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Abstract 

Path-finding algorithms (PFA) are successfully used to 

find the optimal path between two locations. Good 

results are obtained if they are used in scenarios where 

the entire environment can be described 

mathematically. Production environments of automated 

guided vehicles (AGVs) are not one of those. PFA find 

solutions that are mathematically correct but miss 

human expertise that would dismiss solutions of the 

algorithm that aren’t applicable to a real production 

layout. This paper presents a hybrid algorithm 

consisting of an A* algorithm, and a fuzzy logic control 

in order to generate a fuzzy-enhanced A* algorithm 

(FEA*) that produces efficient and applicable road 

maps for AGVs. First computational results are shown. 

Keywords: Path- finding algorithm, Fuzzy-logic, expert 

system, AGV, road maps 

1. Introduction 

With the increasing industrial automation of production 

processes, the use of automated guided vehicles 

(AGVs) in the manufacturing environment is increasing 

as well. Not only the tasks of the AGVs become more 

and more complex [01] but also the environment they 

are operating in is increasing in size and complexity. As 

a result the task of designing a feasible road map for 

AGVs becomes more demanding. The basis for the 

process of designing a roadmap is e.g. the transport 

matrix, the kinematic properties of the AGV or the 

layout of the production environment. These and more 

factors can be implemented in a traditional optimization 

problem in order to use it for classical PFA. The aim of 

those is to find an optimal roadmap in a given 

production environment. Figure 1 shows a test 

environment of a track-guided AGV system. 

 

 
Figure 1: Test environment of a track- guided AGV 

system 

 

The multiobjective nature of the optimization problem 

is a challenge as well because the objectives and their 

priorities change depending on the particular AGV 

system. For example in some cases it is more important 

to minimize the path lengths, in other cases the priority 

is to combine as many paths as possible in order to save 

space. An efficient algorithm has to take the variation 

of these priorities into account and should be able to be 

easily modified if the circumstances of the AGV system 

are changing.  

 

Even though it would be possible to generate 

specialized multiobjective functions for the problem of 

finding the mathematically best AGV roadmap in a 

given layout, the PFA would still generate roadmaps 

that aren’t applicable to a real-world production layout. 

Some real world problems can be easier described in a 

linguistic way, rather than a mathematically sense. For 

example the problem: “If there are areas with many 

crossings of paths and the alternative route won’t be 

too long, than take the alternative.” It would be very 

difficult to actually implement this statement in a 

mathematical model. A linguistic phrase like “many” or 

“too long” is too vague to assign them an exact number 

but it is possible to assign them a value range. This way 

the information can be made useable in the process of 

finding an optimal roadmap.  

 

Current planning processes of AGVs rely heavily on 

manual work. System planers have gained experience 

on how to design a feasible roadmap without the use of 

algorithms. Besides the extensive time consuming 

manual work that is necessary, this approach is only 

feasible in small production environments since the user 

has to define every single way. With an increasing 

transport matrix and higher dependencies with the 

stations it gets more and more complicated to get 

optimal paths layouts without the use of an optimization 

tool. 

 

In order to obtain a feasible roadmap that is not lacking 

human expertise this paper presents a hybrid algorithm 

that combines established modified A* (mod A*) path 

finding algorithm with a fuzzy controller. As a result 

road maps are generated that follow both a 

mathematically optimization process and also get input 

from human planning. 
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This paper is divided into the following sections:  

 

Section 2 introduces the current state of technology. In 

section 3 the overall workflow of the FEA* is explained 

an in Section 4 the modified A* is discussed. Some 

modification resulting from the restrictions of the AGV 

environment have been implemented. 

Section 5 deals with the fuzzy-logic controller and the 

combination of the fuzzy logic and the modified A*. 

All of the three main components, the fuzzyfication, the 

rule& data base and the defuzzyfication principle are 

discussed. In Section 6 a discussion of the results of the 

FEA* takes place and section 7 gives ideas for further 

research. 

2. State of technology 

Different systems already exist in order to obtain 

optimal roadmaps. [02] already implemented a 

modified A* algorithm for path planning for a mobile 

robot. In this approach several modifications have been 

imposed for the A*. The main focus here is the 

computational time and the path optimality. The 

performances of the different modifications of the 

algorithm were compared with the computational time, 

the length of the path, number of examined cells and the 

symmetry of the examined environment. The proposed 

algorithm is able to find shortest paths quickly but 

wouldn’t be suitable in AGV environments, because too 

much free space is being consumed by the paths and 

important factors like the number of direction changes 

or the consideration of alternative ways are being 

neglected. 

