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Abstract

Once introduced a definition of symmetric difference
function on the unit real interval [0,1], we consider
a method to construct such functions based on a
triplet formed by a t-norm, a t-conorm and a strong
negation. Our main goal is to characterize those
triplets that define symmetric difference functions
which are distances.
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1. Introduction

Motivated by generalizations of the classical sym-
metric difference of sets, Alsina introduced
in [3] (see also [5]) the idea of construct-
ing distances from a t-norm T and its dual
T ∗ : T ∗(a, b) = 1− T (1− a, 1− b). Thus given a t-
norm T , Alsina defines dT (a, b) = T ∗(a, b)− T (a, b)
if a 6= b, dT (a, a) = 0, and proves that "if a t-norm
T is a copula then dT is a distance". There are
examples of continuous non-strict Archimedean
t-norms that are not copulas and that generate
distances (see [1]), proving that for continuous
t-norms the reciprocal of the Alsina’s result is not
true. In [1] a characterization of those t-norms
having zero region {(a, b); a + b ≤ 1} that induce
distances is given, however the complete character-
ization of those t-norms that induce distances is
still an open problem. The problem of generating
distances from a more general pair (S, T ) of a
t-conorm and a t-norm is also studied in [1].

In the same way that the linguistic "or" has the
functional model given by t-conorms, a functional
model for the linguistic "either or" by means of sym-
metric difference functions can be considered (see
[4]). By generalizing the classical expression of set
theory "either A or B" = (A∩Bc)∪(B∩Ac), we can
consider a class of symmetric difference functions
of the form 4(a, b) = S(T (a,N(b)), T (b,N(a))
where T, S,N are a t-norm, a t-conorm and a
strong negation respectively. Our main concern
in this paper is to give a characterization of those
triplets (T, S,N) such that the symmetric difference
functions 4 associated to them are distances.

In Section 2 basic definitions, examples and re-
sults are presented. Section 3 contains all the main
results of the contribution.

2. Preliminaries

We begin with the definitions of t-norm, t-conorm
and copula, and some properties and basic examples
(see [5] and [7]).

Definition 1 Let us consider functions
T, S : [0, 1]2 → [0, 1]. We say that T is a t-norm
if it is increasing in each variable, commutative,
associative and has neutral element 1. We say that
S is a t-conorm if it is increasing in each variable,
commutative, associative and has neutral element
0.

Definition 2 A function N from [0, 1] onto itself is
a strong negation if it is decreasing and involutive
(N2 = id).

Given a strong negation N , the N -dual t-conorm
of a t-norm T is T ∗(a, b) = N(T (N(a), N(b))).
Given a t-norm T , a t-conorm S, and a strong nega-
tion N , we say that (T, S,N) is a De Morgan triplet
if T and S are N -dual.

Example 1 Basic t-norms are the minimum
M(a, b) = min(a, b), the product Π(a, b) = ab, the
Łukasiewicz t-norm W (a, b) = max(a+b−1, 0) and
the drastic t-norm

Z(a, b) =

 a if b = 1,
b if a = 1,
0 otherwise.

Their dual t-conorms (with respect to the classical
strong negation N(a) = 1− a) are, respectively, the
maximum M∗(a, b) = max(a, b), the probabilistic
sum Π∗(a, b) = a+b−ab, the Łukasiewicz t-conorm
or bounded sum W ∗(a, b) = min(a + b, 1) and the
drastic t-conorm

Z∗(a, b) =

 a if b = 0,
b if a = 0,
1 otherwise.

Note that, for any t-norm T and t-conorm S, Z 6
T 6M 6M∗ 6 S 6 Z∗.
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Proposition 1 A continuous t-norm T is
Archimedean (T (a, a) < a for all a in (0, 1))
if and only if it has an additive generator, that
is, a strictly decreasing and continuous function
f : [0, 1]→ [0,∞] with f(1) = 0 such that

T (a, b) = f (−1)(f(a) + f(b)),

where f (−1) : [0,∞]→ [0, 1] is the pseudo-inverse of
f , defined by

f (−1)(a) =
{
f−1(a) if a 6 f(0),
0 otherwise.

