
Inverse Reinforcement Learning based on Critical

State

Kao-Shing Hwang Tien-Yu Cheng Wei-Cheng Jiang

Department of Electrical Engineering

National Sun Yat-sen University

Abstract

Inverse reinforcement learning is tried to search a re-

ward function based on Markov Decision Process. In

the IRL topics, experts produce some good traces to

make agents learn and adjust the reward function. But

the function is difficult to set in some complicate prob-

lems. In this paper, Inverse Reinforcement Learning

based on Critical State (IRLCS) is proposed to search a

succinct and meaningful reward function. IRLCS select

a set of reward indexes from whole state space through

comparing the difference between the good and bad

demonstrations. According to the simulation results,

IRLCS can search a good strategy that is similar to ex-

perts.

Keywords: Inverse Reinforcement learning, reward

function, reward feature.

1. Introduction

In recent years, Inverse Reinforcement Learning (IRL)

is widely used and studied. The [1] proposes a Hierar-

chical Apprenticeship Learning method for quadruped

locomotion. In addition, the others researches apply the

IRL in the different problems [2, 3]. The original con-

cepts of IRL algorithm are proposed by [4] which is a

QP-based algorithm; nevertheless, the methods derive

some problems. First of all, it needs to predefine a set of

reward indexes or reward features. The FIRL method is

introduced to search an appropriate reward features via

Fitting Step [5]. However, the method spends more

time finding a set of useful reward function. In [6], the

dimension reduction methods are proposed to extract

useful features by demonstrations. However, it bases on

quadratic programing and makes the application incon-

venient. Secondly, most IRL problems need to have

many demonstrations that are demonstrated by experts.

These demonstrations are viewed as correct behaviors.

But, incorrect demonstrations should be viewed im-

portant information equally. The agent can learn good

behaviors by incorrect demonstrations. In this paper,

IRLCS algorithm is proposed to search appropriate re-

ward indexes in whole state space by two sets of

demonstrations, good trajectories and bad trajectories.

IRLCS uses the significant states to form a portable and

succinct reward function in short computational time.

The efficiency of IRLCS is demonstrated by a simula-

tion problem, speeding car, which is introduced by [5].

The paper is organized as follows. Section 2 introduces

reinforcement learning and inverse reinforcement learn-

ing. Section 3 introduces the IRLCS algorithm. Section

4 summarizes the simulation and analysis results. Sec-

tion 5 is conclusion about the algorithm.

2. Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a sub-area of Machine

learning. In comparison with supervised learning, rein-

forcement learning can solve problems without training

samples. Instead of training samples, a reward function

is defined by the expert to express what the good and

bad events are for the agent. In a reinforcement learning

process, an agent takes actions in an environment so as

to maximize the long-term reward.

2.2 Inverse Reinforcement Learning

Reinforcement learning techniques provide a powerful

solution for the decision making problems under uncer-

tainty. In the beginning of a reinforcement learning pro-

cess, we have to define a reward function that guides

the agent towards the goal. Unfortunately it is difficult

to define a reward function for a complex problem. In

order to solve this problem, inverse reinforcement

learning algorithms are proposed [3] [4]. In inverse re-

inforcement learning algorithm, the reward function is

approximated using a linear combination of useful fea-

tures:

)()(ssR  w
(1)

where  Ti ssss)(),...,(),()(21   are predefined basis

functions, and l is the number of useful features in the

reward function, and  iwwwsw ,...,,)(21 are the pa-

rameters to be tuned during the learning process. We

have to define the useful reward feature factor and pro-

vide example traces in the beginning of an inverse rein-

forcement learning process. The goal of the inverse re-

inforcement learning is finding a reward function by

which agent can learn a good strategy that close to the

expert strategy.

3. Proposed method

3.1 Apprenticeship Learning

Apprenticeship learning [4], or apprenticeship via in-

verse reinforcement learning (AIRL), is a concept in the

field of Artificial Intelligence and Machine learning,

developed by Pieter Abbeel and Andrew Ng. AIRL

16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

© 2015. The authors - Published by Atlantis Press 771

deals with Markov decision process without explicitly

given a reward function, but where instead we can ob-

serve an expert demonstrating the task that we want to

learn to perform.

