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Abstract

We explore the possible benefit that provides a lin-
guistic approach to Big Data. The proposal illus-
trates how implement Linguistic Aggregation Func-
tions using the MapReduce paradigm. The best
known paradigm applied to Big Data. The proposal
allows several benefits to Big Data e.g., it allows to
interpret data in a more intuitive way, reduce data
size into different levels of granularity, and man-
age the imprecision and incompleteness of data. We
show the usefulness of the proposed approach with
an illustrative example.

Keywords: Big Data, Computing with Percep-
tions, Fuzzy Logic.

1. Introduction

Humanity creates quintillion of data (1018) per
year [1]. This vast quantity of data, widely known
as “Big Data”, is generated with great velocity and
variety of sources and formats. Currently, the chal-
lenge is to process these data to extract new knowl-
edge that must be represented in a meaningful man-
ner [2, 3].

There are two main ways to represent the knowl-
edge extracted from data. The first and most com-
mon choice is the so called Advanced Data Visual-
ization. It combines data analysis methods with in-
teractive visualization of tables, charts or graphs [4].
A complementary option is the Automatic Text
Generation [5]. It involves computer programs that
automatically produce texts from input data.

Our work in Linguistic Descriptions of Complex
Phenomena (LDCP) collects and interprets data
coming from complex phenomena, yielding reports
in natural language which are easy to understand
even by non-expert users. This technology has been
used to automatically generate linguistic descrip-
tions about, e.g., the driving behavior in simulation
environments [6], the human gait quality [7] and the
beauty of double stars [8].

The advent of Big Data opens new challenges in
the research line of LDCP. When we deal with Big
Data some issues are of main concern [3, 9]:

• During the analysis process, developers must
use scalable algorithms ready to interpret the

data efficiently and manage the usual impreci-
sion and incompleteness.

• During the knowledge extraction and represen-
tation process, developers must offer data vi-
sualization techniques aimed at assisting the
users with the intuitive and effective interpre-
tation of the extracted knowledge.

Although as for as we know there is not any scien-
tific publication regarding Automatic Text Genera-
tion applied to Big Data, we have found four compa-
nies which offer this service. They are Yseop1 [10],
Automated Insights2 [11], Arria Data2Text3 [12]
and Narrative Science4 [13].

We have thoroughly evaluated the solutions pro-
vided by these companies, paying attention to the
information they provide in their websites and re-
lated patents. Notice that patents keep hidden the
techniques they actually use to process Big Data.
Anyway, in the available information there are not
any details about how they deal with scalability,
efficient processing and management of incomplete
and inaccurate data.

In this paper, we explore the possibilities of ap-
plying LDCP to Big Data problems. We describe
how this new technology allows to design scalable al-
gorithms, to build an efficient computational model
for complex applications and to manage the usual
imprecision and incompleteness.

Namely, the main contribution in this paper con-
sists of implementing Linguistic Aggregation Func-
tions, a basic element in LDCP, using the MapRe-
duce paradigm [14]. Currently, it is the best known
paradigm applied to resolve Big Data problems [15].

We present an illustrative example that shows the
usefulness of the proposed approach. The goal is the
generation of sentences similar to those produced by
the US census bureau5.

The rest of this paper is structured as follows.
Section 2 describes some preliminary concepts. Sec-
tion 3 describes how to implement Linguistic Aggre-
gation Functions using the MapReduce paradigm
and includes an illustrative example about the pro-

1http://yseop.com
2http://automatedinsights.com/
3http://www.arria.com/
4http://www.narrativescience.com/
5http://www.census.gov/
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posed approach. Finally, Section 4 presents conclu-
sions and sketches future work.

2. Preliminary Concepts

2.1. Linguistic Descriptions of Complex
Phenomena

LDCP is based on the Computational Theory of
Perceptions [16, 17]. This theory provides a frame-
work to develop computational systems with the
capacity of computing with the meaning of natu-
ral language expressions, i.e., with the capacity of
computing with imprecise descriptions of the world
in a similar way how humans do it. In the Computa-
tional Theory of Perceptions, a granule is a clump
of elements which are drawn together by indistin-
guishability, similarity, proximity or functionality.
The boundary of a granule is fuzzy. Fuzziness of
granules allows us to model the way in which hu-
man concepts are formed, organized and manipu-
lated in an environment of imprecision, uncertainty,
and partial truth [18].

Granular Linguistic Model of Phenomena
(GLMP) is the core of LDCP. It implements
the Granular Computing paradigm [19], which
operates with information granules to build ef-
ficient and human-centric views of the modeled
world. Granular Computing deals with abstraction,
summarization and condensation of information.

