
 Fuzzy-enhanced path-finding algorithm for AGV

roadmaps
M. Sc. Sarah Uttendorf

1
 , Prof. Dr. Ludger Overmeyer

2

1
 M.Sc. Sarah Uttendorf, IPH- Institut für Integrierte Produktion Hannover, Hollerithallee 6

30419 Hannover, Germany, uttendorf@iph-hannover.de
2
Prof. Ludger Overmeyer, IPH- Institut für Integrierte Produktion Hannover,

overmeyer@iph-hannover.de

Abstract

Path-finding algorithms (PFA) are successfully used to

find the optimal path between two locations. Good

results are obtained if they are used in scenarios where

the entire environment can be described

mathematically. Production environments of automated

guided vehicles (AGVs) are not one of those. PFA find

solutions that are mathematically correct but miss

human expertise that would dismiss solutions of the

algorithm that aren’t applicable to a real production

layout. This paper presents a hybrid algorithm

consisting of an A* algorithm, and a fuzzy logic control

in order to generate a fuzzy-enhanced A* algorithm

(FEA*) that produces efficient and applicable road

maps for AGVs. First computational results are shown.

Keywords: Path- finding algorithm, Fuzzy-logic, expert

system, AGV, road maps

1. Introduction

With the increasing industrial automation of production

processes, the use of automated guided vehicles

(AGVs) in the manufacturing environment is increasing

as well. Not only the tasks of the AGVs become more

and more complex [01] but also the environment they

are operating in is increasing in size and complexity. As

a result the task of designing a feasible road map for

AGVs becomes more demanding. The basis for the

process of designing a roadmap is e.g. the transport

matrix, the kinematic properties of the AGV or the

layout of the production environment. These and more

factors can be implemented in a traditional optimization

problem in order to use it for classical PFA. The aim of

those is to find an optimal roadmap in a given

production environment. Figure 1 shows a test

environment of a track-guided AGV system.

Figure 1: Test environment of a track- guided AGV

system

The multiobjective nature of the optimization problem

is a challenge as well because the objectives and their

priorities change depending on the particular AGV

system. For example in some cases it is more important

to minimize the path lengths, in other cases the priority

is to combine as many paths as possible in order to save

space. An efficient algorithm has to take the variation

of these priorities into account and should be able to be

easily modified if the circumstances of the AGV system

are changing.

Even though it would be possible to generate

specialized multiobjective functions for the problem of

finding the mathematically best AGV roadmap in a

given layout, the PFA would still generate roadmaps

that aren’t applicable to a real-world production layout.

Some real world problems can be easier described in a

linguistic way, rather than a mathematically sense. For

example the problem: “If there are areas with many

crossings of paths and the alternative route won’t be

too long, than take the alternative.” It would be very

difficult to actually implement this statement in a

mathematical model. A linguistic phrase like “many” or

“too long” is too vague to assign them an exact number

but it is possible to assign them a value range. This way

the information can be made useable in the process of

finding an optimal roadmap.

Current planning processes of AGVs rely heavily on

manual work. System planers have gained experience

on how to design a feasible roadmap without the use of

algorithms. Besides the extensive time consuming

manual work that is necessary, this approach is only

feasible in small production environments since the user

has to define every single way. With an increasing

transport matrix and higher dependencies with the

stations it gets more and more complicated to get

optimal paths layouts without the use of an optimization

tool.

In order to obtain a feasible roadmap that is not lacking

human expertise this paper presents a hybrid algorithm

that combines established modified A* (mod A*) path

finding algorithm with a fuzzy controller. As a result

road maps are generated that follow both a

mathematically optimization process and also get input

from human planning.

16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

© 2015. The authors - Published by Atlantis Press 675

This paper is divided into the following sections:

Section 2 introduces the current state of technology. In

section 3 the overall workflow of the FEA* is explained

an in Section 4 the modified A* is discussed. Some

modification resulting from the restrictions of the AGV

environment have been implemented.