An additive generator is defined up to a positive
multiplicative constant. On the other hand, if f is
an additive generator of a continuous Archimedean
t-norm T , then T is strict (strictly increasing on
[0, 1)2) if, and only if, f(0) =∞.

The t-norm Π is strict with additive generator
f(a) = − log a, and the t-norm W is non-strict
with additive generator f(a) = 1− a.

If T is a non-strict continuous Archimedean
t-norm with additive generator f , then
N(a) = f−1(f(0) − f(a)) is a strong negation
that we call associated to T . Note that T (a, b) = 0
if, and only if, b ≤ N(a).

We recall here also the definition of distance.

Definition 3 A function d : X × X → [0,∞) is a
distance on the set X if the following properties are
satisfied, for all a, b, c ∈ X:

1) d(a, b) = 0 if and only if a = b,
2) d(a, b) = d(b, a),
3) d(a, b) 6 d(a, c) + d(c, b).

3. Symmetric difference functions and
distances

Definition 4 A function4 : [0, 1]×[0, 1] −→ [0, 1]
is a symmetric difference function (SDF) if it sat-
isfies for any a, b ∈ [0, 1] :

41) 4(a, b) = 4(b, a),
42) 4(a, a) = 0, 4(a, 0) = a, N(a) = 4(a, 1) is a

strong negation.

Definition 5 Given T, S,N a t-norm, a t-conorm,
and a strong negation (not necessarily a De Morgan
triplet), we define the function:

4(a, b) = S(T (a,N(b)), T (N(a), b)) (1)

Next result was mentioned without proof in [2].
For the sake of completeness, we have included it in
this paper.

Proposition 2 4 is a SDF if, and only if,
T (a,N(a)) = 0 ∀a ∈ [0, 1].

In this case we say that 4 is the SDF associated
to the triplet (T, S,N).
Proof If 4 is a SDF, then 0 = 4(a, a) =
S(T (a,N(a)), T (N(a), a)) and thus T (a,N(a)) =
0 ∀a ∈ [0, 1].
Let us suppose now that T (a,N(a)) = 0,∀a ∈ [0, 1].
Then

4(a, a) = S(T (a,N(a)), T (N(a), a)) = S(0, 0) = 0

On the other hand,

4(a, 0) = S(T (a,N(0)), T (N(a), 0)) = S(a, 0) = a

and

4(a, 1) = S(T (a,N(1)), T (N(a), 1))
= S(0, N(a)) = N(a)

Finally,

4(a, b) = S(T (a,N(b)), T (N(a), b))
= S(T (N(a), b), T (a,N(b)))
= S(T (b,N(a)), T (N(b), a)) = 4(b, a)

Example 2 The SDF associated to the triplet
(W,W ∗, 1 − id) is the usual distance on [0, 1]:
4(a, b) = |a− b|.

We are interested in those triplets (T, S,N) such
that 4 defined in (1) is a distance.

Proposition 3 Given a triplet (T, S,N), the func-
tion 4 defined in (1) is a distance if, and only if,
the following conditions hold:

i) T (a, b) = 0 if, and only if, b ≤ N(a).
ii) For all x ∈ [0, 1] and any ε, δ ∈ R such that

0 ≤ ε ≤ 1− x, 0 ≤ δ ≤ 1−N(x), the following
inequality holds (see Figure 1)

T (x+ε,N(x)+δ) ≤ T (x,N(x)+δ)+T (x+ε,N(x))
(2)

x x+ ε

N(x)
N(x) + δ

Figure 1: The points involved in the condition (2).

Proof We know that 4 is symmetric. Let us
suppose now that the conditions i) and ii) hold
and let us prove that 4 is a distance. First
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of all, we have from condition i) that 4(a, a) =
S(T (a,N(a)), T (N(a), a)) = S(0, 0) = 0. On the
other hand, if 4(a, b) = 0, then T (a,N(b)) =
T (N(a), b) = 0 and from condition i), a ≤ b and
b ≤ a, thus a = b. Now we have to prove the trian-
gular inequality, that is, 4(a, b) ≤ 4(a, c)+4(c, b).
From i) we can write

4(a, b) =
{
T (a,N(b)) if b ≤ a
T (N(a), b) if a ≤ b

By symmetry, we can suppose that a < b; thus we
have to consider three cases: a < b < c, c < a < b
and a < c < b. The triangular inequality
for the first two cases follows immediately
from the increasingness of T . Let us consider
now the case a < c < b. We have to prove
that T (N(a), b) ≤ T (N(a), c) + T (N(c), b).
This inequality follows from (2) just by taking
x = N(c), ε = N(a)−N(c) and δ = b− c.