 

[03] introduces a light-assisted A* algorithm for path 

planning. He focuses on avoiding dynamic obstacles 

and expands fewer nodes than the traditional A*. The 

production environment is seen as a dark room where 

obstacles are highlighted and can therefore be foreseen 

in the path planning process of the A*. For each node of 

the map a brightness score is calculated that is later on 

included in the cost-function. 

 

What all these papers have in common is that they are 

either focusing on finding the shortest path or 

increasing the time efficiency in finding one. In case of 

outlying an efficient roadmap for AGVs a short 

computation time and short paths are important as well, 

but generating an algorithm that is able to construct 

feasible and applicable roadmaps is from bigger 

importance. 

 

The idea of building a hybrid with the help of Fuzzy 

Logic is already used with different integrated 

components.  [04] combines two Fuzzy Inference 

Systems (FIS) where each FIS has a different task. The 

first FIS is responsible for the tracking and the second 

FIS for the reaction task of autonomous mobile robots. 

The outputs of both FIS are integrated through a 

weighted FIS. 

[05] also uses a Fuzzy Logic controller to enable 

autonomous robot navigation. His hybrid system 

includes frameworks for goal determination, 

preprocessing, behavior design, behavior arbitration and 

finally a command fusion. The obtained results are 

good but computation time was not one of the concerns. 

 

The approach of this paper is tough to combine a fast 

heuristic approach (the mod A*) with the Fuzzy-logic 

in order to generate feasible roadmaps in a short period 

of time. Computational effort is meant to be minimized. 

3. The Fuzzy-enhanced A* (FEA*) 

Figure 2 shows the overall workflow of the FEA*. In 

the beginning all the necessary information, e.g. the 

production layout or the transport matrix, are loaded 

into the system. The mod A* is run on these 

information. An initialed AGV roadmap is generated. 

The focus is primarily on finding the shortest path from 

e.g. station 𝑠1 to station 𝑠2 with some basic AGV forced 

constraints, such as a certain security distance from the 

wall or from existing paths to prevent collisions. 

After the first run of the A* important characteristics of 

the initial road map are transmitted to the Fuzzy-Logic 

Controller (FLC). With the input of the mod A* the 

FLC is able to make “intelligent reasoning” and gives 

its output in the form of the parameters 

𝛼, 𝛽, 𝛾, … back to the mod A*. These parameters are 

directly used in the cost function of mod A*. 

 

After the second run of mod A* an inquiry is started if 

the desired goal for the road map is reached. This 

inquiry can be based on a predetermined number of 

runs of the A* or on other criteria, e.g. a desired length 

of the road map or shortest paths between stations. So 

far the algorithm stops after a certain count on loops. 

That way the user can determine the optimal level of 

trade between construction time and efficiency of the 

road map. 

 

Afterwards the algorithm ends and the generated 

roadmap is transferred to a .csv file. 

 

 
Figure 2: Flow diagram of the FEA* 
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4. Implementation of a modified A* (mod A*) 

algorithm 

As figure 2 shows a modified version of the traditional 

A* is used. Reason behind this is, that some changes 

(e. g. reduction of diagonal paths) to the A* can be 

made without the use of a FLC in order to make the 

generated road map more realistic. 

4.1. The traditional A* algorithm 

The A* algorithm was developed in 1968 by Peter Hart, 

Nils J. Nilsson and Bertram Raphael. The algorithm 

uses a heuristic in order to minimize computation time. 

The A* is based on the search strategy of finding a path 

with minimum costs ([06], [07]). [07] shows that the A* 

is suitable for solving origin-to-destination shortest path 

problems and is quicker than the commonly used 

Dijkstra algorithm. 

 

In order to use the A* in an AGV environment, the 

given production layout is divided into an equally 

spaced grid where each cell resembles an area in the 

production layout.  

 

The algorithm finds the cheapest paths between two 

points or in the AGV scenario between two stations 𝑠1 

and 𝑠2 through the use of a cost function. The cost 

function can be expressed as: 

 

 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) (1) 

 

where h(x) is a heuristic used to estimate the costs from 

the current cell x to the goal cell 𝑠2. The estimated costs 

must never exceed the actual costs of the path. For the 

implemented A* in this paper the Euclidean distance is 

used as a heuristic: 

 

 ℎ(𝑥) = √(𝑥𝑥 − 𝑥𝑠2)2 + (𝑦𝑥 − 𝑦𝑠2)2 (2) 

 

g(x) ressembles the hitherto existing costs from the start 

station to the current point x. 