Section 5 deals with the fuzzy-logic controller and the

combination of the fuzzy logic and the modified A*.

All of the three main components, the fuzzyfication, the

rule& data base and the defuzzyfication principle are

discussed. In Section 6 a discussion of the results of the

FEA* takes place and section 7 gives ideas for further

research.

2. State of technology

Different systems already exist in order to obtain

optimal roadmaps. [02] already implemented a

modified A* algorithm for path planning for a mobile

robot. In this approach several modifications have been

imposed for the A*. The main focus here is the

computational time and the path optimality. The

performances of the different modifications of the

algorithm were compared with the computational time,

the length of the path, number of examined cells and the

symmetry of the examined environment. The proposed

algorithm is able to find shortest paths quickly but

wouldn’t be suitable in AGV environments, because too

much free space is being consumed by the paths and

important factors like the number of direction changes

or the consideration of alternative ways are being

neglected.

[03] introduces a light-assisted A* algorithm for path

planning. He focuses on avoiding dynamic obstacles

and expands fewer nodes than the traditional A*. The

production environment is seen as a dark room where

obstacles are highlighted and can therefore be foreseen

in the path planning process of the A*. For each node of

the map a brightness score is calculated that is later on

included in the cost-function.

What all these papers have in common is that they are

either focusing on finding the shortest path or

increasing the time efficiency in finding one. In case of

outlying an efficient roadmap for AGVs a short

computation time and short paths are important as well,

but generating an algorithm that is able to construct

feasible and applicable roadmaps is from bigger

importance.

The idea of building a hybrid with the help of Fuzzy

Logic is already used with different integrated

components. [04] combines two Fuzzy Inference

Systems (FIS) where each FIS has a different task. The

first FIS is responsible for the tracking and the second

FIS for the reaction task of autonomous mobile robots.

The outputs of both FIS are integrated through a

weighted FIS.

[05] also uses a Fuzzy Logic controller to enable

autonomous robot navigation. His hybrid system

includes frameworks for goal determination,

preprocessing, behavior design, behavior arbitration and

finally a command fusion. The obtained results are

good but computation time was not one of the concerns.

The approach of this paper is tough to combine a fast

heuristic approach (the mod A*) with the Fuzzy-logic

in order to generate feasible roadmaps in a short period

of time. Computational effort is meant to be minimized.

3. The Fuzzy-enhanced A* (FEA*)

Figure 2 shows the overall workflow of the FEA*. In

the beginning all the necessary information, e.g. the

production layout or the transport matrix, are loaded

into the system. The mod A* is run on these

information. An initialed AGV roadmap is generated.

The focus is primarily on finding the shortest path from

e.g. station 𝑠1 to station 𝑠2 with some basic AGV forced

constraints, such as a certain security distance from the

wall or from existing paths to prevent collisions.

After the first run of the A* important characteristics of

the initial road map are transmitted to the Fuzzy-Logic

Controller (FLC). With the input of the mod A* the

FLC is able to make “intelligent reasoning” and gives

its output in the form of the parameters

𝛼, 𝛽, 𝛾, … back to the mod A*. These parameters are

directly used in the cost function of mod A*.

After the second run of mod A* an inquiry is started if

the desired goal for the road map is reached. This

inquiry can be based on a predetermined number of

runs of the A* or on other criteria, e.g. a desired length

of the road map or shortest paths between stations. So

far the algorithm stops after a certain count on loops.

That way the user can determine the optimal level of

trade between construction time and efficiency of the

road map.

Afterwards the algorithm ends and the generated

roadmap is transferred to a .csv file.

Figure 2: Flow diagram of the FEA*

676

4. Implementation of a modified A* (mod A*)

algorithm

As figure 2 shows a modified version of the traditional

A* is used. Reason behind this is, that some changes

(e. g. reduction of diagonal paths) to the A* can be

made without the use of a FLC in order to make the

generated road map more realistic.