3.2 Inverse Reinforcement Learning via Orthogonal

Projection

Reward function, the most succinct representation of

the designer’s intention, needs to be provided before-

hand in reinforcement learning processes. However, it

is difficult to design an appropriate reward function in

order to fit a complex problem. An inverse reinforce-

ment learning (IRL) algorithm is useful when we solve

a MDP without reward functions.

3.2.1 Reward Index

To search a reward function through IRL, we approxi-

mate the reward function using a linear combination of

useful features. In equation (1) we desire to search a

policy by which navigating a mobile robot to the goal.

There are two dimensions in this case; the distance and

the angle. As Fig. 1, each dimension we can divide into

three blocks, so that we define the reward features

as],,,,,[210210 dddF . If the state s is  10 ,d , the ba-

sis vector Ts]0,1,0,0,0,1[)( . Nevertheless, the afore-

mentioned definition is not appropriate to some special

situations. For instance, there are obstacles in the envi-

ronment, and furthermore there is an obstacle between

robot and goal. As shown in Fig. 2,

],,,,,,,,,[1010210210  rrdddF .In this situation, the

nearest distance to goal is not a good state. On the other

hand, one dimension is relative to another dimension. In

order to solve the problem, we can define the set of re-

ward indexes K as {K|K⊆S}, where S represents the

whole state space. An example is shown as follows:

)},,,(),,,,(),,,,{(012201100010  rdrdrdK 

),,,(,]0,1,0[)(0110  rdsifs T 

),,,(,]1,0,0[)(0122  rdsifs T 

),,,(,]0,0,0[)(1100  rdsifs T 

Fig. 1: Mobile robot navigation.

Fig. 2: Obstacle in the environment.

3.2.2 Iteration Algorithm

Orthogonal projection IRL algorithm is shown in Fig. 3.

Instead of reward functions, example traces is provided

beforehand, so that we can quantize the designer’s in-

tention as reward functions. Besides, a set of useful re-

ward indexes is needed in the beginning of the iteration

algorithm. In order to approach the example traces, we

search reward functions cyclically. We estimate the dis-

tance to example traces via index expectations. The der-

ivation of index expectations is shown as follows:

    )()(00~0 t

t

tIs sEsVE  

 (2)

   k

t

t

tIs RsE   

 )()(0~0

 (3)

where I is the initial-state distribution, from which the

start state s0 is chosen; γ(0<γ≤1) is discount factor. A

policy π is a mapping from states to probability distri-

butions over actions. In RL, a state value V(s) is used to

evaluate sum of rewards from an initial state to terminal

state as depicted in equation (2). Equation (3), we de-

fine index expectations of a trajectory which start from

an initial state s0 through a policy)(i as equation (4). If

there is more than one trajectory, the index expectations

are computed by equation (5), where m is the number of

trajectories. The equation (6) is a Euclidean norm. It is

a distance between the expert’s trajectory and the tra-

jectory through the current policy. If the distance is less

than or equal to a constant threshold, the current policy

is good enough and the reward functions by which

search a good policy will be outputted. On the contrary,

we compute a new set of reward weights through equa-

tion (7) to get close to the expert’s example traces. If

the iterative process has not been terminated, a new it-

eration point is chosen by equation (8).

)()(0 t

t

t s 

  (4)

)(

1
)()(

01

j

t

t

t

m

j s
m

 

 

(5)

2

)1()()( j

E

js 
(6)

)()1()( j

E

i w (7)

    
   

 )1()(

)1()()1()(

)1()1()(
)1()()(

)()(

)(




 




 ii

iiTii

i

E

Tii
ii 






(8)

The IRL algorithm mentioned above can solve a Mar-

kov decision process without reward functions. Howev-

er, it is hard to define reward indexes in a complex dy-

namic environment. We proposed a reward index con-

struction method that can be used in a complicated

problem.