GLMP is a network of granules that represent
the monitored phenomenon with several levels of
granularity. In consequence, the network is scalable
in vertical and horizontal ways. Vertically, we can
add more levels of abstraction that are to be exe-
cuted in sequential way. Horizontally, we can divide
problems into a set of more manageable and smaller
sub-tasks. They can be executed in parallel way.

Figure 1 shows an example of GLMP. It allows
us to compare the number of inhabitants, men and
women in US, with two levels of granularity: state
and country. GLMP has two main elements: Per-
ception Mappings (PM) and Computational Per-
ceptions (CP). Each PM receives a set of input CPs
and they are aggregated in a single CP that is trans-
mitted upwards. Notice that the output of one PM
can act as input of others. A CP represents the
whole linguistic domain of the information unit of
the modeled phenomenon. In short, each output
CP is explained by the related PM, using a set of
input CPs.

A CP is a couple (A,W) where:

A ={aij} is a matrix, with one or more dimen-
sions, of linguistic expressions (words or sen-
tences in natural language) that represents the
whole linguistic domain in CP.

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn


W = {wij} is a matrix of validity degrees wij ∈

[0, 1] assigned to each aij in the specific con-
text. The sum of all validity degrees must be∑

wij = 1.

A PM is a tuple (U,y,g,T) where:

U = (u1, u2, .., un) is a vector of n input CPs ui

= (Aui,Wui). In the special case of the first
level of perception mappings, ui are the inputs
to the network. They are values z ∈ R being
provided either by sensors or obtained from a
database.

y = (Ay,Wy) is the output CP.

g is an aggregation function employed to calculate
Wy = g(Wu1,Wu2,...,Wun) from the input CPs.
In Fuzzy Logic, many different types of aggre-
gation functions have been developed. For ex-
ample, g might be implemented using a set of
fuzzy rules. In the case PMs in the first level,
g is built using a set of membership functions.

T is a text generation algorithm which allows gen-
erating the sentences in Ay. In simple cases,
T is a linguistic template, e.g., “California has
{few | some | many} inhabitants”, but it can
be customized according to user preferences,
mood, etc.

Figure 1: GLMP about the US inhabitants.

In Figure 1 there are several PMs that represent
different levels of granularity. The first level of gran-
ularity is related to states (e.g., Alabama), while the
second level represents the country (e.g., US).

At state level, PMstate evaluates the difference
between the number of men and women by state.
It is defined by the tuple (U,y,g,T):

U is a vector with two elements: the number of men
and women in the state U = (men, women).
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y is the output CPstate. It describes in a linguistic
form the difference between the number of men
and women by state. It is expressed by Astate

= {fewer men than women, similar number of
men and women, more men than women} and
their corresponding degrees of validity.

g is the aggregation function in charge of comput-
ing the difference (D) between the number of
men and women by state, applying the follow-
ing formula:

D = men − women

men + women
x100(%)

D is the input of a set of membership func-
tions composed of the following triangles and
trapezoids (see Figure 2): {fewer men than
women [−∞, −∞, −20%, 0], similar number of
men and women [−20%, 0, +20%], more men
than women [0, +20%, ∞, ∞].

Difference between men and women

%
−40 −20 0 20 40

0.
0

0.
5

1.
0

fewer similar more

Figure 2: Strong fuzzy partitions for P Mstate.

T is a text generation template: “In name-country
state of name-state there is/are {fewer men
than women | similar number of men and
women | more men than women}”. Where
name-country and name-state are parameters
with the name of the country and state respec-
tively.

The definition of PMstate is the same for all the
50 US states. Thus, it is executed 50 times, one for
each state and gets 50 CPstate as output. These CP
outputs will be taken as inputs in the second level
of granularity.

At country level, PMcountry evaluates the differ-
ence between the number of men and women in the
whole country. It is defined by the following tuple
(U,y,g,T):

U is a vector with 50 CPstate (one for each state).

y is the output CPcountry. It has the follow-
ing set of possible sentences acountryij , where
i ∈ {1, 2, 3} are related to {few, some, most}
and j ∈ {1, 2, 3} are related to {fewer men than
women, similar number of men and women,
more men than women}, e.g.,

acountry11 → “In few of US states there are
fewer men than women.”

g is the aggregation function. It is based on the
α−cuts method proposed in [20]. In [6] and [21]
the interested reader can find further examples
of the use of this method to generate quantified
sentences.

T is a text generation template: “In {few | some
| most} of name-country states there is/are
{fewer men than women | similar number of
men and women | more men than women}”.
Where name-country is a parameter with the
name of the country.

In the LDCP architecture, after interpreting data
with the GLMP, we execute the Report Template
that allows us to select the most suitable sentences
to the final user (see, e.g., [6], [7] and [8]).