4.1. The traditional A* algorithm

The A* algorithm was developed in 1968 by Peter Hart,

Nils J. Nilsson and Bertram Raphael. The algorithm

uses a heuristic in order to minimize computation time.

The A* is based on the search strategy of finding a path

with minimum costs ([06], [07]). [07] shows that the A*

is suitable for solving origin-to-destination shortest path

problems and is quicker than the commonly used

Dijkstra algorithm.

In order to use the A* in an AGV environment, the

given production layout is divided into an equally

spaced grid where each cell resembles an area in the

production layout.

The algorithm finds the cheapest paths between two

points or in the AGV scenario between two stations 𝑠1

and 𝑠2 through the use of a cost function. The cost

function can be expressed as:

 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) (1)

where h(x) is a heuristic used to estimate the costs from

the current cell x to the goal cell 𝑠2. The estimated costs

must never exceed the actual costs of the path. For the

implemented A* in this paper the Euclidean distance is

used as a heuristic:

 ℎ(𝑥) = √(𝑥𝑥 − 𝑥𝑠2)2 + (𝑦𝑥 − 𝑦𝑠2)2 (2)

g(x) ressembles the hitherto existing costs from the start

station to the current point x.

𝑔(𝑥)

= {
𝑥. 𝑝𝑟𝑒. 𝑐𝑜𝑠𝑡𝑠 + √2𝑐(𝑥) 𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑐𝑒𝑙𝑙𝑠

𝑥. 𝑝𝑟𝑒. 𝑐𝑜𝑠𝑡𝑠 + 𝑐(𝑥) 𝑒𝑙𝑠𝑒

(3)

c(x) resembles the cost of the specific cell x. This cost

depends on the weighting of the cell. Cells with no

obstacles are assigned a value of 1, cells with some kind

of constraints, e.g. crossing paths, are assigned a higher

value, e.g. 3 and obstacles are assigned a value of 9999.

In this case

 𝑐(𝑥) = 𝑐𝑜𝑛𝑠𝑡. (4)

is assumed.

The A* process can be described with the following

Pseudo-Code [08]:

1. Create a search graph G, consisting solely of the

start node, 𝑠1. Put 𝑠1 on a list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. If OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove it from

OPEN, and put it on CLOSED. Call this node x.

5. If x is a goal node, exit successfully with the

solution obtained by tracing a path along the

pointers from x to 𝑠1 in G. (The pointers define a

search tree and are established in Step 7.)

6. Expand node x, generating the set M, of its

successors that are not already ancestors of x in G.

Install these members of M as successors of x in G.

7. Establish a pointer to x from each of those

members of M that were not already in G (i.e., not

already on either OPEN or CLOSED). Add these

members of M to OPEN. For each member, m, of

M that was already on OPEN or CLOSED, redirect

its pointer to x if the best path to m found so far is

through x. For each member of M already on

CLOSED, redirect the pointers of each of its

descendants in G so that they point backward along

the best paths found so far to these descendants.

8. Reorder the list OPEN in order of increasing f

values. (Ties among minimal f values are resolved

in favor of the deepest node in the search tree.)

9. Go to Step 3.

Important to note is that each visited cell has a pointer

to its predecessor. By connecting all the predecessors a

path is generated. The pointers will become important

for the modification of the A* to the AGV setting.

Table 1 shows the transport matrix that was used for

testing the different stages of the algorithm. Figure 2

shows the implemented A* algorithm run on an

example factory layout.

station/

station

1 2 3 4 5 6

1 - 15 0 7 0 15

2 0 - 0 0 0 0

3 0 0 - 0 7 0

4 0 0 0 - 0 0

5 0 0 0 0 - 0

6 0 0 0 0 0 -

Table 1: Transport matrix for the example factory

layout

677

Figure 3: results of the A* algorithm on the example layout

4.2. The modified A* algorithm

As can be seen in Figure 3 the generated road map from

the A* is not feasible for real production environments.