 

𝑔(𝑥)

= {
𝑥. 𝑝𝑟𝑒. 𝑐𝑜𝑠𝑡𝑠 + √2𝑐(𝑥)  𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑐𝑒𝑙𝑙𝑠

𝑥. 𝑝𝑟𝑒. 𝑐𝑜𝑠𝑡𝑠 + 𝑐(𝑥)      𝑒𝑙𝑠𝑒                            
 

 

(3) 

 

c(x) resembles the cost of the specific cell x. This cost 

depends on the weighting of the cell. Cells with no 

obstacles are assigned a value of 1, cells with some kind 

of constraints, e.g. crossing paths, are assigned a higher 

value, e.g. 3 and obstacles are assigned a value of 9999. 

In this case  

 

 𝑐(𝑥) = 𝑐𝑜𝑛𝑠𝑡. (4) 

 

is assumed. 

 

The A* process can be described with the following 

Pseudo-Code [08]: 

 

1. Create a search graph G, consisting solely of the 

start node, 𝑠1. Put 𝑠1 on a list called OPEN. 

2. Create a list called CLOSED that is initially empty. 

3. If OPEN is empty, exit with failure. 

4. Select the first node on OPEN, remove it from 

OPEN, and put it on CLOSED. Call this node x. 

5. If x is a goal node, exit successfully with the 

solution obtained by tracing a path along the 

pointers from x to 𝑠1 in G. (The pointers define a 

search tree and are established in Step 7.) 

6. Expand node x, generating the set M, of its 

successors that are not already ancestors of x in G. 

Install these members of M as successors of x in G. 

7. Establish a pointer to x from each of those 

members of M that were not already in G (i.e., not 

already on either OPEN or CLOSED). Add these 

members of M to OPEN. For each member, m, of 

M that was already on OPEN or CLOSED, redirect 

its pointer to x if the best path to m found so far is 

through x. For each member of M already on 

CLOSED, redirect the pointers of each of its 

descendants in G so that they point backward along 

the best paths found so far to these descendants. 

8. Reorder the list OPEN in order of increasing f 

values. (Ties among minimal f values are resolved 

in favor of the deepest node in the search tree.) 

9. Go to Step 3. 

 

Important to note is that each visited cell has a pointer 

to its predecessor. By connecting all the predecessors a 

path is generated. The pointers will become important 

for the modification of the A* to the AGV setting. 

Table 1 shows the transport matrix that was used for 

testing the different stages of the algorithm. Figure 2 

shows the implemented A* algorithm run on an 

example factory layout. 

 

station/ 

station 

1 2 3 4 5 6 

1 - 15 0 7 0 15 

2 0 - 0 0 0 0 

3 0 0 - 0 7 0 

4 0 0 0 - 0 0 

5 0 0 0 0 - 0 

6 0 0 0 0 0 - 

 

Table 1: Transport matrix for the example factory 

layout 
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Figure 3: results of the A* algorithm on the example layout 

4.2. The modified A* algorithm 

As can be seen in Figure 3 the generated road map from 

the A* is not feasible for real production environments. 

Two major problems of the road map are that the 

distances between the paths are in a lot of the cases too 

narrow in order to prevent collisions between the AGVs 

and that there are too many paths going diagonally 

through the layout and therefore unnecessarily 

decreasing free space. 

 

These problems can already be overcome without using 

any fuzzy-logic because it is easy to define them in a 

mathematical way. Hence a modified A* (mod A*) has 

been implemented and serves as a basis for the FEA*. 

 

As an example the paths going diagonally through the 

production layout have been minimized through a 

closer look at the already selected cells for the path. 

Every selected cell has a pointer implemented that 

points to the previous cell. If the expected future 

direction equals the current direction, the previous cell 

will have a pointer pointing in the same direction. If the 

pointers have the same direction the predecessor cell 

will be assigned a lower cost in the cost-function. The 

mod A* is going to prefer the cell with the lower cost 

for the path. If the direction of the pointers doesn’t 

match the costs will be set higher. The results of this 

modification and a distance modification for obstacles 

in the layout can be seen in Figure 4. 

