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Abstract 

Inverse reinforcement learning is tried to search a re-

ward function based on Markov Decision Process. In 

the IRL topics, experts produce some good traces to 

make agents learn and adjust the reward function. But 

the function is difficult to set in some complicate prob-

lems. In this paper, Inverse Reinforcement Learning 

based on Critical State (IRLCS) is proposed to search a 

succinct and meaningful reward function. IRLCS select 

a set of reward indexes from whole state space through 

comparing the difference between the good and bad 

demonstrations. According to the simulation results, 

IRLCS can search a good strategy that is similar to ex-

perts. 

Keywords: Inverse Reinforcement learning, reward 

function, reward feature. 

1. Introduction 

In recent years, Inverse Reinforcement Learning (IRL) 

is widely used and studied. The [1] proposes a Hierar-

chical Apprenticeship Learning method for quadruped 

locomotion. In addition, the others researches apply the 

IRL in the different problems [2, 3]. The original con-

cepts of IRL algorithm are proposed by [4] which is a 

QP-based algorithm; nevertheless, the methods derive 

some problems. First of all, it needs to predefine a set of 

reward indexes or reward features. The FIRL method is 

introduced to search an appropriate reward features via 

Fitting Step [5]. However, the method spends more 

time finding a set of useful reward function. In [6], the 

dimension reduction methods are proposed to extract 

useful features by demonstrations. However, it bases on 

quadratic programing and makes the application incon-

venient. Secondly, most IRL problems need to have 

many demonstrations that are demonstrated by experts. 

These demonstrations are viewed as correct behaviors. 

But, incorrect demonstrations should be viewed im-

portant information equally. The agent can learn good 

behaviors by incorrect demonstrations. In this paper, 

IRLCS algorithm is proposed to search appropriate re-

ward indexes in whole state space by two sets of 

demonstrations, good trajectories and bad trajectories. 

IRLCS uses the significant states to form a portable and 

succinct reward function in short computational time. 

The efficiency of IRLCS is demonstrated by a simula-

tion problem, speeding car, which is introduced by [5]. 

The paper is organized as follows. Section 2 introduces 

reinforcement learning and inverse reinforcement learn-

ing. Section 3 introduces the IRLCS algorithm. Section 

4 summarizes the simulation and analysis results. Sec-

tion 5 is conclusion about the algorithm. 

2. Background 

2.1 Reinforcement Learning 

Reinforcement learning (RL) is a sub-area of Machine 

learning. In comparison with supervised learning, rein-

forcement learning can solve problems without training 

samples. Instead of training samples, a reward function 

is defined by the expert to express what the good and 

bad events are for the agent. In a reinforcement learning 

process, an agent takes actions in an environment so as 

to maximize the long-term reward. 

 

2.2 Inverse Reinforcement Learning 

Reinforcement learning techniques provide a powerful 

solution for the decision making problems under uncer-

tainty. In the beginning of a reinforcement learning pro-

cess, we have to define a reward function that guides 

the agent towards the goal. Unfortunately it is difficult 

to define a reward function for a complex problem. In 

order to solve this problem, inverse reinforcement 

learning algorithms are proposed [3] [4]. In inverse re-

inforcement learning algorithm, the reward function is 

approximated using a linear combination of useful fea-

tures: 

 )()( ssR  w  
(1) 

where  Ti ssss )(),...,(),()( 21      are predefined basis 

functions, and l is the number of useful features in the 

reward function, and  iwwwsw   ,...,,)( 21  are the pa-

rameters to be tuned during the learning process. We 

have to define the useful reward feature factor and pro-

vide example traces in the beginning of an inverse rein-

forcement learning process. The goal of the inverse re-

inforcement learning is finding a reward function by 

which agent can learn a good strategy that close to the 

expert strategy. 

3. Proposed method 

3.1 Apprenticeship Learning 

Apprenticeship learning [4], or apprenticeship via in-

verse reinforcement learning (AIRL), is a concept in the 

field of Artificial Intelligence and Machine learning, 

developed by Pieter Abbeel and Andrew Ng. AIRL 
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deals with Markov decision process without explicitly 

given a reward function, but where instead we can ob-

serve an expert demonstrating the task that we want to 

learn to perform. 