2.2. Big Data

Big Data is usually defined by three dimensions or
3Vs: Volume, Velocity and Variety [22]. Volume di-
mension involves processing large amounts of data
(more than terabytes). Velocity dimension indi-
cates that data are often generated at high speed
and they need to be processed in real or near real
time, in batch or as streams. Variety dimension
indicates that data come from a great variety of
sources and thus can be structured, unstructured
or semi-structured. In [23], Demchenko introduced
two more dimensions, namely, Value and Veracity.
Value dimension means the added-value (or new
knowledge) that the collected data can bring to the
intended process or activity. Veracity dimension in-
cludes two aspects: data consistency and data trust-
worthiness.

Currently, the standard framework de facto in
both industry and academia to solve Big Data
problems is Apache Hadoop6. It is based on
an implementation of the MapReduce programing
paradigm [15] which is enhanced for processing large
data sets [14]. This paradigm facilitates the cre-
ation of parallel and distributed systems written in
a functional style. As a result, they are ready to be
automatically parallelized and executed on a large
cluster of machines [14].

The paradigm is mainly based on two user-defined
functions map and reduce. These functions are exe-
cuted in parallel on multiple machines, with a total
of m map and r reduce tasks. The number of map
tasks (m) corresponds with the number of partitions
of the input data. The number of reduce tasks (r)
corresponds with the number of intermediate keys.

As it can be appreciated in Figure 3, the exe-
cution of the MapReduce paradigm involves four
bottom-up steps. We will explain them through an

6http://hadoop.apache.org
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Figure 3: MapReduce paradigm. Circles represent
processes and rectangles represent data structures.

example (similar to the previous one) regarding the
number of inhabitants, men and women, from every
US state.

1. Partitioning: The input is a set of files that
contain the information about the US census.
Each line or record contains the data of one
person. These data include the sex and state in
which the person lives. The input files are split
into m pieces with smaller size. The program-
mer indicates the number of pieces m along
with the names that identify them.

2. Mapping: Each map function has as in-
put a (key, value) pair (k1i, v1i) where
i ∈ {1, 2, . . . , m}. The key k1i corresponds
with the partition name and the value v1i

with all records contained in the piece. Dur-
ing the execution, the map function processes
each record contained in v1i. The map func-
tion associates the key k2 with the state (e.g.,
k2= Alabama) and the value v2 with the
sex of the person (e.g., v2 = man). The
output of this function is a list of inter-
mediate (key, value) pairs list(k2,v2)i, con-
taining the sex of all people included in
the partition (e.g., list((Alabama, man), (Co-
lorado, woman), (Alabama, man),..., (Califor-
nia, woman))1).

map(k1i, v1i) → list(k2, v2)i (1)

3. Grouping and sorting: When the m map
tasks have ended, we have a total of m lists
key/value list(k2,v2)i. The aim of this step
is sorting and grouping all values v2 with the
same key k2, i.e., the aim is the creation
of pairs (k2j ,list(v2)j) with j ∈ {1, 2, . . . , r},
where key is unique (e.g., k21 = Alabama) and
the list contains all people of each State (e.g.,
list1=[man, woman, man, man,..., woman]).

4. Reducing: Then, r reduce tasks are executed,
one for each key k2j . The reduce function re-
ceives as inputs a key along with its correspond-
ing list of values. The function aggregates the
input list into a smaller number of values. In
our example, the function counts the number
of inhabitants, men and women, by state. To
do this, the function examines each item in the
list and counts the number of men and women.
Then, it saves the results v3 in the output list.

reduce(k2j , list(v2)j) → list(v3)j (2)

The output list contains three elements: the
name of the evaluated state, the number
of men, and the number of woman (e.g.,
list(v3)=[Alabama, 2320188, 2459548]). No-
tice that each output of the reduce function is
saved in an output file. Typically, all the r out-
puts files (the global MapReduce output) can
be taken as input by another MapReduce pro-
cess, in another distributed application, or sent
to the visualization process.

3. How to implement Linguistic
Aggregation Functions using the
MapReduce paradigm

In this section, we explain how to implement Lin-
guistic Aggregation Functions using the MapReduce
paradigm. The focus is set in exploring the benefits
that it can bring to solve Big Data problems.

Among other features GLMP is a scalable algo-
rithm, that allows us to model the information in
a granular way and manage the uncertainty of the
information.