 
Figure 4: Generated road map from the modified A* 

 

It can be seen that the amount of diagonal paths has 

been minimized to a minimum and a distance from the 

paths to obstacles has been achieved. 

 

Even though this modified A* algorithm generates a 

road map that is more realistic than the road map of the 

A*, a lot of the objectives for an optimal AGV roadmap 

are still not met. These objectives, e.g. maximizing free 

space or combining roads if feasible, can’t be realized 

merely by a code modification of the A*. At this point 

the fuzzy logic comes into effect. 

5. Combining the mod A* with a Fuzzy-Logic 

Controller (FLC) 

As described before the A* focuses on minimizing the 

cost function (1). g(x) included c(x) for assigning 

costs(4). 

c(x) is assumed to be a constant numerical value in the 

traditional sense of the A* algorithm. 

 

In the FEA* the FLC interacts with c(x). c(x) isn’t 

constant anymore but follows a function like that: 

 

 𝑐(𝑥) = 𝛼 + 𝛽 + 𝛾 + 𝛿 + ⋯ (5) 

 

The FLC assigns numerical values to the parameters 

𝛼, 𝛽, 𝛾, … and therefore influence the cost-function f(x) 

of the mod A*. 

 

Through the use of the FLC it is possible to include the 

human reasoning into the mod A* and to generate 

roadmaps that follow a mathematical optimization 

process and human reasoning. 
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5.1 Implementation of a fuzzy-enhanced A* 

The fuzzy logic helps to include the knowledge of the 

AGV system planer into the overall optimization 

problem of finding an optimal path for AGVs. In the 

beginning of the paper the following example was 

introduced: 

“If there are areas with many crossings of paths and the 

alternative route won’t be too long, than take the 

alternative.” 

 

In a mathematical planning problem this linguistic 

statement couldn’t be used. Through the use of fuzzy-

logic it is now possible to include this information. A 

corresponding rule could be: 

 

“IF many crossings AND length_AlternativeRoute 

medium THEN alternativeRoute strongly suggested” 

 

A set of rules was conducted through interviews with 

AGV system planers. These rules have been 

implemented in MatLab and a Fuzzy-Logic panel is 

used to easily change rules and properties of them. This 

allows the user to still have influence on the planning 

process and the path planning algorithm becomes more 

transparent.  

 

[09] implements a fuzzy control system for collision 

avoidance of AGVs. He separates the fuzzy control 

system into four necessary components. Analog to that 

the FLC for this paper can be separated as followed: 

 

1) The Fuzzyfication Interface: The mod A* 

algorithm delivers relevant numerical values to the 

interface. In the interface these crisp values are 

fuzzyfied based on their prior assigned membership 

functions of the linguistic sets. These linguistic sets 

are determined based on the knowledge and 

experience of the system planers. 

2) The Knowledge base: The knowledge base 

contains all the rules in the form of IF-THEN 

commands. These rules are conducted from 

interviews with system planers and the comparison 

of results from the mod A* and real AGV road 

maps. Analog to [10] redundant rules have been 

removed and weights have been assigned to the 

rules. 

3) The Inference Engine: the inference engine 

operates the actual rules. Based on the selected rule 

composition method in the inference system the 

outputs vary. The max-min composition method 

was chosen because of time efficiency and 

simplicity. 

4) The Defuzzyfication Interface: This interface 

converts the fuzzy outputs of the inference engine 

into crisp values that can be used in a reapplied 

mod A* in the form of the parameters 𝛼, 𝛽, 𝛾, …. 

Again different methods for defuzzyfication are 

possible, but the center of area (COA) is the chosen 

method because of short computation time. The 

COA method calculates the output as following 

[11], with 𝑥𝑚𝑖𝑛and 𝑥𝑚𝑎𝑥  representing the range of 

the linguistic variable and m(x) being the 

membership function: 

 

𝐶𝑜𝐴 =
∫ 𝑚(𝑥) ∗ 𝑥 𝑑𝑥

𝑥_𝑚𝑎𝑥

𝑥_𝑚𝑖𝑛

∫ 𝑚(𝑥) 𝑑𝑥
𝑥_𝑚𝑎𝑥

𝑥_𝑚𝑖𝑛

 
 

(6) 

 

Figure 5 shows the idea behind the FLC on the 

mentioned example. 

 

In step 1 the initial generated road map of the A* is 

analyzed and important parameters, e. g. number of 

path crossings or the length of alternative ways are 

transmitted to the fuzzy logic. 