 

3.2 Inverse Reinforcement Learning via Orthogonal 

Projection 

Reward function, the most succinct representation of 

the designer’s intention, needs to be provided before-

hand in reinforcement learning processes. However, it 

is difficult to design an appropriate reward function in 

order to fit a complex problem. An inverse reinforce-

ment learning (IRL) algorithm is useful when we solve 

a MDP without reward functions.  

 

3.2.1 Reward Index 

To search a reward function through IRL, we approxi-

mate the reward function using a linear combination of 

useful features. In equation (1) we desire to search a 

policy by which navigating a mobile robot to the goal. 

There are two dimensions in this case; the distance and 

the angle. As Fig. 1, each dimension we can divide into 

three blocks, so that we define the reward features 

as ],,,,,[ 210210 dddF . If the state s is  10 ,d , the ba-

sis vector Ts ]0,1,0,0,0,1[)(       . Nevertheless, the afore-

mentioned definition is not appropriate to some special 

situations. For instance, there are obstacles in the envi-

ronment, and furthermore there is an obstacle between 

robot and goal. As shown in Fig. 2, 

],,,,,,,,,[ 1010210210  rrdddF .In this situation, the 

nearest distance to goal is not a good state. On the other 

hand, one dimension is relative to another dimension. In 

order to solve the problem, we can define the set of re-

ward indexes K as {K|K⊆S}, where S represents the 

whole state space. An example is shown as follows: 

)},,,(),,,,(),,,,{( 012201100010  rdrdrdK   

),,,(,]0,1,0[)( 0110  rdsifs T   

),,,(,]1,0,0[)( 0122  rdsifs T   

),,,(,]0,0,0[)( 1100  rdsifs T   

 

 
Fig. 1: Mobile robot navigation. 

 

 
Fig. 2: Obstacle in the environment. 

 

3.2.2 Iteration Algorithm  

Orthogonal projection IRL algorithm is shown in Fig. 3. 

Instead of reward functions, example traces is provided 

beforehand, so that we can quantize the designer’s in-

tention as reward functions. Besides, a set of useful re-

ward indexes is needed in the beginning of the iteration 

algorithm. In order to approach the example traces, we 

search reward functions cyclically. We estimate the dis-

tance to example traces via index expectations. The der-

ivation of index expectations is shown as follows: 
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where I is the initial-state distribution, from which the 

start state s0 is chosen; γ(0<γ≤1) is discount factor. A 

policy π is a mapping from states to probability distri-

butions over actions. In RL, a state value V(s) is used to 

evaluate sum of rewards from an initial state to terminal 

state as depicted in equation (2). Equation (3), we de-

fine index expectations of a trajectory which start from 

an initial state s0 through a policy )(i as equation (4). If 

there is more than one trajectory, the index expectations 

are computed by equation (5), where m is the number of 

trajectories. The equation (6) is a Euclidean norm. It is 

a distance between the expert’s trajectory and the tra-

jectory through the current policy. If the distance is less 

than or equal to a constant threshold, the current policy 

is good enough and the reward functions by which 

search a good policy will be outputted. On the contrary, 

we compute a new set of reward weights through equa-

tion (7) to get close to the expert’s example traces. If 

the iterative process has not been terminated, a new it-

eration point is chosen by equation (8). 
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(8) 

The IRL algorithm mentioned above can solve a Mar-

kov decision process without reward functions. Howev-

er, it is hard to define reward indexes in a complex dy-

namic environment. We proposed a reward index con-

struction method that can be used in a complicated 

problem. 

 

 

Fig. 3: Three iterations through orthogonal projection. 