On the one hand, PM is a linguistic aggregator
which takes as input a list of CPs and generates
as output a single CP. On the other hand, reduce
function aggregates inputs (previously prepared by
the map function) in a reduced output. In order to
implement linguistic aggregators using the MapRe-
duce paradigm: 1) the map function must first pre-
process the given PM inputs (a set of CPs or z values
∈ R) and 2) the reduce function must implement a
PM which takes the given list of inputs and gen-
erates a single CP output. In Figure 4, we show
a representation of the proposed implementation.
For simplicity, the picture focuses on the reducing
step, it illustrates only a partial view of the entire
paradigm. The reduce function implements PMkcp

which takes as input the key kcp and its correspond-
ing list of values list(cp), and it generates a single
CP output. Then, reduce function saves all the re-
sults v3 in the output list.

In the remaining of this section, we show the use-
fulness of the proposed approach with two illustra-
tive examples.
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Figure 4: Linguistic Aggregation Functions using
the MapReduce paradigm.

3.1. Illustrative Example about US
Inhabitants

The aim of this first example is the generation of
sentences that compare the number of inhabitants,
men and women, in US. With this purpose, we
merge the two examples introduced in Section 2.
In Figure 5 we show a partial representation of the
MapReduce paradigm. It implements the GLMP
about the US inhabitants (see Figure 1). The
picture depicts one MapReduce task which it is
in charge of aggregating the inhabitants at “State
level”. Then, the top order perception aggregates
the inhabitants at “Country level”. We describe the
detail of the two steps, as follows:

Figure 5: Partial representation of the MapReduce
paradigm which implements the GLMP about the
US inhabitants.

State level of US inhabitants. 1) Partitioning,
2) Mapping and 3) Grouping steps are the same
as defined in section 2.2. The first change is in-
troduced in the 4) Reducing step. We execute
one reduce function for each state (k2) in or-
der to aggregate the list of men and women
(list(v2)). Once the function computes the
number of inhabitants (men and women), it
calls the PMstate. As a result, the output list
contains two elements, the name of the evalu-
ated state and CPstate.

Country level of US inhabitants. The input,
to obtain the top order perception, is made up

of 50 files (one per state) with only one line.
Data size have been reduced in the MapReduce
step, for this reason, this step does not need
be implemented in parallel way.

Figure 6: Extending the GLMP about the US in-
habitants.

3.2. Extending the GLMP about the US
inhabitants

The Census Bureau of US takes into considera-
tion the following population items: sex, age, race,
Hispanic or Latino origin, household relationship,
household type, household size, family type, fam-
ily size, and group quarters. Housing items in-
clude occupancy status, vacancy status, and tenure
(whether a housing unit is owner-occupied or renter-
occupied). This population items can be grouped in
geography areas: country, regions, divisions, states,
counties, county subdivisions, places, metropolitan
statistical areas, ZIP Code Tabulation Areas, con-
gressional districts, American Indian and Alaska
Native Areas, and Hawaiian Home Lands.

With the aim of generate a model that consider
all populations items in all geographical areas, in
this section we extend the GLMP about the US
inhabitants (see Figure 6). The extended GLMP
has hundreds of sub-tasks that interpret the popu-
lations items in a horizontal way. The geographi-
cal areas are the different levels of granularity that
are interpreted in sequential way. Figure 7 shows a
partial representation of the MapReduce paradigm
that implements the extended GLMP. In this ex-
ample two MapReduce processes must be executed
sequentially. We describe the detail of the two steps,
as follows:

State level of US inhabitants This MapReduce
step is defined in a similar way than the pre-
vious example. Changes on the new model
are the increment in the number of PMs (sub-
tasks) for state. The extended model have sev-
eral PM for state. This implies that each map
function must prepare the input of each PM
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and each reduce function must executes a net-
work of PMs.

Division level of US inhabitants The input of
the Division level is the output of the State
level. Each map function must processes each
record in and associates the with key, in this
case the key is the division. Like the previous
MapReduce process, each map must prepare
data for a large set of PMs. This set of PMs
are executed in the Reducing step.

Figure 7: Partial representation of MapReduce
paradigm of the extended GLMP about the US in-
habitants.

4. Conclusions

We have shown how implement Linguistic Aggre-
gation Functions using the MapReduce paradigm.
The map function is used to prepare the PM inputs
while the reduce function deals with implementing a
PM which aggregates the PM inputs and generates
a single CP output. Thanks to the GLMP features,
we are able to generate parallel and distributed sys-
tems that offer several benefits in the resolution of
Big Data problems: It allows us to 1) interpret data
in a more intuitive way, 2) reduce data size into dif-
ferent levels of granularity, and 3) manage the im-
precision and incompleteness of data.

Although, there is still much to do in this research
line, as applying the proposal in a real case or ex-
plore other LDCP features.

However, this paper present a first approach to-
wards to solve Big Data problems using LDCP. This
is a promising and surprisingly simple technique to
generate linguistic descriptions from Big Data.
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