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Abstract

Several definitions of difference between fuzzy num-
bers are well established in literature: standard,
Hukuhara, generalized Hukuhara, generalized, CIA
and other differences based on joint possibility
distributions. = We present and compare them.
An example of epidemiological model of a disease
with direct transmission illustrates the different ap-
proaches. Finally, we briefly state some derivatives
defined by using the cited differences.
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1. Introduction

The standard difference between two fuzzy numbers
A and B is based on the difference between inter-
vals [1]. For each « in the unit interval, it takes into
account all the possible combinations between two
elements, one from the a-level of A and the other
from the a-level of B. Consequently, the result is
always greater (in diameter) than any of the sets
involved in the operation. Thus, the difference be-
tween two non-crisp numbers is always a non-crisp
number and subtracting a non-crisp number from
itself is never the crisp number zero.

Using the Hukuhara difference [8], the result
of subtracting a non-crisp number A from itself
(Aog A) is, in fact, zero. However, for this case, a
necessary condition for the subtraction between two
different fuzzy numbers A and B to exist is the first
term to have bigger diameter than the second one.
Generalizing the idea of this difference, [9, 10] pro-
posed the generalized Hukuhara difference, which
also satisfies A —yg A = 0 and is defined for a
bigger class of fuzzy numbers than the Hukuhara
difference. An extension of generalized Hukuhara
difference is the generalized difference [2, 10], which
has the same results of the generalized Hukuhara
operator (when it exists), but is defined for more
pairs of fuzzy numbers.

Another possibility is CIA (Constraint Interval
Arithmetic) [7]. In this case, the diameter of the
difference between two fuzzy numbers using CIA is
smaller than using standard difference.

All differences mentioned above makes use of the
interval arithmetic on a-levels. Extensions to fuzzy
numbers are drawn up via Stacking Theorem [3]
over the resulting a-levels.

© 2015. The authors - Published by Atlantis Press

705

Another way is similar to arithmetic for random
variables, that is, the subtractions between fuzzy
numbers are obtained using the joint possibility
(or membership) distribution between the involved
fuzzy numbers [5]. The comparison between the re-
sults obtained from two approaches is made via a
kind of Nguyen’s theorem extension [5].

In this study we present the definitions of all cited
differences as well as its derivatives and we analyze
its relations and exhibit an illustrative example.

2. Preliminary

In this section we present some basic concepts and
notation used in this study.

Definition 2.1 A fuzzy subset A of U is character-
ized by a membership function pa : U — [0,1].

Since a classical set is defined by its characteristic
function of counter-domain {0,1}, we can say that
a classical set is a particular case of a fuzzy set. We
denote by F(U) the family of all fuzzy subsets of U.

In what follows U is as a topological space.

Definition 2.2 Let A be a fuzzy subset of U and
€ [0,1]. The a-level of A is the classical subset of
U defined by

[Aloa ={z €U : pa(z) > a} for0 <a < 1.

The zero level of a fuzzy set A of U is defined as the
smallest closed set that contain the support of the
fuzzy set A, that is, [Alo = cl{z € U : pa(x) > 0}.

The family of all fuzzy subsets of U with
nonempty, compact and convex a-levels will be de-
noted by Fe(U).

Definition 2.3 A fuzzy subset A is said to be a
fuzzy number when its universe is the set of real
numbers R and satisfy:

i. All a-levels of A are nonempty closed intervals
of R;
ii. {xeU:pu,(x)>0} s alimited set.

The family of fuzzy numbers coincides with F¢(R)
and will be denoted by R£.

Theorem 2.4 (Stacking Theorem, [3, 11]) If A is
a fuzzy number and [A], are its level-sets then:



i. [Ala is a closed interval [A]lg = [a;,al], for
any o € [0,1];

. If0 < a; <ag <1, then [A]q, C [Ala, -

iii. For any sequence oy, which converges from be-

low to a € (0,1] we have

w For any sequence o, which converges from
above to 0 we have

cl( G [A]%)

n=1
Definition 2.5 A t-norm T is any binary opera-
tion T : [0,1] x [0,1] — [0, 1] that has the following
properties:

neutral element: T(1,x) = x;

commutativity: T(x,y) =T (y, z);
associatwity: T(x,T(y,2)) = T(T(z,y), 2);
monotonicity: if x < w and y < v, then
T(x,y) < T(u,v).

oo~

The following concepts are from the possibility
theory and will be used to define the interactive
difference between fuzzy numbers [5].

