$ and $a<c<b$. The triangular inequality for the first two cases follows immediately from the increasingness of T. Let us consider now the case $a<c<b$. We have to prove that $T(N(a), b) \leq T(N(a), c)+T(N(c), b)$. This inequality follows from (2) just by taking $x=N(c), \epsilon=N(a)-N(c)$ and $\delta=b-c$.

Conversely, let us suppose now that \triangle is a distance. Since $\triangle(a, a)=0$, we have that $T(a, N(a))=0$ for all a, and the monotonicity of T gives that $T(a, b)=0$ if $b \leq N(a)$. Now, if $T(a, b)=0$ for $b>N(a)$, let $c=N(b)$. Thus $\triangle(b, c)=S(T(a, N(c)), T(N(a), c))=S(0,0)=0$, which is impossible since $a>c$. Now we have to prove the condition ii). Let us consider $x \in$ $[0,1], 0<\epsilon \leq 1-x, 0<\delta \leq 1-N(x)$ and $a=N(x+\epsilon), b=N(x)+\delta$ and $c=N(x)$. Thus we have that $a<c<b$ and the triangular inequality gives

$$
\begin{aligned}
T(x+\epsilon, N(x)+ & \delta)=T(N(a), b) \\
\leq & T(N(a), c)+T(N(c), b) \\
& =T(x+\epsilon, N(x))+T(x, N(x)+\delta)
\end{aligned}
$$

which is (2).

Remark 1

i) If we take $\epsilon=1-a, \delta=1-N(a)$ in (3), we have $1 \leq a+N(a)$, that is, $N \geq 1-i d$.
ii) If we take $\delta=1-N(a)$, we have $a+\epsilon \leq$ $a+T(a+\epsilon, N(a))$, that is, $T(a+\epsilon, N(a)) \geq \epsilon$. Analogously, $T(a, N(a)+\delta) \geq \delta$. Thus, if we take $N=1-i d$, we have $T \geq W$.
iii) If \triangle is a distance, then

$$
\triangle(a, b)= \begin{cases}0 & \text { if } a=b \\ T(N(a), b) & \text { if } a<b \\ T(a, N(b)) & \text { if } a>b\end{cases}
$$

Observe that the values of \triangle do not depend on the t-conorm S.
iv) Condition (2) can be expressed as a condition of "restricted subadditivity":

$$
\begin{equation*}
T(u \oplus v) \leq T(u)+T(v) \tag{3}
\end{equation*}
$$

for any $u=w+\vec{\epsilon}, v=w+\vec{\delta}$, where $w=$ $(a, N(a))$ is a vector "on the negation N ", $\vec{\epsilon}=$ $(\epsilon, 0), \vec{\delta}=(0, \delta), 0 \leq \epsilon \leq 1-a, 0 \leq \delta \leq 1-$ $N(a)$, and $u \oplus v=u+v-w$.

Proposition 4 Let (T, N) satisfying the conditions in Proposition 3. If T is continuous on the graph of $N(\{(x, N(x)) ; x \in[0,1]\})$, then it is continuous on all its domain.

Proof Let us suppose that T is discontinuous at (a, b) with $b>N(a)$. Thus either $T(\cdot, b)$ is discontinuous at a or $T(a, \cdot)$ is discontinuous at b. Let us suppose first that $T(\cdot, b)$ is right-discontinuous at a. Then there exists $\lambda>0$ such that

$$
T(a+\epsilon, b)-T(a, b) \geq \lambda \forall \epsilon>0
$$

From condition (2) we have $T(a+\epsilon) \leq T(a, b)+$ $T(a+\epsilon, N(a))$, that is

$$
\begin{aligned}
\lambda & \leq T(a+\epsilon, b)-T(a, b) \\
& \leq T(a+\epsilon, N(a)) \\
& =T(a+\epsilon, N(a))-T(a, N(a))
\end{aligned}
$$

for all $\epsilon>0$, and thus T is not right-continuous at $(a, N(a))$.

