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Abstract  

This work aims to develop a practical study of the uni-

norms as rule antecedent aggregation operator family in 

Linguistic Fuzzy Modeling. Although they are well 

known from a theoretical point of view, they have only 

recently been introduced in a few specific and recent 

applications. Uninorms are parameterized operators that 

combine the membership values in the antecedent in a 

more flexible way than the classically employed t-

norms. Therefore, we carried out an in-depth experi-

mental study with six of them, using 23 regression 

problems of different size and complexity, and reached 

some conclusions. 

Keywords: Linguistic fuzzy modeling, uninorms, evo-

lutionary fuzzy systems, adaptive inference systems. 

1. Introduction  

The design of Fuzzy Rule based Systems (FRBS) for 

practical fuzzy modeling is a complex task that requires 

finding the appropriate Knowledge Base, which in fact 

usually has greater impact on the behavior. 

Nevertheless, we can also deal with other important 

elements of FRBSs, such as the setup of the Inference 

System and Defuzzification Interface [1, 2]. The most 

interesting point is that they are complementary to those 

based on Knowledge Base improvements, and both to-

gether can reach higher levels of quality.  

Furthermore, these elements can use parameters and 

become adaptive [3]. It is acknowledged that improve-

ments in the accuracy of fuzzy modeling using adaptive 

Inference Systems and a Defuzzification Interface could 

be highly relevant [4, 5, 6].  

Focusing on the adaptive Inference System, the most 

common approach is to use adaptive conjunction opera-

tors as antecedent aggregation operators [4]. Then, one 

or more parameters are employed in their expressions to 

modify their behavior, allowing us to customize the 

way each rule infers.   

However, in the literature there are other suitable an-

tecedent aggregation operators  [7, 8, 9, 10]. In this 

work, we describe and carry out a practical comparative 

study on the use of more flexible antecedent aggrega-

tion operators. i.e. the uninorms family [11] as they 

have demonstrated their good performance in several 

applications [9, 10], but nowadays, there are no practi-

cal studies comparing them within their own family to 

see which ones shows the best behavior. 

Uninorms are parameterized operators that provide 

more degrees of freedom because they can behave as 

both, conjunction and disjunction, expanding the ante-

cedent aggregation options and therefore encouraging 

better cooperation between the fuzzy rules and conse-

quently more accurate fuzzy models. They can provide 

a better chance of adapting the way in which each rule 

is involved beyond the usual expression of connective 

aggregation operator implemented with a t-norm.  

To carry out the aforementioned comparative study 

we chose different representative uninorms of the 

minimum family (Umin) [12]. This subfamily fulfils the 

requirements for use as conjunction operators. We 

tested them with 23 different problems with diverse 

number of variables and examples, and perform a non-

parametric statistical analysis to establish a comparison 

among them. 

In order to show what we did, the paper is organized 

as follows: Section 2 describes the uninorms family of 

operators. Section 3 depicts the evolutionary learning 

algorithm we propose to learn their parameter, and Sec-

tion 4 studies and analyzes the practical behavior shown 

by them. Finally, Section 5 presents some concluding 

remarks. 

2. Linguistic fuzzy modeling using uninorms as ag-

gregation operators. 

In this section, we depict the basics of the uninorms 

used as fuzzy antecedent aggregation operators in lin-

guistic or Mamdani fuzzy modeling. First of all, we 

briefly describe the use of aggregation operators in 

fuzzy modeling, the previous use of parameterized ag-

gregation operators, and finally, we arrive to the use of 

uninorms. 

As is well known, linguistic FRBSs for system mod-

eling use IF - THEN rules of the following type: 

Ri : If Xi1  is Ai1 and ... and Xin is Ain then Y is Bi (1) 

with i = 1 to M, where M stands for the number of rules 

of the Rule Base (RB), Xi1 to Xin and Y for the input and 

output variables respectively, and Ai1 to Ain and Bi for 

the involved antecedents and consequent labels, respec-

tively. 

The expression of the Compositional Rule of Infer-

ence in fuzzy modeling with singleton fuzzification is 

as follows: 
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B' (y) = I (A (A1 (x1) , ... , An (xn)), B (y)) (2) 

where B' is the membership function of the inferred 

consequent, I is the rule connective or implication op-

erator, A is the aggregation operator or antecedent con-

nection, Ai are the values of the matching degree of 

each input of the system with the membership functions 

of the rule antecedents, and B is the consequent of the 

rule. 