Definition 2.6 Let A and B be fuzzy numbers and
J € Fc(R?). Then J is a joint possibility distribu-
tion of A and B if

max i (z,y) = pa(x)

yER z€R

Moreover, s and pup are called marginal distribu-
tions of J.

If the joint possibility distribution is given by a t-
norm 7', we have

pa(z,y) =T(pa(x), ps(y)).-

When T' = min, A and B are called non-interactive
fuzzy numbers. The following statement is a more
general definition that has the Zadeh’s extension as
a particular case when the t-norm is the minimum
norm.

Definition 2.7 Let J be a joint possibility distribu-
tion with marginal possibility distributions pa and
up, and let f : R2 — R be a function. Then the
extension of f by J is the function f; whose mem-
bership function is given by

sup  py(w,y) if FU(z)#0D
_ y=£(z,y)
1f,(a,8)(2) =
0 if f7Hz) =0

where f~1(2) = {(2,y) : f(z,y) = 2}.

The Zadeh’s extension principle is an important
tool widely used to extend point-valued functions
to fuzzy-set-valued functions.

and max py(z,y) = pp(y).
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Theorem 2.8 [5] Let A, B € F(R) be completely
correlated fuzzy numbers, J its joint possibility dis-
tribution and f : R2 — R a continuous function.
Then,

[fJ(AvB)]a = f([‘]]oz)

Definition 2.9 Two fuzzy numbers A and B are
said to be completely correlated if there are q, 7 € R,
with q # 0, such that their joint possibility distribu-
tion C is defined by

pe(,y) = pa()Xigeyr=y) (€, y)
= UB (y)X{qaL'-‘rT:y} (I, y)

(1)

where

1 if ge+r=y
X{qachr—y}(xvy):{ 0 if quHr#y

is the membership function of the real line {(z,y) €
R%: gz +r = y}.

3. Difference between fuzzy numbers

Next we present different manners (in literature) to
realize the difference between fuzzy numbers.

3.1. Difference via interval theory

Initially we present the fuzzy differences arising
from the interval theory.

Definition 3.1 (Standard difference) Let A, B be
fuzzy numbers with a-levels given, respectively, by
[a,,at] and [b,,b}]. The a-levels of standard dif-

ference, A — B, are defined by

[A = Bla = lag = b3, aq —b;].
Standard difference can also be called Minkowski
difference.

In [6], the author proposed an arithmetic called
CIA. For that goal, he redefined intervals as func-
tions with real values, that is, an interval [a™,a™]
is given by the function A (a=,a™,\4) = {a :a =
(1 —=Xa)a™ +Aaa™,0 <Ay <1}

Definition 3.2 (CIA) The subtraction between two

intervals A = [a~,a™] and B = [b~,b"] is given by

A—ca B={[(1 = Xa)a™ +Agat] = [(1 = Ap)b~ + ApbT],
0<24<1,0< g < 1}

Lodwick et. al [7] extended this idea for the fuzzy
case from Theorem 2.4. Also, from this theorem it
is possible to define Hukuhara difference between
fuzzy numbers.

Definition 3.3 (CIA) The subtraction between two
fuzzy numbers A and B is defined level-wise by

[A —cia Bla ={[(1 = Aa)ag + Aaal]l = [(1 — Ap)by + Apbl],
0< x4 <1,0< A <1}



Remark 3.4 In the case where the two fuzzy num-
bers are the same, we have

[A —cIa A]a =

{[1 = Aa)ag +Aaal] = [(1 = Aa)ag + Aaag]} = {0}

where 0 < Ay < 1. Therefore, A —g4 A = {0}.

Definition 3.5 Given two fuzzy numbers A, B the
Hukuhara difference (H-difference) A Oy B = C is
the fuzzy number C' such that A = B+C, if it exists.

Definition 3.6 [9, 10] Given two fuzzy numbers
A, B the generalized Hukuhara difference (gH-
difference) A ©gu B = C is the fuzzy number C
(if it exists) such that

{ (i) A=B+C or
(i) B=A-C.

Definition 3.7 [2, 10] Given two fuzzy numbers
A, B the generalized difference (g-difference) A &,
B = C is the fuzzy number C with a-levels

[4 6 Bla = cl | ([A]5 ©gn [Blp), Yo € [0,1],
B>a

where the gH-difference (©4m) is related to the in-
tervals [A]g and [B]g.