Two major problems of the road map are that the

distances between the paths are in a lot of the cases too

narrow in order to prevent collisions between the AGVs

and that there are too many paths going diagonally

through the layout and therefore unnecessarily

decreasing free space.

These problems can already be overcome without using

any fuzzy-logic because it is easy to define them in a

mathematical way. Hence a modified A* (mod A*) has

been implemented and serves as a basis for the FEA*.

As an example the paths going diagonally through the

production layout have been minimized through a

closer look at the already selected cells for the path.

Every selected cell has a pointer implemented that

points to the previous cell. If the expected future

direction equals the current direction, the previous cell

will have a pointer pointing in the same direction. If the

pointers have the same direction the predecessor cell

will be assigned a lower cost in the cost-function. The

mod A* is going to prefer the cell with the lower cost

for the path. If the direction of the pointers doesn’t

match the costs will be set higher. The results of this

modification and a distance modification for obstacles

in the layout can be seen in Figure 4.

Figure 4: Generated road map from the modified A*

It can be seen that the amount of diagonal paths has

been minimized to a minimum and a distance from the

paths to obstacles has been achieved.

Even though this modified A* algorithm generates a

road map that is more realistic than the road map of the

A*, a lot of the objectives for an optimal AGV roadmap

are still not met. These objectives, e.g. maximizing free

space or combining roads if feasible, can’t be realized

merely by a code modification of the A*. At this point

the fuzzy logic comes into effect.

5. Combining the mod A* with a Fuzzy-Logic

Controller (FLC)

As described before the A* focuses on minimizing the

cost function (1). g(x) included c(x) for assigning

costs(4).

c(x) is assumed to be a constant numerical value in the

traditional sense of the A* algorithm.

In the FEA* the FLC interacts with c(x). c(x) isn’t

constant anymore but follows a function like that:

 𝑐(𝑥) = 𝛼 + 𝛽 + 𝛾 + 𝛿 + ⋯ (5)

The FLC assigns numerical values to the parameters

𝛼, 𝛽, 𝛾, … and therefore influence the cost-function f(x)

of the mod A*.

Through the use of the FLC it is possible to include the

human reasoning into the mod A* and to generate

roadmaps that follow a mathematical optimization

process and human reasoning.

678

5.1 Implementation of a fuzzy-enhanced A*

The fuzzy logic helps to include the knowledge of the

AGV system planer into the overall optimization

problem of finding an optimal path for AGVs. In the

beginning of the paper the following example was

introduced:

“If there are areas with many crossings of paths and the

alternative route won’t be too long, than take the

alternative.”

In a mathematical planning problem this linguistic

statement couldn’t be used. Through the use of fuzzy-

logic it is now possible to include this information. A

corresponding rule could be:

“IF many crossings AND length_AlternativeRoute

medium THEN alternativeRoute strongly suggested”

A set of rules was conducted through interviews with

AGV system planers. These rules have been

implemented in MatLab and a Fuzzy-Logic panel is

used to easily change rules and properties of them. This

allows the user to still have influence on the planning

process and the path planning algorithm becomes more

transparent.

[09] implements a fuzzy control system for collision

avoidance of AGVs. He separates the fuzzy control

system into four necessary components. Analog to that

the FLC for this paper can be separated as followed:

1) The Fuzzyfication Interface: The mod A*

algorithm delivers relevant numerical values to the

interface. In the interface these crisp values are

fuzzyfied based on their prior assigned membership

functions of the linguistic sets. These linguistic sets

are determined based on the knowledge and

experience of the system planers.

2) The Knowledge base: The knowledge base

contains all the rules in the form of IF-THEN

commands. These rules are conducted from

interviews with system planers and the comparison

of results from the mod A* and real AGV road

maps. Analog to [10] redundant rules have been

removed and weights have been assigned to the

rules.