 

Afterwards in step 2 the fuzzyfication of the parameters 

takes place. Depending on the predefined membership 

functions for the input, the parameters become 

translated into a linguistic term. For example 5 

crossings in one area would be classified as 75% “many 

crossings” and 25% “medium amount of crossings”. 

The crisp parameters of the mod A* are now fuzzyfied 

and can be used in step 3. 

 

In step 3 the rules of the fuzzy controller are applied 

and used to generate a fuzzy output. All the rules are 

fulfilled with a certain percentage, ranging from 0% to 

100% depending on the membership function in the 

fuzzyfication process. 

 

In step 4 the membership functions of the rule base are 

used to defuzzyfy the output of the decision logic and to 

generate crisp values. In this step the different levels of 

fulfillments of the rules are taking into consideration 

and with the use of the COA method a crisp value is 

generated. These crisp values are saved in the 

parameters 𝛼, 𝛽, 𝛾, … and are used in the next iteration 

of the mod A*. 

In the final step 5 the mod A* is run again with the 

updated cost function. In the given example a high 

amount of crossings and a short alternative route would 

lead to an additional path in the production layout. 

 
Figure 5: Interaction of the FLC and the mod A* 
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6. Discussion of the results & further research 

Figure 6 shows the generated road map of the FEA*. 

The road map shows some significant improvements 

compared to figure 4. Compared to road map generated 

by the mod A* the amount of crossings has been 

decreased to a minimum. This way the likelihood of 

collisions of AGVs or traffic holdups is limited. In a lot 

of AGV systems a higher amount of crossings means 

also higher costs of the system since more transponders 

are necessary to guide the vehicles correctly and to 

avoid collisions. 

 

Another substantial improvement of the road network is 

the merging of different roads going into the same 

direction. The FLC has several rules implemented that 

give inputs to the mod A* whether a merging of the 

road is beneficial or not. Important criteria for that 

decision are for example the length of alternative paths, 

the amount of goods that have to be handled in a certain 

amount of time or the future direction of the paths. 

 

Compared to figure 4 the amount of free space in the 

production layout has increased in size. This is due to 

the minimization of the change of directions of paths, 

the merging of paths and the consideration of safety 

distances. 

 

The current state of the algorithm is still a very 

mathematical one and several important improvements 

have to be implemented to generate directly applicable 

roadmaps. So far the turnarounds are too steep and an 

inclusion of the different AGV specific curve radiuses 

is necessary. 

 

An inclusion of the geometry of transport goods has to 

be implemented as well in order to guarantee collision 

free transportation. This will also have an effect on the 

distances between paths and objects. 

 

In the future more fuzzy- rules will be conducted and 

different fuzzyfication and defuzzyfication method will 

be evaluated based on their adaptability in the AGV 

environment. With an increasing amount of fuzzy-rules 

the generated paths are expected to be even more 

realistic and the amount of manual labor for final road 

maps is expected to be minimized.  

 

Through simulations in different softwaretools (e.g. 

Plant Simulation) the carrying capacity of the road map 

will be tested and compared to manual developed road 

maps. Important validation criterias are the amount of 

AGVs possible on the road map, the adherence to 

production schedules and the flexibility of the road map 

in case of holdups or collisions. 

 

Even though a manual generated road map might show 

better results in the simulation, a cost-benefit analysis 

has to be done. A suboptimal automatically constructed 

roadmap might still be preferable if only a few changes 

have to be done manually and the generation time is 

significantly shorter. 

 
Figure 6: Generated Roadmap of the FEA* 

 

7. Conclusion 

In this paper a fuzzy enhanced path planning algorithm 

is proposed that designs an applicable and efficient road 

map for AGVs in complex production environments. 

The production environment is assumed to be known 

and static. 

 

In order to obtain a realistic road map that follows 

security guidelines, norms, etc. a modified A* 

algorithm was implemented.  

 

A fuzzy logic controller was implemented that uses a 

set of rules developed through interviews with AGV 

experts. The output of these rules is defuzzyfied and 

used in the minimization of the cost function of the mod 

A*. 

 

Unlike most of the path planning algorithms a realistic 

road map is generated that can be used for production 

environments without a lot of manual changes. 

Producing near optimal, but applicable, road maps with 

the possibility of changing the rules later on is supposed 

to be a big benefit for the increasing size and 

complexity of AGV systems. 
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