In [2, 10] the generalized difference between fuzzy
numbers was proposed as a difference that always
exists and results in a fuzzy number. But for this,
as observed in [12], a convexification is required for
the difference to be always a fuzzy number.

Each of the differences presented in this subsec-
tion, A — B is a fuzzy numbers according to Theo-
rem 2.4.

3.2. Differences via joint possibility
distribution

Differences via joint possibility distribution are ob-
tained with the help of Definition 2.7. Note that
this form of dealing with fuzzy numbers is totally in-
spired by the arithmetic for random variables, which
considers the joint probability distribution.

Definition 3.8 Suppose A and B are two fuzzy
numbers. Let f : R? — R be defined by f(x,y) =
x—vy, that is, the subtraction operator for real num-
bers. The difference by joint distribution J is the
fuzzy number A —; B, whose membership function
is defined by

where £1(2) = {(2,) : f(a.y) =2 —y = 2}.

Next the difference with joint possibility distribu-
tion is given by t-norms.

Definition 3.9 (Difference by t-norm) Let A, B be
fuzzy numbers and f(x,y) = x — y the subtraction
operator, then the extension sup =T of the fuzzy
number A —p B is obtained by the following mem-
bership function

pa-p(z) = sup T(pa(z), pe(y)),z € R.

Definition 3.10 The Zadeh difference between two
fuzzy numbers is the fuzzy mumber A — B, whose
membership function is given by

peampy(z) = { 20 (inlea@ @)

where £1(z) = {(2,) : fla.y) =7 —y = 2}.

That is, the Zadeh difference consider A and B non-
interactive, since the join possibility distribution is
given by minimum ¢-norm.

Proposition 3.11 Let A, B be fuzzy numbers with

a-levels given, respectively, by [a,at] and [b,,bt].

Then the a-levels of Zadeh difference are given by
[A— Blo = [a;, — b}, af —b3],

[

that is, the Zadeh difference coincides with the stan-
dard difference.

The proof is found in [16].
The difference using joint possibility distributions
may not necessarily be given by t-norms.

Definition 3.12 [5/The subtraction of two com-
pletely correlated fuzzy numbers A and B is defined
by

pa-cB(z) = sup puc(z,y).

z=x—Yy

That is, pa—op(2) = sup uB(Y)Xigatr=y} (2, Y).

Z=x—Y

From Theorem 2.8, [5] proof that, for all a € [0, 1],
we have

[A—=c Bla = (g = 1)[Bla+r.

Remark 3.13 The sum of two completely corre-
lated fuzzy numbers A and B is given by

[A+c Bla =(¢+1)[Bla + 7.

Proposition 3.14 Given two completely correlated
fuzzy numbers A and B such that [A]l, = ¢[Bla + 7,
the difference A —c B has the following expression
[A”_C7£ﬂa =

i [(g—1)by,(q—1)bi]+r ifg>1
{ ii. [(q—bL, (g —1Db3]+7r f0<qg<1
iii.  [(q—1)bL + 7, (g—1)bs +7]  ifg<O.



3.3. Comparing the differences

Before we compare the different fuzzy differences we
define the following notation: X jifference 15 the set
of the pairs of fuzzy numbers such that the differ-
ence between them exists.

For the difference diameters (diam) it is possible
to show, by definition, that:

o diam([A ©u Bla) < diam([A —1 Bla) <

diam([A — Bla);

e diam([A @gH Blo) < diam([A —1 Bla) <
diam([A — Bla);

o diam([A ©, Bl,) < diam([A —r Bl.) <
diam([A — ] );

o diam([A —; Bla) < diam([A — Bla);

. diam({A —¢ Bla) < diam([A — Bla);

o diam([A —cia Bla) < diam([A — Bla)-

Regarding the existence of each difference (which
means that the result is a fuzzy number), we have:

® X, indara, Xcia, X1, Xy and X¢ is equivalent to
Rz x Rz, that is, in these cases the difference
between two fuzzy numbers always exists;

X1 C Xoandaras

Xota C Xiandara

Xc CX;CXr;

Xg C Xgg C Xy C X7 and the differences H
and gH do not always exist;

Remark 3.15 Note that the difference by joint
possibility distribution always exists. The issue is
to obtain this distribution.