3) The Inference Engine: the inference engine

operates the actual rules. Based on the selected rule

composition method in the inference system the

outputs vary. The max-min composition method

was chosen because of time efficiency and

simplicity.

4) The Defuzzyfication Interface: This interface

converts the fuzzy outputs of the inference engine

into crisp values that can be used in a reapplied

mod A* in the form of the parameters 𝛼, 𝛽, 𝛾, ….

Again different methods for defuzzyfication are

possible, but the center of area (COA) is the chosen

method because of short computation time. The

COA method calculates the output as following

[11], with 𝑥𝑚𝑖𝑛and 𝑥𝑚𝑎𝑥 representing the range of

the linguistic variable and m(x) being the

membership function:

𝐶𝑜𝐴 =
∫ 𝑚(𝑥) ∗ 𝑥 𝑑𝑥

𝑥_𝑚𝑎𝑥

𝑥_𝑚𝑖𝑛

∫ 𝑚(𝑥) 𝑑𝑥
𝑥_𝑚𝑎𝑥

𝑥_𝑚𝑖𝑛

(6)

Figure 5 shows the idea behind the FLC on the

mentioned example.

In step 1 the initial generated road map of the A* is

analyzed and important parameters, e. g. number of

path crossings or the length of alternative ways are

transmitted to the fuzzy logic.

Afterwards in step 2 the fuzzyfication of the parameters

takes place. Depending on the predefined membership

functions for the input, the parameters become

translated into a linguistic term. For example 5

crossings in one area would be classified as 75% “many

crossings” and 25% “medium amount of crossings”.

The crisp parameters of the mod A* are now fuzzyfied

and can be used in step 3.

In step 3 the rules of the fuzzy controller are applied

and used to generate a fuzzy output. All the rules are

fulfilled with a certain percentage, ranging from 0% to

100% depending on the membership function in the

fuzzyfication process.

In step 4 the membership functions of the rule base are

used to defuzzyfy the output of the decision logic and to

generate crisp values. In this step the different levels of

fulfillments of the rules are taking into consideration

and with the use of the COA method a crisp value is

generated. These crisp values are saved in the

parameters 𝛼, 𝛽, 𝛾, … and are used in the next iteration

of the mod A*.

In the final step 5 the mod A* is run again with the

updated cost function. In the given example a high

amount of crossings and a short alternative route would

lead to an additional path in the production layout.

Figure 5: Interaction of the FLC and the mod A*

679

6. Discussion of the results & further research

Figure 6 shows the generated road map of the FEA*.

The road map shows some significant improvements

compared to figure 4. Compared to road map generated

by the mod A* the amount of crossings has been

decreased to a minimum. This way the likelihood of

collisions of AGVs or traffic holdups is limited. In a lot

of AGV systems a higher amount of crossings means

also higher costs of the system since more transponders

are necessary to guide the vehicles correctly and to

avoid collisions.

Another substantial improvement of the road network is

the merging of different roads going into the same

direction. The FLC has several rules implemented that

give inputs to the mod A* whether a merging of the

road is beneficial or not. Important criteria for that

decision are for example the length of alternative paths,

the amount of goods that have to be handled in a certain

amount of time or the future direction of the paths.

Compared to figure 4 the amount of free space in the

production layout has increased in size. This is due to

the minimization of the change of directions of paths,

the merging of paths and the consideration of safety

distances.

The current state of the algorithm is still a very

mathematical one and several important improvements

have to be implemented to generate directly applicable

roadmaps. So far the turnarounds are too steep and an

inclusion of the different AGV specific curve radiuses

is necessary.

An inclusion of the geometry of transport goods has to

be implemented as well in order to guarantee collision

free transportation. This will also have an effect on the

distances between paths and objects.

In the future more fuzzy- rules will be conducted and

different fuzzyfication and defuzzyfication method will

be evaluated based on their adaptability in the AGV

environment. With an increasing amount of fuzzy-rules

the generated paths are expected to be even more

realistic and the amount of manual labor for final road

maps is expected to be minimized.