Therefore, the Inference System performs the two 

following tasks: 

1) First, it computes A (A1 (x1) , ... , An (xn)), which 

is the aforementioned matching degree of each rule. 

Usually, the aggregation operator A (.) is modeled with 

a t-norm. 

2) Second, it infers using the fuzzy rule connective 

I(.), the previously computed matching degree and the 

consequent of the rule. Fuzzy rule connectives can be 

classified into different families, of which implication 

functions [13] and t-norms [14] are the best known.  

Frequently, t-norms are used as aggregation operator 

and inference operator [2, 14, 15]. The expressions of 

the most used classic t-norms are: 
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Although their use is less common, t-conorms [6] 

(disjunctive aggregation) can also be used. T-conorms 

(also called s-norms) are dual to t-norms under the or-

der-reversing operation which assigns 1 – x to x in [0, 

1]. Given a t-norm, the complementary t-conorm is de-

fined by: 

 

⊥                   (9) 

 The most typical, which we shall use later in this 

study, are: 
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In another sense, the use of parameterized aggrega-

tion of the antecedents in fuzzy modeling to particular-

ize the way each rule aggregates its antecedents has 

been studied, e.g., in [4, 8]: In [8] an interesting study 

was carried out, seeking better performance than tradi-

tional minimum or product t-norms for the antecedent 

connections. The authors suggested the use of adaptive 

t-norms to look for better performance than those not 

parameterized. They studied the use of adaptive con-

nectors that are extended from t-norms and t-conorms 

in order to cover the range between them, including S-

OWA and compensatory and operators and many oth-

ers. Fig. 1 shows the ranges covered by them. Other re-

cent studies can be found in [7]. In [4] authors compare 

the use of a single parameter to globally tune the behav-

ior of the antecedent connector and individual parame-

ters for every rule, having a local tuning mechanism of 

the behavior of the inference system for every rule. This 

model shows the highest accuracy because of its high 

degree of freedom. Therefore, in this study, we learn 

the antecedent connector for every rule separately. 

 
Fig. 1:  Ranges covered by adaptive t-norms, adaptive t-

conorms, compensatory and, and S-OWA operators. 

 

In [4, 5], also using adaptive t-norms, the greatest 

impact of the parameterized aggregation is shown 

against the parameterization of the inference or rule 

connective operator.  

Furthermore, some authors studied forms of aggrega-

tion operators different from conjunction in linguistic 

fuzzy modeling, as for certain applications other opera-

tors performing between the conjunction and disjunc-

tion showed good behavior [11, 16]. One of these is the 

uninorms [11], a family of operators that have been 

used quite successfully in various applications [9, 10]. 

Uninorms were introduced by Yager and Rybalov 

[11] as a generalization of both t-norms and t-conorms. 

They allow for a neutral element lying anywhere in the 

unit interval rather than at one or zero, as in the case of 

t-norms and t-conorms. 

Definition [10]. A uninorm U is a commutative, as-

sociative and increasing binary operator U : [0,1]
2
 → 

[0,1]  with a neutral element  

 

e  [0,1], i.e., U(e,x) = x , ∀x   [0,1]  (16) 

 

Obviously, the case e = 1 leads back to t-norms, 

while the case e = 0 leads back to t-conorms. For any 

uninorm U, one of the following two cases always 

holds [12]: 

 U is a conjunctive (or and-like) uninorm: U (1,0) 

= U (0,1) = 0. 
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 U is a disjunctive (or or-like) uninorm: U (1,0) = 

U (0,1) = 1. 

The structure of any uninorm U, as shown in Fig. 2, 

is a t-norm in [0,e]
2
 and a t-conorm in [e,1]

2
 and takes 

values between the minimum and maximum in the 

other cases, that is, in the subset of unit square given for 

 

                              (17) 

 
Fig. 2: General structure of a uninorm U with neutral element 

e. 

 

One of the best known families of uninorms is Umin 

(see [12]). These uninorms, which are always conjunc-

tive, are constructed from a t-norm T and t-conorm S 

using the minimum in the region De, i.e., 

 

          

 
 
 

 
     

 

 
 
 

 
             

          
   

   
 

   

   
               

                    

  

 

(18) 
 

Fig. 3 shows two uninorms belonging to the Umin 

class, where the minimum and algebraic product are 

taken as t-norms, and as t-conorms the associated 

maximum and algebraic sum, respectively. 