As in the completely correlated difference, we
have

i. [*—b yad — bt ifg>1
[A—c Bla =% di. [ad —ba,aa by] if0<qg<1
iti. [ang —bL,al —by] ifqg<O.

If ¢ > 1 the difference C' is the Hukuhara differ-
ence. If ¢ > 0 the difference C is the generalized
Hukuhara difference and for ¢ < 0 the difference
C is the standard difference. Comparing the com-
pletely correlated difference with CIA, we notice
that they are equivalent if and only if ¢ = 1 when
we compute A—c A and ¢ < 0 if we compute A—¢ B
(see Figure 1).

The upside of using the joint possibility distribu-
tions is that it provides the membership function of
the difference. On the other hand, differences via
interval arithmetic present a practical method to
calculate the difference. Also, they do not require
knowledge of the joint possibility distribution.

4. Application: Epidemiological Model

The simplest classical model that describes the dy-
namics of transmitted diseases by direct contact
without vital dynamics (i.e., without death/birth)
is presented by the following equations [13]:

s _ g7 _
{? - ASI; S(0) =S, >0

ASI;  I(0) = Iy > 0, (3)
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Differences via joint

possibility distribution J Differences based o

interval arithmetic

If the t-norm is the minimum

Generalized g<—

. in [A],=q[B],*r and g0
» Completely . . . .. L L
correlated C

Generalized
Hukuhara gH

in [A],=q[B] +r, if A-B and q<0

and if A-A and g=1

E Equality in result of differences under the conditions mentioned above

Figure 1: Relations between the differences defined by
joint distribution and differences based on interval arith-
metic. The dotted lines mean equality in the results of
the subtractions between two fuzzy numbers (consider-
ing the mentioned hypothesis) .

where S(t) and I(t) are respectively the proportions
of susceptible and infected individuals at instant ¢
and the parameter A > 0 is the disease transmission
rate.

Figure 2: Proportion of susceptible individuals ()
and infected ones (7).

From (3), the sum of proportion of susceptible
individuals (S) and the proportion of infected ones
(I) is equal to 1, that is,

S +I(t)=1, Vt>0. (4)

The solution of (3) is given by

Ioe)\t

I(t) - S() + Ioe)‘t '

(5)

Thus, from (4) it follows that

So

(6)
In the epidemiological point of view (SI model),
once an individual is infected he/she never gets re-
covered.



Now, if in (3) we consider that initial condition is
uncertain, for each ¢, the solutions (5) and (6) are
uncertain too. If we suppose that Sy (and Ip) is a
fuzzy triangular number, from (4) we have

[Sola = [sq, s8] = [(b—a)a +a, (b—c)a+d],

0<a<b<c<land [Iy]lo =1—[So]o will depend
on which difference we use.

We compute Iy, using each one of the differences
between 1 and Sy given in the last section.

e If Sy and Iy are non-interactive, the difference
between them is given by the standard form:
ola = [1 — 5,1~ 55].

o If the difference is given by T-norms (different
from the minimum #-norm), that is, Sy and I
are interactive, we have [lo]a = Urp (¢ ) sallle—
[So]n, o< (O, 1].

o If Sy and I are completely correlated, we have
[o]a = 1—[So]a, with ¢ = —1 and r = 1, thus,
[Io]la = [1 —st,1 —s;]. In that case, from
Remark 3.13, [Iy]a +c [Sola = 1.

e The Hukuhara difference does not exist, be-
cause we do not have an increasing diameter.
On the other hand, the differences ©, and g4,
imply [lo]a = [1 — SI? 1-s5la-

e Now, if we use (—c4), we have [Iy], = {1 —
[(1— As)sy +As2],0 < Ag < 1} = {1 —[(1 -
As)((b—a)a+a)+A(b—c)a+¢)],0 < g <1}
which is equivalent to the triangular number

(I1-¢1—0;1-a).

Note that, S; and I; can not be triangular fuzzy
numbers.

In summay, from the coherence point of view, the
difference that better represents the ST model is the
completely correlated difference, because it is the
one that best fits S + 1 = 1, which faces the hy-
pothesis of non existence of vital dynamic. More-
over, intuitively, the hypotheses S + I = 1 suggests
that there is interaction between S and I. A study
for this case we made in [4, 14].

The main reason for studying the difference be-
tween fuzzy numbers is due to connection with the
derivatives.