Conversely, let us suppose now that 4 is a
distance. Since 4(a, a) = 0, we have that
T (a,N(a)) = 0 for all a, and the monotonicity of
T gives that T (a, b) = 0 if b ≤ N(a). Now, if
T (a, b) = 0 for b > N(a), let c = N(b). Thus
4(b, c) = S(T (a,N(c)), T (N(a), c)) = S(0, 0) = 0,
which is impossible since a > c. Now we have
to prove the condition ii). Let us consider x ∈
[0, 1], 0 < ε ≤ 1 − x, 0 < δ ≤ 1 − N(x) and
a = N(x+ ε), b = N(x) + δ and c = N(x). Thus we
have that a < c < b and the triangular inequality
gives

T (x+ε,N(x)+δ) = T (N(a), b)

≤ T (N(a), c) + T (N(c), b)

= T (x+ ε,N(x)) + T (x,N(x) + δ)

which is (2).

Remark 1

i) If we take ε = 1 − a, δ = 1 − N(a) in (3), we
have 1 ≤ a+N(a), that is, N ≥ 1− id.

ii) If we take δ = 1 − N(a), we have a + ε ≤
a+ T (a+ ε,N(a)), that is, T (a+ ε,N(a)) ≥ ε.
Analogously, T (a,N(a) + δ) ≥ δ. Thus, if we
take N = 1− id, we have T ≥W .

iii) If 4 is a distance, then

4(a, b) =

 0 if a = b
T (N(a), b) if a < b
T (a,N(b)) if a > b

Observe that the values of 4 do not depend on
the t-conorm S.

iv) Condition (2) can be expressed as a condition
of "restricted subadditivity":

T (u⊕ v) ≤ T (u) + T (v) (3)

for any u = w + −→ε , v = w +
−→
δ , where w =

(a,N(a)) is a vector "on the negation N", −→ε =
(ε, 0),

−→
δ = (0, δ), 0 ≤ ε ≤ 1 − a, 0 ≤ δ ≤ 1 −

N(a), and u⊕ v = u+ v − w.

Proposition 4 Let (T,N) satisfying the conditions
in Proposition 3. If T is continuous on the graph of
N ({(x,N(x));x ∈ [0, 1]}), then it is continuous on
all its domain.

Proof Let us suppose that T is discontinuous at
(a, b) with b > N(a). Thus either T (·, b) is discon-
tinuous at a or T (a, ·) is discontinuous at b. Let us
suppose first that T (·, b) is right-discontinuous at a.
Then there exists λ > 0 such that

T (a+ ε, b)− T (a, b) ≥ λ ∀ε > 0

From condition (2) we have T (a + ε) ≤ T (a, b) +
T (a+ ε,N(a)), that is

λ ≤ T (a+ ε, b)− T (a, b)
≤ T (a+ ε,N(a))
= T (a+ ε,N(a))− T (a,N(a))

for all ε > 0, and thus T is not right-continuous at
(a,N(a)).

Let us suppose now that T (·, b) is left-
discontinuous at a. Then there exists λ > 0 such
that

∀ε > 0, T (a, b)− T (a− ε, b) ≥ λ

From condition (2) we have T (a, b) ≤ T (a− ε, b) +
T (a,N(a− ε)), that is

λ ≤ T (a, b)− T (a− ε, b)
≤ T (a,N(a− ε))
= T (a,N(a− ε))− T (a,N(a))

for all ε > 0. Then, from the continuity of N , we
have

λ ≤ T (a,N(a) + ε))− T (a,N(a))

for all ε > 0, and thus T is not right-continuous at
(a,N(a)).

The proof for the case of T (a, ·) is completely
analogous and it has been omitted.