In this study we consider a parameter e determined 

for each rule, i.e. we will have as many parameters as 

rulers (ei), in order to have a local aggregation mecha-

nism for each rule. Thus, we try to obtain the best re-

sults in accuracy as we obtained when we studied the 

adaptive t-norms [4, 5] previously. This model general-

izes those based on t-norms [2] and t-conorms [6] when 

ei = 1 and ei = 0 respectively for every rules of the RB.  

The use of uninorms as adaptive aggregation operator  

allows us to adapt the influence of the matching degree 

in a particular way. The effect of the parameters in the 

adaptive conjunction is as follows: The neutral element 

determines in each case whether the aggregation opera-

tor uninorm acts as t-norm (conjunction), as t-conorm 

(disjunction), or as another operator (area De). 

 The area De of Umin also behaves as a conjunction 

operator. In addition, you can choose the t-norm and t-

conorm you want. Note that the use of conjunctive uni-

norms does not change the logical meaning of the infer-

ence of the classical case. This is because these opera-

tors match with the classical conjunction when we re-

strict to [0,1]
2
.  

 

 

        
                

                  

  

 

 
 

 

        
                 

                   
  

 

 
Fig.3: Uninorms of Umin considered with   

 

 
. 

 

When using uninorms, it should be noted that the ag-

gregation of each rule behavior not only depends on the 

value of the ei parameter to be a conjunction of a dis-

junction, because it also depends on the value of the 

matching of the antecedents, i.e., the same specific 

value of the ei parameter could aggregate the antece-

dents of a rule as a conjunction or a disjunction also de-

pending on the values of each input value. Therefore, it 

is not simply a mechanism that makes each rule always 

use conjunctive or disjunctive aggregation. Viewing 

Fig. 3, where e = 0.5, the operator acts on the top of the 
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chart as a conjunction for certain values of x and y, and 

as a disjunction on the remainder. 

3. Evolutionary Learning of Uninorms for Infer-

ence System 

In this section, we describe the evolutionary model 

we propose to learn the adaptive aggregation operators 

based on uninorms.  

In our previous studies on adaptive conjunction op-

erators based on parameterized t-norms, we used evolu-

tionary algorithms with real coding [4, 5]. They proved 

to be very suitable in this task, so we decided to use 

them again in this study. The evolutionary algorithm 

selected is a well known CHC type genetic algorithm 

[17]. Its goal is to learn the neutral element ei for each 

rule of the RB. 

 

3.1. Codification scheme and initial population  

We use a real coding scheme of size m (with m repre-

senting the number of rules of RB) in which the aggre-

gation operator of the different rules is coded, 

 

A = (e1, . . . , em) | ei    [0, 1]. 

 

 Each gene ei represents the corresponding parameter 

that belongs to the i-th rule. The initial population will 

be comprised of two different kind of individuals: A 

single one that has all the genes initially set to 1 in or-

der to begin the evolutionary process with all the rules 

with the aggregation operator set as a t-norm (depend-

ing on the t-norm used to built the uninorm), and the 

remaining individuals randomly initialized within the 

interval [0, 1]. 

 

3.2. Evaluation 

The fitness function used was the classical Mean 

Square Error (MSE) which measures the accuracy of 

the system.  

 

 
(19) 

where FM denotes the fuzzy model whose Inference 

System uses the adaptive aggregation operator based on 

uninorms; the inference operator is the Minimum t-

norm, and the defuzzification method is the Centre of 

Gravity weighted by the matching degree. This measure 

uses a set of system evaluation data formed by P pairs 

of numerical data Zk =(xk, yk), k = 1,..,P, with xk as the 

values of the input variables, and yk as the correspond-

ing values of the associated output variables.  

 

3.3. Crossover operator 

Although the CHC evolutionary model was con-

ceived for binary-coded problems, there are real-coded 

versions. In these cases, the BLX- [18] crossover is 

used in order to recombine the parent’s genes (we set  

= 0.5). This produces two descendents for each pair of 

parents, so the offspring generated by this crossover op-

erator is of the same size as the initial population. The 

Hamming distance is computed by translating the real-

coded genes into strings and by taking into account 

whether each character is different or not. Only those 

string pairs which differ from each other by some num-

ber of bits (mating threshold) are crossed. 

The initial threshold is set to L/4, where L is the 

length of the string. When no offspring is inserted into 

the new population, the threshold is reduced by 1. 

 

3.4. Restart 

No mutation is applied during the recombination 

phase. Instead, when the population converges or the 

search stops making progress (i.e., the difference 

threshold has dropped to zero and none of the new gen-

erated offspring are better than any member of the par-

ent population), the population is reinitialized. The re-

started population completely consists of random indi-

viduals except for one of them, which must be the best 

individual found so far. 