5. Fuzzy Derivative

Different fuzzy differences produce different fuzzy
derivatives for fuzzy functions. It is natural to
expect that this derivative represents the various
meanings of derivative. For example, the variation
rate, since we expect that stationary systems (that
is, constant function) must have null derivative. As
we have seen, not always the difference between two
identical fuzzy numbers is the crisp number zero (for
example standard difference). For this reason, some
difference are not indicate for to define derivative,
since the division in the limit

lim F(x+h) — F(x)
h—0t h
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must be null, at least for the case where F' is
constant fuzzy function. Wherein F is a fuzzy-
number-valued function, that is, fuzzy function of
type F : [a;b] — Ry, where Ry is the space fuzzy
numbers. The following are the derivative inspired
by some the differences from the previous section.

Note that t-norm of the minimum is not appro-
priate for the study of the derivative. Intuitively the
fuzzy processes (fuzzy functions) have some type of
interactivity.

Remark 5.1 When we refer to “limit” for fuzzy
function we mean it is continuous in relation to met-
ric dos. The distance ds : R% x R% — R4 U {0},
is defined by

dos(A,B) = sup max{|ag — byl,la — bS]},
0<a<1

where A and B are fuzzy numbers.
The following limits are studied from d.

Definition 5.2 [8] Let F : (a,b) = Rx. F is said
Hukuhara differentiable (H-differentiable) at xo if
the limits

F({L‘o +h) — F({L‘())

hlgg+ h Q
and
lim F(.’Eo) —H F(.I'O — h) (8)
h—0+ h

exist and they are equal to some element F' g (xg)
that belongs to Rr. F'g(xo) is called the H-
derivative of F' at xg.

Definition 5.3 [11] Let F : (a,b) — Rg. F
is said generalized Hukuhara differentiable (gH-
differentiable) at xq if the limit

lim F(I’O -+ h) —gH F(SC()) (9)
h—0 h

exists and it is equal to some element F' j(x0) that
belongs to Rr. F' g (xo) is called the gH-derivative
of F at xy.

Definition 5.4 [11] Let F': (a,b) — Rx. F is said
generalized differentiable (g-differentiable) at xq if
the limait
lim F(l‘o + h) —g F(J}o)
h—0 h

(10)

exists and it is equal to some element F' (zo) that
belongs to Rr. F'4(xo) is called the g-derivative of
F at xg.

Remark 5.5 The gH-derivative and g-derivative
generalize the H-derivative. Moreover the g-
derivative generalize the gH-derivative.  If H-
derivative ezists, then gH- and g-derivative exist
and are the same.



Definition 5.6 [15] Let F : [a,b] — Rz, for each
h > 0 sufficiently small, let Jy be a joint possibility
distribution of F(xo+h) and F(zo) with g € [a,b].
F is said J-differentiable at xq if the limits

F(a?()—i-h) —J F(mo)

li 11
i, n (11)
and
im F@0) = Flzo — h) (12)
h—0+t h

exist and they are equal to some element F' j(xq)
that belongs to Rx. F'j(xg) is called the J-
derivative of F' at xo. At the endpoints of [a,b] we
constider only one-sided derivative.

Definition 5.7 [15] Let F : [a,b] — Rz, for each
h > 0 sufficiently small, let F(xo + h) and F(xo)
with xo € [a,b] be completely correlated fuzzy num-
bers with joint possibility distribution Cy,. F is said
C-differentiable at xq if the limits

F(zo + h) —¢, F(xo)

li 1
AiTD, h (13)
and
F —c, F
h—0+ h

exist and they are equal to some element F'c(x)
that belongs to Rr. F'c(xg) is called the C-
derivative of F at xg. At the endpoints of [a,b] we
consider only one-sided derivative.

6. Conclusion

We studied different versions of difference for fuzzy
numbers and compared them in terms of existence
(existence means the result is a fuzzy number) and
diameter of the resulting a-levels. Next we con-
cluded that for a certain epidemiological model the
completely correlated difference is more suitable
and coherent to reality. Using the differences we
define the derivatives. The J-derivative and the C-
derivative take into account possible interactivity
(dependencies) present in the studied process. It
makes sense we use interactivity in fuzzy processes,
otherwise we may have a constant function where
F(x 4+ h) — F(z) is not zero (as is the case when
using the t-norm of the minimum). The derivatives
of Subsection 3.1 may be considered interactive, the
only one that is not interactive is the Zadeh differ-
ence (or standard difference).
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