Let us suppose now that $T(\cdot, b)$ is leftdiscontinuous at a. Then there exists $\lambda>0$ such that

$$
\forall \epsilon>0, T(a, b)-T(a-\epsilon, b) \geq \lambda
$$

From condition (2) we have $T(a, b) \leq T(a-\epsilon, b)+$ $T(a, N(a-\epsilon))$, that is

$$
\begin{aligned}
\lambda & \leq T(a, b)-T(a-\epsilon, b) \\
& \leq T(a, N(a-\epsilon)) \\
& =T(a, N(a-\epsilon))-T(a, N(a))
\end{aligned}
$$

for all $\epsilon>0$. Then, from the continuity of N, we have

$$
\lambda \leq T(a, N(a)+\epsilon))-T(a, N(a))
$$

for all $\epsilon>0$, and thus T is not right-continuous at $(a, N(a))$.

The proof for the case of $T(a, \cdot)$ is completely analogous and it has been omitted.

Proposition 5 Given a triplet (T, S, N) with T a continuous t-norm, the function \triangle defined in (1) is a distance if, and only if, the following conditions hold:
i) T is a non-strict archimedean t-norm with associated negation N.
ii) The function $f^{-1}(1-i d)$ is subadditive, where f is the normalized additive generator of T $(f(0)=1)$.

Proof If \triangle is a distance, then the condition i) of Proposition 3 proves that T is a non-strict archimedean t-norm with associated negation N. Let now f be the additive generator of T with $f(0)=1$. Thus $N(a)=f^{-1}(1-f(a))$ and the expression of \triangle becomes

$$
\Delta(a, b)= \begin{cases}0 & \text { if } a=b \\ f^{-1}(1-f(a)+f(b)) & \text { if } a<b \\ f^{-1}(1+f(a)-f(b)) & \text { if } a>b\end{cases}
$$

that is, $\triangle(a, b)=f^{-1}(1-|f(a)-f(b)|)$. Now the triangular inequality for the case $a<c<b$ becomes $f^{-1}(1-(f(a)-f(b))) \leq f^{-1}(1-(f(a)-f(c)))+$ $f^{-1}(1-(f(c)-f(b)))$. If we take $u=f(a)-f(b)$ and $v=f(c)-f(b)$, we obtain

$$
f^{-1}(1-(u+v)) \leq f^{-1}(1-u)+f^{-1}(1-v)
$$

for all $u, v \geq 0$ such that $u+v \leq 1$. Thus $f^{-1}(1-i d)$ is subadditive.

Conversely, let us suppose now that the conditions i) and ii) hold. From previous results, we only have to prove the triangular inequality of \triangle. But this result comes immediately from the above reasoning.

Remark 2

i) Note that (T, S, N) does not need to be a De Morgan triplet.
ii) The function $f^{-1}(1-i d)$ is subadditive if, and only if, $1-f$ is superadditive.
iii) If the t-norm T is a copula and \triangle is a distance, then f is convex and thus $f^{-1}(1-i d)$ is superadditive. Then $f^{-1}(1-i d)$ is additive, thus $f^{-1}(1-i d)=i d$ and therefore $f=1-i d$, that is $T=W$.
$i v)$ Let us observe that the if $f^{-1}(1-i d)$ is subadditive then $N \geq 1-i d$.

Proposition 6 If the additive generator f of T is concave, then the condition ii) of Proposition 5 holds. The converse is not true, in general.

Proof If f is concave, then f^{-1} and $h=f^{-1}(1-i d)$ are also concave. Since $h(0)=0$, the function h is subadditive. To prove that the converse is not true, let us consider $f=g^{-1}$, where $g(a)=-a^{3}+a^{2}-$ $a+1$. The function f is not concave (since g is not concave), but $f^{-1}(1-i d)=g(1-i d)$ is subadditive. Thus the concavity of f is not a necessary condition for (2) to hold.