Proposition 5 Given a triplet (T, S,N) with T a
continuous t-norm, the function 4 defined in (1) is
a distance if, and only if, the following conditions
hold:

i) T is a non-strict archimedean t-norm with as-
sociated negation N .

ii) The function f−1(1− id) is subadditive, where
f is the normalized additive generator of T
(f(0) = 1).
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Proof If 4 is a distance, then the condition
i) of Proposition 3 proves that T is a non-strict
archimedean t-norm with associated negation N .
Let now f be the additive generator of T with
f(0) = 1. Thus N(a) = f−1(1 − f(a)) and the
expression of 4 becomes

4(a, b) =

 0 if a = b
f−1(1− f(a) + f(b)) if a < b
f−1(1 + f(a)− f(b)) if a > b

that is, 4(a, b) = f−1(1 − |f(a) − f(b)|). Now the
triangular inequality for the case a < c < b becomes
f−1(1 − (f(a) − f(b))) ≤ f−1(1 − (f(a) − f(c))) +
f−1(1 − (f(c) − f(b))). If we take u = f(a) − f(b)
and v = f(c)− f(b), we obtain

f−1(1− (u+ v)) ≤ f−1(1− u) + f−1(1− v)

for all u, v ≥ 0 such that u+v ≤ 1. Thus f−1(1−id)
is subadditive.

Conversely, let us suppose now that the condi-
tions i) and ii) hold. From previous results, we
only have to prove the triangular inequality of 4.
But this result comes immediately from the above
reasoning.

Remark 2

i) Note that (T, S,N) does not need to be a De
Morgan triplet.

ii) The function f−1(1− id) is subadditive if, and
only if, 1− f is superadditive.

iii) If the t-norm T is a copula and 4 is a dis-
tance, then f is convex and thus f−1(1 − id)
is superadditive. Then f−1(1− id) is additive,
thus f−1(1− id) = id and therefore f = 1− id,
that is T = W .

iv) Let us observe that the if f−1(1− id) is subad-
ditive then N ≥ 1− id.

Proposition 6 If the additive generator f of T
is concave, then the condition ii) of Proposition 5
holds. The converse is not true, in general.

Proof If f is concave, then f−1 and h = f−1(1−id)
are also concave. Since h(0) = 0, the function h is
subadditive. To prove that the converse is not true,
let us consider f = g−1, where g(a) = −a3 + a2 −
a+ 1. The function f is not concave (since g is not
concave), but f−1(1−id) = g(1−id) is subadditive.
Thus the concavity of f is not a necessary condition
for (2) to hold.

Example 3 The generator of the Yager t-norms,
f(a) = (1 − a)λ where 0 ≤ λ ≤ 1, is a concave
function. The associated distance is

4(a, b) = f−1(1− |f(a)− f(b)|)
= 1− (1− |(1− a)λ − (1− b)λ|)1/λ

The generator of the Sugeno-Weber t-norms,
tλ(a) = 1 − ln(1+λa)

ln(1+λ) , is a concave function for any
λ ∈ (−1, 0). The associated distance is

4(a, b) = f−1(1− |f(a)− f(b)|)
= 1+λ

λ exp{ 1
ln(1+λ) · | ln

1+λb
1+λa |}

Proposition 7 Let us consider a triplet (T, S,N)
such that T (a, b) = 0 if, and only if, b ≤ N(a). If
N is concave and T is concave in each variable on
its positive region, then the condition (2) holds.

Proof Let a ∈ [0, 1], and ε, δ ∈ R such that
0 ≤ ε ≤ 1 − a, 0 ≤ δ ≤ 1 − N(a). If we
take α = N(a)−N(a+ε)

N(a)+δ−N(a+ε) , then we can write
(a+ ε,N(a)) = α · (a+ ε,N(a) + δ) + (1− α) · (a+
ε,N(a+ ε)).

Analogously, we have (a,N(a) + δ) =
α′ ·(a+ε,N(a)+δ)+(1−α′)·(N(N(a)+δ), N(a)+δ),
where α′ = a−N(N(a)+δ)

a+ε−N(N(a)+δ) .