 

3.3 Reward Index Construction 

In this section, we define the states visited by the good 

and bad demonstrations as the source domain, the set of 

critical states is the target domain. Then, we can choose 

significant states through observing the difference be-

tween the good and bad demonstrations, and we regard 

those significant states as reward indexes. We proposed 

a method that selects reward indexes from state space 
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via impurity function. The entropy function expresses 

the degree of mess in a system. This measure is based 

on the concept of entropy in information theory. Entro-

py function is shown as follows: 

      in

n

i i xpxpXH log
1 

  
(9) 

where X is a set that ],...,,,[ 210 mbbbbX , xi is a subset of 

X. n is the number of subsets. We define 0log0≡0. 

 

3.3.1 Visit frequency of states 

We assume that a set of reward indexes is a subset of 

state space. Furthermore, we find out these critical 

states via the difference between the good and bad 

demonstrations. There is a straightforward factor, visit 

frequency of states, which can be used in searching crit-

ical states. For instance, one state is often visited by a 

good policy, and it is seldom visited by a bad policy. 

We can take this state as a good state. On the contrary, 

the state will be a bad state. If one state we need to ap-

proach or avoid, like the above-mentioned two cases, 

we take the state as a critical state. Besides, if the visit 

frequency of state is similar in good and bad demonstra-

tions, the state is an insignificant state. We compute the 

state-impurity factor by equation (10), which presents a 

lopsided degree in a certain state. 

 )(log)(log)()( 22 spspspsf sBsBsGs   (10) 

where Ps is a visit probability, the subscript G means a 

good demonstration, and B means a bad demonstration. 

 

3.3.2 Visit frequency of state-action pair 

In addition to observe the state distributions as men-

tioned above, we observe the visit frequency of state-

action pairs to search critical states. There are two con-

ditions we will take a state as a critical state. First, 

while the action-impurity factor of the state is low, the 

state is a critical state. The action-impurity factors that 

calculated via entropy function as shown in (11) indi-

cate degree of mess in one state.  

  


n

i n aspaspsH
1

),(log),()(  (11) 

In this case, we substitute the size of action space into n, 

and p(s, a) is the probability of choosing action a in a 

state s. 

The second condition that take a state as a critical state 

while one state in which the good policy is different 

from the bad policy. We proposed a method to quantize 

this situation. First, we calculate a total trajectory 

through accumulating the visit frequency of state-action 

pairs demonstrated by the good and bad policy. Second, 

we compute action-impurity factor of total trajectory. 

While one state in which the good policy is different 

from the bad policy, action-impurity factor of total tra-

jectory will be much greater than the good policy one. 

Besides, if the action-impurity factor of good policy is 

high, there is an uncertain policy in this state. In this 

situation, it is an insignificant state. To sum up, we 

compute action-impurity ratio by equation (12), which 

quantizes the difference between the good and bad poli-

cy in a certain state. 
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where |A| is size of action space, Pa (s, ai) is probability 

of choosing action ai in a state s, the subscript G means 

a good policy, and Sum means summation of good and 

bad policy. The constant ε is a smoothing factor to 

avoid denominator equal to zero. 

 

3.4 Inverse Reinforcement Learning Based on Criti-

cal State 

Based on the above concept, we propose an algorithm, 

Inverse Reinforcement Learning based on Critical State 

(IRLCS), which is able to do self-organization and 

search an appropriate reward function through the good 

and bad demonstrations. In the beginning of the algo-

rithm, we have to provide two example traces, the good 

demonstration DG and the bad demonstration DB. In the 

same environment, it may not only one goal. For exam-

ple, in a car driving problem, sometimes we want to 

avoid collision, and sometimes want to drive as fast as 

possible. Therefore, the good demonstration is relevant 

to the objective of task. On the contrary, the bad 

demonstration we can do a random operation. Moreover, 

we may do a bad operation to cause the mission to fail 

intentionally. In our algorithm, we check the entire state 

space to search for critical states. In Step (2.1), we 

count the visit frequency of state si in DG and DB . Be-

sides, the sum of two counters is assigned to a total 

counter CSum. If CSum(si) is equal to zero, we regard the 

state si as an insignificant state, because the state has 

never been visited by all demonstrations. Next, we can 

compute a state-impurity factor through Step (2.3) and 

Step (2.4). The number of actions chosen in a certain 

state is a factor to search critical states. Therefore, we 

compute action-impurity ratio fa(si) through Step 2.6 

and Step 2.7. In Step 2.8 and Step 2.9, we determine 

whether state si is a critical state. There are two thresh-

olds provided beforehand; THs(0   THs  1) and 

THa(1  THa). The smaller THa, the more strict condi-

tion is. If THs is equal to zero, the state is a critical state 

while one of demonstrations has never visited the state. 