Example 3 The generator of the Yager t-norms, $f(a)=(1-a)^{\lambda}$ where $0 \leq \lambda \leq 1$, is a concave function. The associated distance is

$$
\begin{aligned}
\Delta(a, b) & =f^{-1}(1-|f(a)-f(b)|) \\
& =1-\left(1-\left|(1-a)^{\lambda}-(1-b)^{\lambda}\right|\right)^{1 / \lambda}
\end{aligned}
$$

The generator of the Sugeno-Weber t-norms, $t_{\lambda}(a)=1-\frac{\ln (1+\lambda a)}{\ln (1+\lambda)}$, is a concave function for any $\lambda \in(-1,0)$. The associated distance is

$$
\begin{aligned}
\triangle(a, b) & =f^{-1}(1-|f(a)-f(b)|) \\
& =\frac{1+\lambda}{\lambda} \exp \left\{\frac{1}{\ln (1+\lambda)} \cdot\left|\ln \frac{1+\lambda b}{1+\lambda a}\right|\right\}
\end{aligned}
$$

Proposition 7 Let us consider a triplet (T, S, N) such that $T(a, b)=0$ if, and only if, $b \leq N(a)$. If N is concave and T is concave in each variable on its positive region, then the condition (2) holds.

Proof Let $a \in[0,1]$, and $\epsilon, \delta \in \mathbb{R}$ such that $0 \leq \epsilon \leq 1-a, 0 \leq \delta \leq 1-N(a)$. If we take $\alpha=\frac{N(a)-N(a+\epsilon)}{N(a)+\delta-N(a+\epsilon)}$, then we can write $(a+\epsilon, N(a))=\alpha \cdot(a+\epsilon, N(a)+\delta)+(1-\alpha) \cdot(a+$ $\epsilon, N(a+\epsilon))$.

Analogously, we have $(a, N(a)+\delta)=$ $\alpha^{\prime} \cdot(a+\epsilon, N(a)+\delta)+\left(1-\alpha^{\prime}\right) \cdot(N(N(a)+\delta), N(a)+\delta)$, where $\alpha^{\prime}=\frac{a-N(N(a)+\delta)}{a+\epsilon-N(N(a)+\delta)}$.

Since T is concave and it equals 0 on the negation N, we have $T(a+\epsilon, N(a)) \geq \alpha \cdot T(a+\epsilon, N(a)+\delta)$ and $T(a, N(a)+\delta) \geq \alpha^{\prime} \cdot T(a+\epsilon, N(a)+\delta)$. By adding this two inequalities, we obtain $T(a+\epsilon, N(a))+$ $T(a, N(a)+\delta) \geq\left(\alpha+\alpha^{\prime}\right) \cdot T(a+\epsilon, N(a)+\delta)$. Thus, if we prove that $\alpha+\alpha^{\prime} \geq 1$, we will have the condition (2). Now a straightforward calculation proves that $\alpha+\alpha^{\prime} \geq 1$ is equivalent to

$$
(a-N(N(a)+\delta)) \cdot(N(a)-N(a+\epsilon)) \geq \epsilon \cdot \delta
$$

and this inequality holds since N is concave (see Figure 2).

Figure 2: The points involved in the proof of Proposition 7.

Remark 3 Under the conditions above, condition (2) plus T concave in each variable in its positive region do not imply that N is concave. Moreover, condition (2) plus N concave do not imply that T is concave in each variable in its positive region. Let see two examples.

Example 4 Let N be a strong negation. Let us consider the (left-continuous but not continuous) t norm M_{N} given by

$$
M_{N}(a, b)= \begin{cases}0 & \text { if } b \leq N(a) \tag{4}\\ \min (a, b) & \text { if } b>N(a)\end{cases}
$$

It can be proved that for any t-conorm S, $\left(M_{N}, S, N\right)$ defines a distance through (1) if, and only if, $N \geq 1-i d$. This distance is given by

$$
\Delta(a, b)= \begin{cases}0 & \text { if } a=b \\ \min (N(a), b) & \text { if } a<b \\ \min (a, N(b)) & \text { if } a>b\end{cases}
$$

In the case when $N=1-i d$ ($M_{1-i d}=T^{n M}$, the nilpotent minimum), this distance becomes

$$
\triangle(a, b)= \begin{cases}0 & \text { if } a=b \\ b & \text { if } a<b, a+b \leq 1 \\ 1-a & \text { if } a<b, a+b \geq 1 \\ a & \text { if } a>b, a+b \leq 1 \\ 1-b & \text { if } a>b, a+b \geq 1\end{cases}
$$

(see Figure 3).

Figure 3: Structure of the distance $\triangle(a, b)$ in Example 4 , for the case $N=1-i d$.