4. Experimental study and analysis of results 

The purpose of this work is to analyze and compare 

the practical behavior of various representative uni-

norms of the Umin family as adaptive aggregation opera-

tor. To do so, we selected 23 different problems with 

diverse complexities (different number of variables and 

patterns/data samples). Table 1 summarizes the main 

features of the different problems considered and their 

link to the KEEL dataset repository [19], and UCI Ma-

chine Learning Repository where they can be 

downloaded. Problems were selected from lower to 

higher complexity, covering a range from 2 to 16 input 

variables and from 43 to 20,640 examples. 

This section is organized as follows: 

 First, in Subsection 4.1 we describe the experi-

mental setup and introduce and justify the differ-

ent uninorms used.  

 Second, Subsection 4.2 focuses on comparing and 

analyzing the result of the different uninorms.  

 

4.1. Experimental Setup 

This section describes the experimental setup, includ-

ing a brief description of the methods and the non-

parametric statistical tests considered for the performed 

comparisons.  

To evaluate the effectiveness of the uninorms and es-

tablish a comparison, we built several adaptive Fuzzy 

Inference System models based on adaptive aggregation 

operators using the uninorms. Specifically, we chose a 

set of uninorms derived from Umin family. In this sense, 

we have selected all the classic t-norms and the associ-

ated t-conorm for each one. 

The whole set of fuzzy models are illustrated in Ta-

ble 2. We have the evolutionary aggregation models, 

which are based on the linguistic RB learned with the 

WM-method, and later altering their parameterized 

connectors using quite a few combinations of several 

uninorms of Umin. 
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Problem Abbr. Inst. Var. Repo. 

Diabetes DBT 43 2 KEEL 

Electric-1 ELE1 495 2 KEEL 

Plastic PLA 1650 2 KEEL 

Quake QUA 2178 3 KEEL 

Electric-2 ELE2 1056 4 KEEL 

Laser LAS 993 4 KEEL 

AutoMPG6 MP6 392 5 KEEL 

Friedman FRI 1200 5 KEEL 

Dee DEE 365 6 KEEL 

MachineCPU CPU 209 6 KEEL 

Anacalt ANA 4052 7 KEEL 

AutoMPG8 MP8 392 7 KEEL 

Abalone ABA 4177 8 KEEL 

California CAL 20640 8 KEEL 

Concrete CON 1030 8 KEEL 

Stock STP 950 9 KEEL 

Weather Ankara WAN 1609 9 KEEL 

Weather Izmir WIZ 1461 9 KEEL 

Wine-red WIR 1599 11 UCI 

Forest Fires FOR 517 12 KEEL 

Mortgage MOR 1049 15 KEEL 

Treasury TRE 1049 15 KEEL 

Baseball BAS 337 16 KEEL 

Table 1: Datasets considered for the experimental 

study. They are available at KEEL and UCI reposito-

ries: (http://sci2s.ugr.es/keel/datasets.php) 

(http://www.ics.uci.edu/~mlearn/MLSummary.html). 

 

Method Description 

            Built with TMinimum SMaximun(Fig. 3a) 

            Built with THamacher  SHamacher  

            Built with TAlgebraic SAlgebraic (Fig. 3b) 

            Built with TEinstein  SEinstein 

            Built with TBounded SBounded 

            Built with TDrastic  SDrastic 

Table 2: Uninorms considered for comparison 

 

The population size of the evolutionary algorithm 

was fixed to 61 individuals. The evolutionary algo-

rithms performed 10000 evaluations. Concerning the 

Knowledge Bases, linguistic partitions were considered 

consisting of 3 triangular shaped linguistic terms for all 

problems.  

Table 3 shows the average number of rules (#R) and 

the MSE with training and test datasets of the FRBSs 

whose RBs were obtained with the well-known ad-hoc 

data driven algorithm of Wang and Mendel (WM) [20]. 

They are shown simply as a reference. 

We considered a 5-fold cross-validation model, i.e. 5 

random partitions of data each with 20%, and the com-

bination of four of them (80%) as training and the re-

maining one as test. For each of the 5 data partitions, 

the evolutionary methods were run six times using dif-

ferent seeds for the random number generators, show-

ing for each problem the averaged results of a total of 

30 runs. To compare the different approaches, we focus 

on MSE for training and test. For each dataset, we 

compute the mean values over the 30 trials of the MSE 

on the training and test sets.  