On the contrary, the larger  THa, the more strict condi-

tion is. We can adjust these two parameters to control 

the desired amount of a critical states and the accuracy 

of the reward function. Finally, in Step (3), we can use 

the IRL method introduced in section 3.2 to search the 

appropriate reward function based on critical states. 

Roughly, the IRL function used in IRLCS is the same 

as the method introduced in section 3.2. In Step 4.4, Q-

Learning algorithm is applied to search a policy π
(i)

. 

The policy used to select an action in the action space is 

epsilon greedy. There are a parameter, ε, means explo-

ration probability. In exploration, we randomly choose 

an action from action space. Otherwise, we take a 

greedy action that causes a maximum state-action value 

in current state. 
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S ={s0, s1,…, sn}   A ={a0, a1,…, an}  K: set of critical states 

1. Initialize:  

DG : set of state-action pairs in a good demonstration 

DB : set of state-action pairs in a bad demonstration 
2. for i = 0 to |S| - 1 step  1 

2.1 Count the visit frequency of state si in DG and DB , 

siS 

CG(si) : the visit frequency of state si in DG 

CB(si) : the visit frequency of state si in DB 
)()()( iBiGisum sCsCsC   

2.2 if Csum (si) = 0 then 

2.3 Calculate the visit probability of si in demonstrations 
     )()()(,)()()( iSumiBisBiSumiGisG PP sCsCs   sCsCs    

2.4 Calculate the state-impurity factor, fs(si),by (10) 
2.5 Count the visit frequency of state-action pairs (si, aj) 

in DG and DB, siS, aj A 

for j = 0 to |A| - 1 step 1 
CG(si, aj) : the visit frequency of (si, aj) in DG 

CB(si, aj) : the visit frequency of (si, aj) in DB 

),(),(),( jiBjiGjisum aaa sCsCsC 
 

end for 
2.6 Calculate the probability of choosing action aj in a 

state si. 
for j = 0 to |A| - 1 step 1 
   

),(),(),(

,),(),(),(

jiSumjiSumjiaSum

jiGjiGjiaG

aaaP

aaaP

sCsCs

   sCsCs

|A|

0j

|A|

0j











  

end for 
2.7 Calculate the action-impurity ratio, fa(si),by (12) 

2.8 if fs(si) THs’ then si insert in K 

2.9 else if fa(si) THa’ then si insert in K 

 end for 
3. Search a reward function R(s) by inverse reinforcement learn-

ing algorithm 

3.1 R(s) inverse reinforcement learning(DG, K) 

Fig. 4: Inverse Reinforcement Learning based on Criti-

cal State algorithm. 

4. Simulation 

In this paper, we tested the efficiency of the IRLCS al-

gorithm proposed through a speeding car environment 

which has been used to test the usability of the re-

nowned IRL algorithms [5]. The simulation environ-

ment and the key performance index are illustrated in 

the following. 

 

4.1 Environment 

Fig. 4 is the simulation scenario that we test the IRLCS 

algorithm. The task is to navigate a car on a three-lane 

highway. All vehicles, except for the agent’s marked in 

blue, are moving at a speed, said level 1, and appear 

from the top of the screen randomly. The agent can 

drive at speeds 1 to 4, and can move one lane left or 

right. There are five actions, shift agent right, speed up, 

shift agent left, speed down, do nothing. The objectives 

of this task are that driving as fast as possible, but sin-

cerely taking account of collision-avoidance and speed-

ing-avoidance. There are eight dimensions in the state 

space of this task: 

1. There is a vehicle at most n car-length in front of 

the agent. There are equivalent features for check-

ing for cars in three lanes. Length n is in the range 

from 0 to 3 car-lengths. 

2. There is a vehicle at most n car-length behind the 

agent. There are equivalent features for checking 

for cars in three lanes. Length n is in the range 

from 0 to 2 car-lengths. 