Fig. 3: Three iterations through orthogonal projection.

3.3 Reward Index Construction

In this section, we define the states visited by the good

and bad demonstrations as the source domain, the set of

critical states is the target domain. Then, we can choose

significant states through observing the difference be-

tween the good and bad demonstrations, and we regard

those significant states as reward indexes. We proposed

a method that selects reward indexes from state space

772

via impurity function. The entropy function expresses

the degree of mess in a system. This measure is based

on the concept of entropy in information theory. Entro-

py function is shown as follows:

      in

n

i i xpxpXH log
1 


(9)

where X is a set that],...,,,[210 mbbbbX , xi is a subset of

X. n is the number of subsets. We define 0log0≡0.

3.3.1 Visit frequency of states

We assume that a set of reward indexes is a subset of

state space. Furthermore, we find out these critical

states via the difference between the good and bad

demonstrations. There is a straightforward factor, visit

frequency of states, which can be used in searching crit-

ical states. For instance, one state is often visited by a

good policy, and it is seldom visited by a bad policy.

We can take this state as a good state. On the contrary,

the state will be a bad state. If one state we need to ap-

proach or avoid, like the above-mentioned two cases,

we take the state as a critical state. Besides, if the visit

frequency of state is similar in good and bad demonstra-

tions, the state is an insignificant state. We compute the

state-impurity factor by equation (10), which presents a

lopsided degree in a certain state.

)(log)(log)()(22 spspspsf sBsBsGs  (10)

where Ps is a visit probability, the subscript G means a

good demonstration, and B means a bad demonstration.

3.3.2 Visit frequency of state-action pair

In addition to observe the state distributions as men-

tioned above, we observe the visit frequency of state-

action pairs to search critical states. There are two con-

ditions we will take a state as a critical state. First,

while the action-impurity factor of the state is low, the

state is a critical state. The action-impurity factors that

calculated via entropy function as shown in (11) indi-

cate degree of mess in one state.

  


n

i n aspaspsH
1

),(log),()((11)

In this case, we substitute the size of action space into n,

and p(s, a) is the probability of choosing action a in a

state s.

The second condition that take a state as a critical state

while one state in which the good policy is different

from the bad policy. We proposed a method to quantize

this situation. First, we calculate a total trajectory

through accumulating the visit frequency of state-action

pairs demonstrated by the good and bad policy. Second,

we compute action-impurity factor of total trajectory.

While one state in which the good policy is different

from the bad policy, action-impurity factor of total tra-

jectory will be much greater than the good policy one.

Besides, if the action-impurity factor of good policy is

high, there is an uncertain policy in this state. In this

situation, it is an insignificant state. To sum up, we

compute action-impurity ratio by equation (12), which

quantizes the difference between the good and bad poli-

cy in a certain state.

001.0

,
),(log),(

),(log),(
)(

||

0 ||

||

0 ||





















A

i iaGAiaG

A

i iaSumAiaSun

a

asPasP

aspasp
sf

(12)

where |A| is size of action space, Pa (s, ai) is probability

of choosing action ai in a state s, the subscript G means

a good policy, and Sum means summation of good and

bad policy. The constant ε is a smoothing factor to

avoid denominator equal to zero.