Through simulations in different softwaretools (e.g.

Plant Simulation) the carrying capacity of the road map

will be tested and compared to manual developed road

maps. Important validation criterias are the amount of

AGVs possible on the road map, the adherence to

production schedules and the flexibility of the road map

in case of holdups or collisions.

Even though a manual generated road map might show

better results in the simulation, a cost-benefit analysis

has to be done. A suboptimal automatically constructed

roadmap might still be preferable if only a few changes

have to be done manually and the generation time is

significantly shorter.

Figure 6: Generated Roadmap of the FEA*

7. Conclusion

In this paper a fuzzy enhanced path planning algorithm

is proposed that designs an applicable and efficient road

map for AGVs in complex production environments.

The production environment is assumed to be known

and static.

In order to obtain a realistic road map that follows

security guidelines, norms, etc. a modified A*

algorithm was implemented.

A fuzzy logic controller was implemented that uses a

set of rules developed through interviews with AGV

experts. The output of these rules is defuzzyfied and

used in the minimization of the cost function of the mod

A*.

Unlike most of the path planning algorithms a realistic

road map is generated that can be used for production

environments without a lot of manual changes.

Producing near optimal, but applicable, road maps with

the possibility of changing the rules later on is supposed

to be a big benefit for the increasing size and

complexity of AGV systems.

8. Acknowledgments

The work of Sarah Uttendorf is supported by the

IGF project 18007 N/1 of the Bundesvereinigung

Logistik (BVL) e.V. through a resolution of the

German Bundestag.

680

References

[01]Niemann, B.; Baum, M.; Overmeyer, L.; Fricke,

D.-H.: Aufbau von Fahrerlosen Transportsystemen

(FTS) durch einzelne Datenstruktur. In: Logistic

Journal, 2006.

[02]Duchon, F.; Babinec, A.; Kajan, M.; Beno, P.;

Florek, M.; Fico, T.; Jurisica, L.:Path Planning with

modified A star algorithm for a mobile robot,

Procedia Engineering 96 (2014) 59 – 69, 2014.

[03]Hawa, M.: Light-assisted A* path planning,

Engineering Applications of Artificial Intelligence

26, p. 888–898, 2013.

[04] Meléndez, A.; Castillo, O.: Evolutionary

Optimization of the fuzzy integrator in a navigation

system for a mobile robot. In: Recent Advances on

Hybrid Intelligent Systems, SCI 451, pp.21-31.

[05] Wang, M.; Liu, J.: Autonomous Robot Navigation

using Fuzzy Logic controller. In: Proceedings of the

third international conference on machine learning

and cybernetics, Shanghai, 26-29 August 2004.

[06]Delling, D. and Sanders, P. and Schultes, D. and

Wagner, D.: "Engineering route planning

algorithms". Algorithmics of large and complex

networks, Springer, pp. 117–139, 2009.

[07]Zeng, W.; Church, R. L.: "Finding shortest paths on

real road networks: the case for A*". International

Journal of Geographical Information Science 23

(4): p. 531–543, 2009.

[08]Nilsson, N.: Artificial Intelligence: A New

Synthesis, ISBN 1-55860-467-7, Morgan

Kaufmann, 1998.

[09]Lu, H.; Chuang, C.: The Implementation of Fuzzy-

Based Path Planning for Car-Like Mobile Robot,

Proceedings of the 2005 International Conference

on MEMS, NANO and Smart Systems, 2005.

[10]Carmona, P.; Castro, J.; Zurita, J.: FRIwE: Fuzzy

Rule Identification with Exceptions, IEEE

Transactions on Fuzzy Systems, Vol.12, NO.1,

February 2004.

[11] Patel, A.v.; Mohan, B.M.: Some numerical apsects

of center of area defuzzyfication method, Fuzzy

Sets and Systems 132, p. 401-409, 2002.

681