3. Four speeds at which the agent can drive. 

4. Three lanes the agent can occupy. 

 
Fig. 4: Speeding car simulation. 

Please do not add page numbers to this style; page 

numbers will be added by the publishers. 

In this simulation, there are two additional rules: 

1. The lawful driver prefers to drive fast, but does 

not exceed speed 2 in the right lane, or speed 3 in 

the others lane.  

2. If the agent is speeding, the out-law speed will 

not calculate in the average speed. 

 

4.3 Simulation results 

The results are described in two parts. There are “colli-

sion-avoidance behavior” and “driving-as-fast-as-

possible behavior”. Since the algorithm may learn dif-

ferent policies based on the same set of the critical 

states due to the simulation scenarios are randomly 

generated. Each learned policy was executed 50 times 

as a trail to show the average. We took totally 10 poli-

cies for trials and calculated the mean and standard de-

viation for each kind of parameter settings. 

4.3.1 Collision-avoidance behavior 

To verify the validity of the threshold values, we pro-

vide different kind of parameters to aggregate different 

critical states. In addition, we compare these settings 

with the reward indexes constructed through whole 

state space. The simulation parameters are shown in 

Table 1. In Fig. 5, the horizontal axis represents differ-

ent reward indexes, and the vertical axis represents how 

many time steps in a collision state. The first result that 

has 148 critical states is the most stringent parameter 

setting. It is difficult to demonstrate a bad trajectory 

without any good state, so overly stringent parameter 

settings may cause that some significant states are fil-

tered. The situation that we use whole state space as 

reward indexes as shown in item whole S. The item 

whole S has more complete information because of 

there are some significant states in state space which are 

never visited in example traces. However, the item 

whole S contains a lot of insignificant states. It leads 

item whole S to a worse result and costs more computa-

tional time. According to the results of collision time 

steps, the item cs154 is the best parameter setting. It is 

even better than item whole S which has full infor-

mation. 

Table 1 Simulation parameters in case 1. 

Item cs148 cs150 cs151 cs154 

CS 148 150 151 154 

TH_S 0 0 0.3 0.6 

TH_A 100 1.1 1.1 1.1 
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Fig. 5: Collision frequency in case 1. 

Fig. 6 represents average speed in 10 trials. The item 

cs154 has the highest mean value and the lowest stand-

ard deviation. These results confirm the effectiveness of 

a succinct reward function based on critical states. 

 
Fig. 6: Average speed in case 2. 

4.3.2 Driving-as-fast-as-possible behavior 

As mentioned in previous section, we compare different 

sets of critical states with the reward indexes construct-

ed via whole state space. The simulation parameters are 

shown in Table 2. According to the simulation results in 

this case, though the cs134 and cs139 results through 

IRLCS algorithm is worse than the item whole S in col-

lision frequency test, it is better in average speed test, as 

shown in Fig.7 and Fig.8. In addition, according to a 

“driving as fast as possible” behavior, the policy 

through IRLCS is more close to the expert’s policy be-

cause of the high average speed. The result of expert’s 

average speed is lower than item cs134, cs139 and 

whole S because of the reaction time of the human op-

erator. 

Table 2 Simulation parameters in case 2. 

Item cs132 cs134 cs139 

CS 132 134 139 

TH_S 0 0 0.5 

TH_A 100 1.1 1.1 

 

 
Fig. 7: Collision frequency in case 2. 

 

 
Fig. 8: Average speed in case 2. 

5. Conclusions 

According to the simulation results in section 4, IRLCS 

that we proposed is able to find a useful and succinct 

reward function to learn a behavior demonstrated by 

expert. The reward index construction methods only use 

the good trajectories that are demonstrated by experts. 

IRLCS not only considers the good demonstrations, but 

also uses the bad demonstrations. Furthermore, the pol-

icy through IRLCS is more close to the expert’s policy 

than the policy via IRL algorithm based on whole state 

space. Moreover, with the dimension increases, the 

computational cost will be exponential amplification. In 

summary, IRLCS algorithm can find a useful reward 

function in low computational time. 
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