3.4 Inverse Reinforcement Learning Based on Criti-

cal State

Based on the above concept, we propose an algorithm,

Inverse Reinforcement Learning based on Critical State

(IRLCS), which is able to do self-organization and

search an appropriate reward function through the good

and bad demonstrations. In the beginning of the algo-

rithm, we have to provide two example traces, the good

demonstration DG and the bad demonstration DB. In the

same environment, it may not only one goal. For exam-

ple, in a car driving problem, sometimes we want to

avoid collision, and sometimes want to drive as fast as

possible. Therefore, the good demonstration is relevant

to the objective of task. On the contrary, the bad

demonstration we can do a random operation. Moreover,

we may do a bad operation to cause the mission to fail

intentionally. In our algorithm, we check the entire state

space to search for critical states. In Step (2.1), we

count the visit frequency of state si in DG and DB . Be-

sides, the sum of two counters is assigned to a total

counter CSum. If CSum(si) is equal to zero, we regard the

state si as an insignificant state, because the state has

never been visited by all demonstrations. Next, we can

compute a state-impurity factor through Step (2.3) and

Step (2.4). The number of actions chosen in a certain

state is a factor to search critical states. Therefore, we

compute action-impurity ratio fa(si) through Step 2.6

and Step 2.7. In Step 2.8 and Step 2.9, we determine

whether state si is a critical state. There are two thresh-

olds provided beforehand; THs(0  THs  1) and

THa(1 THa). The smaller THa, the more strict condi-

tion is. If THs is equal to zero, the state is a critical state

while one of demonstrations has never visited the state.

On the contrary, the larger THa, the more strict condi-

tion is. We can adjust these two parameters to control

the desired amount of a critical states and the accuracy

of the reward function. Finally, in Step (3), we can use

the IRL method introduced in section 3.2 to search the

appropriate reward function based on critical states.

Roughly, the IRL function used in IRLCS is the same

as the method introduced in section 3.2. In Step 4.4, Q-

Learning algorithm is applied to search a policy π
(i)

.

The policy used to select an action in the action space is

epsilon greedy. There are a parameter, ε, means explo-

ration probability. In exploration, we randomly choose

an action from action space. Otherwise, we take a

greedy action that causes a maximum state-action value

in current state.

773

S ={s0, s1,…, sn} A ={a0, a1,…, an} K: set of critical states

1. Initialize:

DG : set of state-action pairs in a good demonstration

DB : set of state-action pairs in a bad demonstration
2. for i = 0 to |S| - 1 step 1

2.1 Count the visit frequency of state si in DG and DB ,

siS

CG(si) : the visit frequency of state si in DG

CB(si) : the visit frequency of state si in DB
)()()(iBiGisum sCsCsC 

2.2 if Csum (si) = 0 then

2.3 Calculate the visit probability of si in demonstrations
)()()(,)()()(iSumiBisBiSumiGisG PP sCsCs sCsCs 

2.4 Calculate the state-impurity factor, fs(si),by (10)
2.5 Count the visit frequency of state-action pairs (si, aj)

in DG and DB, siS, aj A

for j = 0 to |A| - 1 step 1
CG(si, aj) : the visit frequency of (si, aj) in DG

CB(si, aj) : the visit frequency of (si, aj) in DB

),(),(),(jiBjiGjisum aaa sCsCsC 

end for
2.6 Calculate the probability of choosing action aj in a

state si.
for j = 0 to |A| - 1 step 1

),(),(),(

,),(),(),(

jiSumjiSumjiaSum

jiGjiGjiaG

aaaP

aaaP

sCsCs

 sCsCs

|A|

0j

|A|

0j













end for
2.7 Calculate the action-impurity ratio, fa(si),by (12)

2.8 if fs(si) THs’ then si insert in K

2.9 else if fa(si) THa’ then si insert in K

 end for
3. Search a reward function R(s) by inverse reinforcement learn-

ing algorithm

3.1 R(s) inverse reinforcement learning(DG, K)

Fig. 4: Inverse Reinforcement Learning based on Criti-

cal State algorithm.

4. Simulation

In this paper, we tested the efficiency of the IRLCS al-

gorithm proposed through a speeding car environment

which has been used to test the usability of the re-

nowned IRL algorithms [5]. The simulation environ-

ment and the key performance index are illustrated in

the following.