The following result can be found in [6].
Proposition 8 Given a strong negation N, the t norms T such that

1) $T(a, b)=0$ when $b \leq N(a)$
2) T is positive and continuous in the region $\{(a, b): b>N(a)\}$
have the form

$$
T(a, b)=\left\{\begin{array}{l}
0, \tag{5}\\
\text { if } b \leq N(a) \\
\alpha+(\beta-\alpha) T_{1}\left(\frac{a-\alpha}{\beta-\alpha}, \frac{b-\beta}{\beta-\alpha}\right), \\
\text { if } b>N(a), \max (a, b)<\beta(\alpha \neq \beta) \\
\min (a, b), \\
\text { if } b>N(a), \max (a, b) \geq \beta
\end{array}\right.
$$

where $0 \leq \alpha \leq \beta \leq 1, N(\alpha)=\beta$, and T_{1} is a continuous and non-strict archimedean t-norm with zero region $\left\{(a, b): b \leq N_{\alpha}^{\beta}(a)\right\}$, where N_{α}^{β} is the strong negation defined by $N_{\alpha}^{\beta}(a)=\frac{N((\beta-\alpha) a+\alpha)-\alpha}{\beta-\alpha}$ (see Figure 4).

Remark 4

i) If $\alpha=0$ and $\beta=1$, then $N_{0}^{1}=N$, and T is a continuous and non-strict archimedean t-norm with zero region $\{(a, b): b \leq N(a)\}$.
ii) The case $\alpha=\beta$ (point of symmetry of the negation N) means that T has the form:

$$
T(a, b)= \begin{cases}0 & \text { if } b \leq N(a) \\ \min (a, b) & \text { if } b>N(a) \\ & \max (a, b) \geq \beta\end{cases}
$$

that is, $T=M_{N}$.

Figure 4: The structure of the t-norm in Proposition 8 for $\alpha=1 / 3, \beta=2 / 3$ and $N=1-i d$, where $(*)$ stands for $\alpha+(\beta-\alpha) T_{1}\left(\frac{a-\alpha}{\beta-\alpha}, \frac{b-\beta}{\beta-\alpha}\right)$.

According to Proposition 3, Proposition 5, and Example 4, we have

Proposition 9 For the t-norms T of the form given in (5), the function \triangle defined in (1) is a distance if, and only if, the following conditions hold:
i) $N \geq 1-i d$.
ii) $1-f$ is superadditive, where f is the normalized additive generator of the t-norm T_{1} (with $\alpha \neq$ β).

4. Conclusions

We present a full description of those triplets (T, S, N), T a t-norm, S a t-conorm and N a strong negation, such that the symmetric difference function $\triangle(a, b)=S(T(a, N(b)), T(b, N(a))$ is a distance.

Acknowledgements

The authors acknowledge the support of the Spanish DGI grants TIN2013-42795-P, TIN2014-56381REDT and Programa pont La Caixa d'ajut a grups de recerca (2014).

References

[1] I. Aguiló, J. Martín, G. Mayor, J. Suñer: On distances derived from t-norms. Fuzzy Sets and Systems, In press, 2014, doi:10.1016/j.fss.2014.09.021
[2] I. Aguiló, T. Calvo, J. Martín, G. Mayor, J. Suñer: Distancias y Multidistancias Derivadas de Operadores de Diferencia Simétrica. Proc. of Estylf 2014, pp. 309-314, 2014.
[3] C. Alsina: On some metrics induced by copulas. In: Walter (Ed.), General Inequalities 4, p. 397, 1984.
[4] C. Alsina, E. Trillas: On the symmetric difference of fuzzy sets. Fuzzy Sets and Systems 153, pp. 181-194, 2005.
[5] C. Alsina, M.J. Frank, B. Schweizer: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Company, Singapur, 2006.
[6] S. Jenei: New family of triangular norms via contrapositive symmetrization of residuated implications. Fuzzy Sets and Systems 110, pp. 157-174, 2000.
[7] E. P. Klement, R. Mesiar, E. Pap: Triangular Norms. In: "Trends in Logic - Studi Logica Library", 8. Kluwer Academic Publishers, 2000.