Since T is concave and it equals 0 on the negation
N , we have T (a+ε,N(a)) ≥ α·T (a+ε,N(a)+δ) and
T (a,N(a) + δ) ≥ α′ · T (a+ ε,N(a) + δ). By adding
this two inequalities, we obtain T (a + ε,N(a)) +
T (a,N(a)+δ) ≥ (α+α′)·T (a+ε,N(a)+δ). Thus, if
we prove that α+α′ ≥ 1, we will have the condition
(2). Now a straightforward calculation proves that
α+ α′ ≥ 1 is equivalent to

(a−N(N(a) + δ)) · (N(a)−N(a+ ε)) ≥ ε · δ

and this inequality holds since N is concave (see
Figure 2).

N(N(a) + δ) a a+ ε

N(a+ ε)

N(a)
N(a) + δ

Figure 2: The points involved in the proof of Propo-
sition 7.

Remark 3 Under the conditions above, condition
(2) plus T concave in each variable in its positive
region do not imply that N is concave. Moreover,
condition (2) plus N concave do not imply that T is
concave in each variable in its positive region. Let
see two examples.
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Example 4 Let N be a strong negation. Let us
consider the (left-continuous but not continuous) t-
norm MN given by

MN (a, b) =
{

0 if b ≤ N(a)
min(a, b) if b > N(a) (4)

It can be proved that for any t-conorm S,
(MN , S,N) defines a distance through (1) if, and
only if, N ≥ 1− id. This distance is given by

4(a, b) =

 0 if a = b
min(N(a), b) if a < b
min(a,N(b)) if a > b

In the case when N = 1 − id (M1−id = TnM , the
nilpotent minimum), this distance becomes

4(a, b) =


0 if a = b
b if a < b, a+ b ≤ 1
1− a if a < b, a+ b ≥ 1
a if a > b, a+ b ≤ 1
1− b if a > b, a+ b ≥ 1

(see Figure 3).

a

b

1− a

1− b

Figure 3: Structure of the distance 4(a, b) in Ex-
ample 4, for the case N = 1− id.

The following result can be found in [6].

Proposition 8 Given a strong negation N , the t-
norms T such that
1) T (a, b) = 0 when b ≤ N(a)
2) T is positive and continuous in the region
{(a, b) : b > N(a)}

have the form

T (a, b) =



0,
if b ≤ N(a)

α+ (β − α)T1

(
a−α
β−α ,

b−β
β−α

)
,

if b > N(a),max(a, b) < β (α 6= β)

min(a, b),
if b > N(a),max(a, b) ≥ β

(5)
where 0 ≤ α ≤ β ≤ 1, N(α) = β, and T1 is a
continuous and non-strict archimedean t-norm with
zero region {(a, b) : b ≤ Nβ

α (a)}, where Nβ
α is the

strong negation defined by Nβ
α (a) = N((β−α)a+α)−α

β−α
(see Figure 4).

Remark 4

i) If α = 0 and β = 1, then N1
0 = N , and T is a

continuous and non-strict archimedean t-norm
with zero region {(a, b) : b ≤ N(a)}.

ii) The case α = β (point of symmetry of the nega-
tion N) means that T has the form:

T (a, b) =

 0 if b ≤ N(a)
min(a, b) if b > N(a),

max(a, b) ≥ β

that is, T = MN .

0

0

(∗)

min(a, b)

1
3

2
3

1
3

2
3

Figure 4: The structure of the t-norm in Propo-
sition 8 for α = 1/3, β = 2/3 and N = 1 − id,
where (∗) stands for α+ (β − α)T1

(
a−α
β−α ,

b−β
β−α

)
.

According to Proposition 3, Proposition 5, and
Example 4, we have

Proposition 9 For the t-norms T of the form
given in (5), the function 4 defined in (1) is a dis-
tance if, and only if, the following conditions hold:

i) N ≥ 1− id.
ii) 1−f is superadditive, where f is the normalized

additive generator of the t-norm T1 (with α 6=
β).

4. Conclusions

We present a full description of those triplets
(T, S,N), T a t-norm, S a t-conorm and N a strong
negation, such that the symmetric difference func-
tion 4(a, b) = S(T (a,N(b)), T (b,N(a)) is a dis-
tance.
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