 

Name #R MSETRA MSETST 

DBT 15.8 0.16754 0.28898 

ELE1 12.4 234712 242043 

PLA 14.8 3.43445 3.55722 

QUA 53.6 0.02582 0.02666 

ELE2 65 56135 56359 

LAS 58.4 132.60 139.28 

MP6 116 4.338 6.819 

FRI 766.2 1.458 2.532 

DEE 178.4 0.07059 0.11444 

CPU 41 1134 3859 

ANA 123.6 0.02703 0.03009 

MP8 161.4 4.142 7.178 

ABA 199 3.341 3.476 

CAL 623.8 38.3230 38.7122 

CON 309.8 35.3 47.6 

STP 265.4 1.452 1.487 

WAN 456.8 4.878 6.128 

WIZ 399.2 3.107 4.007 

WIR 714.2 0.22936 0.25095 

FOR 374.6 1435 34234 

MOR 198.8 0.12812 0.13387 

TRE 196 0.40155 0.40529 
BAS 252.6 78213 648520 

Table 3: Reference values of average number of rules 

and MSE of the FRBSs, with Minimum t-norm aggre-

gation. Values of MSE in this table must be multiplied 

by 10
8
 in the case of CAL. 

 

To assess whether there are significant differences 

among the results, we use statistical analysis [21, 22] 

and in particular non-parametric tests. We employ dif-

ferent approaches for multiple comparisons, including 

Friedman’s test [23], to detect statistical differences 

among a group of results, and the Finner post-hoc test 

[24] to observe the difference in performance between 

the methods and the retention or rejection of the hy-

pothesis with the level of significance fixed. To perform 

the tests, we used a level of confidence  = 0.05. In par-

ticular, these tests are based on computing the differ-

ences on sample means (typically, mean test errors ob-

tained by a pair of different algorithms on different 

datasets). In the classification framework, these differ-

ences are well defined, as the errors are in the same 

domain. In the regression framework, to make the dif-

ferences comparable, we adopt a normalized difference 

DIFF, defined as: 

 

(20) 

where Mean(x) represents the MSE obtained by the x 

algorithm. This difference expresses the improvement 

percentage of the reference algorithm on the other one. 

 

4.2. Results and Analysis 

The results obtained by the different FRBSs are shown 

in Table 4. This table is grouped in columns by FRBSs 

models based on the different uninorms to be compared 

and shows the average of the results obtained by each 

model for all the datasets employed. For each one, the 

)(

)()(

otherMean

referenceMeanother  Mean
DIFF  = 


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columns show the average MSE for training and test 

datasets, respectively. We have highlighted in bold the 

best accuracies for test. 

Table 5 shows the rankings obtained with the Fried-

man’s test. They tell us that there are significant differ-

ences among the results observed with all datasets ex-

cept one when the p-Fried <0.05. Indeed, there are sig-

nificant differences in MSETST. The best ranking is ob-

tained by            . However, we can point out that 

             is very close. 

Finally, Table 6 shows the results when using Fin-

ner’s post-hoc procedure to compare the best ranking 

model in each case with the remaining ones. Algorithms 

are ordered by the p-value. Indeed, the Finner test re-

jects the hypothesis of equality for MSETST when the 

control algorithm is             except for           . 

Therefore, analyzing the results from Table 4, and 

the statistical evidence obtained on Tables 5 and 6, we 

can highlight that: 

 The model             achieves the best accuracy 

with statistical significance compared to the re-

maining models, except with             , which 

shows the second best result of the study. Thus, 

they are the two most recommended uninorms for 

use in linguistic fuzzy modeling in practice.  

 The worse results were obtained by             

and            , surely because they come from 

the Drastic and Hamacher connectives, which were 

the worst in the conjunction comparative study car-

ried out in [1]. 

 

 We can also point out that the uninorm that comes 

from the Minimum t-norm and Maximum t-conorm 

is not among the better results obtained as might be 

expected. 

5. Conclusions and Future Works 

In this work we have studied and compared the use 

of different uninorms of Umin family for linguistic fuzzy 

modeling. We have proposed an evolutionary learning 

model where the aggregation connector parameters are 

learnt, performing an Evolutionary Adaptive Inference 

System based on an aggregation operator using uni-

norms. 

The flexibility of the parameterized antecedent ag-

gregation based on uninorms improves the accuracy of 

linguistic fuzzy models. We compared the accuracy of 

six models built with uninorms employed with  23 dif-

ferent application, and performed a statistical study. We 

found that the uninorms based on the Algebraic and 

Einstein product and their associated t-conorm are the 

ones that show the best mean accuracy. 

Finally, we are extending the study, increasing the 

number of uninorms and using other parameterized  

connectives as adaptive t-norms. 

 

Method Ranking on MSETST 

(p-value Fried: 4.249E-8) 

            3.56521 

            4.47826 

            2.17391 

            2.21739 

            3.60869 

            4.95652 

Table 5: Rankings obtained with Friedman’s test on 

MSETST . 

 
Datasets                                                                         

 MSETRA MSETST MSETRA MSETST MSETRA MSETST MSETRA MSETST MSETRA MSETST MSETRA MSETST 

DBT 0.10823 0.26949 0.10337 0.27501 0.09911 0.28248 0.09712 0.28925 0.09129 0.29752 0.07062 0.3322 

ELE1 201347 222140 198936 217899 194222 212767 192269 210907 186487 211457 186252 231996 
PLA 1.94901 2.04138 3.1608 2.89966 1.77626 1.86015 1.75806 1.84078 1.7357 1.81337 1.89159 1.97871 

QUA 0.02166 0.02284 0.02129 0.02244 0.02117 0.02254 0.02093 0.02242 0.02067 0.02243 0.02014 0.02231 

ELE2 38664 41356 55418 55531 31695 34704 32195 35973 36525 42534 41958 48857 
LAS 80.47 100.52 68.34 76.40 45.19 61.10 42.86 60.38 42.74 62.55 43.51 71.67 

MP6 2.871 6.049 4.214 3.648 2.429 5.790 2.348 5.899 2.228 6.253 2.201 6.309 

FRI 1.138 2.484 0.996 2.407 0.938 2.371 0.931 2.488 0.965 3.091 1.140 3.527 
DEE 0.04941 0.10866 0.04956 0.11055 0.03973 0.11356 0.03724 0.11824 0.03359 0.13019 0.03301 0.14142 

CPU 866 3600 1112 3816 744 3445 751 3465 739 4917 682 4990 

ANA 0.00763 0.01093 0.02697 0.03004 0.00758 0.01098 0.00756 0.01097 0.00756 0.01112 0.00754 0.01127 
MP8 2.765 6.685 4.185 7.158 2.302 6.382 2.207 6.407 2.048 6.740 2.132 6.840 

ABA 2.754 2.967 3.293 3.421 2.458 2.720 2.408 2.692 2.370 2.694 2.403 2.779 

CAL 27.7969 28.4289 37.5960 37.9909 23.5117 24.4011 22.9556 23.8884 22.7064 23.7248 23.2553 24.3343 
CON 23.7 40.8 35.8 47.5 18.4 36.32 17.6 36.37 17.5 38.5 20.4 41.5 

STP 0.880 1.011 0.760 0.868 0.562 0.694 0.547 0.690 0.553 0.709 0.584 0.758 
WAN 2.933 4.682 4.700 5.907 2.454 4.338 2.512 4.507 2.630 5.313 2.932 5.959 

WIZ 1.840 2.985 2.958 3.839 1.417 2.603 1.471 2.665 1.601 3.072 1.820 3.777 

WIR 0.19185 0.22784 0.20948 0.22976 0.15967 0.21693 0.15503 0.21508 0.14891 0.2211 0.14865 0.23139 
FOR 1242 19743 1460 19800 965 19783 949 20149 1017 28175 1057 31042 

MOR 0.05496 0.06695 0.1263 0.11212 0.04939 0.06426 0.04986 0.06443 0.05099 0.06764 0.05806 0.07466 

TRE 0.15922 0.17671 0.365 0.24639 0.11451 0.13932 0.1152 0.14198 0.11719 0.14512 0.12356 0.16089 
BAS 59739 620092 84197 617578 49115 635217 49122 639570 51942 750424 54379 809707 

Table 4: Average results of the six different adaptive conjunction FRBS models based on Uninorms. Results in this 

table for MSE must be multiplied by 10
8
 in the case of CAL. 
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I Method pFinner Hypot 

1             2.1688389 E-6 Reject. 

2             1.1266681 E-4 Reject. 

3             0.023341040 Reject. 

4             0.023341040 Reject 

5           
  0.937182922 Accept 

Table 6: Finner’s test table with p-value= 0.05 for the 

methods on MSETST on accuracy. Control:            . 
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