4.1 Environment

Fig. 4 is the simulation scenario that we test the IRLCS

algorithm. The task is to navigate a car on a three-lane

highway. All vehicles, except for the agent’s marked in

blue, are moving at a speed, said level 1, and appear

from the top of the screen randomly. The agent can

drive at speeds 1 to 4, and can move one lane left or

right. There are five actions, shift agent right, speed up,

shift agent left, speed down, do nothing. The objectives

of this task are that driving as fast as possible, but sin-

cerely taking account of collision-avoidance and speed-

ing-avoidance. There are eight dimensions in the state

space of this task:

1. There is a vehicle at most n car-length in front of

the agent. There are equivalent features for check-

ing for cars in three lanes. Length n is in the range

from 0 to 3 car-lengths.

2. There is a vehicle at most n car-length behind the

agent. There are equivalent features for checking

for cars in three lanes. Length n is in the range

from 0 to 2 car-lengths.

3. Four speeds at which the agent can drive.

4. Three lanes the agent can occupy.

Fig. 4: Speeding car simulation.

Please do not add page numbers to this style; page

numbers will be added by the publishers.

In this simulation, there are two additional rules:

1. The lawful driver prefers to drive fast, but does

not exceed speed 2 in the right lane, or speed 3 in

the others lane.

2. If the agent is speeding, the out-law speed will

not calculate in the average speed.

4.3 Simulation results

The results are described in two parts. There are “colli-

sion-avoidance behavior” and “driving-as-fast-as-

possible behavior”. Since the algorithm may learn dif-

ferent policies based on the same set of the critical

states due to the simulation scenarios are randomly

generated. Each learned policy was executed 50 times

as a trail to show the average. We took totally 10 poli-

cies for trials and calculated the mean and standard de-

viation for each kind of parameter settings.

4.3.1 Collision-avoidance behavior

To verify the validity of the threshold values, we pro-

vide different kind of parameters to aggregate different

critical states. In addition, we compare these settings

with the reward indexes constructed through whole

state space. The simulation parameters are shown in

Table 1. In Fig. 5, the horizontal axis represents differ-

ent reward indexes, and the vertical axis represents how

many time steps in a collision state. The first result that

has 148 critical states is the most stringent parameter

setting. It is difficult to demonstrate a bad trajectory

without any good state, so overly stringent parameter

settings may cause that some significant states are fil-

tered. The situation that we use whole state space as

reward indexes as shown in item whole S. The item

whole S has more complete information because of

there are some significant states in state space which are

never visited in example traces. However, the item

whole S contains a lot of insignificant states. It leads

item whole S to a worse result and costs more computa-

tional time. According to the results of collision time

steps, the item cs154 is the best parameter setting. It is

even better than item whole S which has full infor-

mation.

Table 1 Simulation parameters in case 1.

Item cs148 cs150 cs151 cs154

CS 148 150 151 154

TH_S 0 0 0.3 0.6

TH_A 100 1.1 1.1 1.1

774

Fig. 5: Collision frequency in case 1.

Fig. 6 represents average speed in 10 trials. The item

cs154 has the highest mean value and the lowest stand-

ard deviation. These results confirm the effectiveness of

a succinct reward function based on critical states.

Fig. 6: Average speed in case 2.

4.3.2 Driving-as-fast-as-possible behavior

As mentioned in previous section, we compare different

sets of critical states with the reward indexes construct-

ed via whole state space. The simulation parameters are

shown in Table 2. According to the simulation results in

this case, though the cs134 and cs139 results through

IRLCS algorithm is worse than the item whole S in col-

lision frequency test, it is better in average speed test, as

shown in Fig.7 and Fig.8. In addition, according to a

“driving as fast as possible” behavior, the policy

through IRLCS is more close to the expert’s policy be-

cause of the high average speed. The result of expert’s

average speed is lower than item cs134, cs139 and

whole S because of the reaction time of the human op-

erator.

Table 2 Simulation parameters in case 2.

Item cs132 cs134 cs139

CS 132 134 139

TH_S 0 0 0.5

TH_A 100 1.1 1.1

Fig. 7: Collision frequency in case 2.

Fig. 8: Average speed in case 2.

5. Conclusions

According to the simulation results in section 4, IRLCS

that we proposed is able to find a useful and succinct

reward function to learn a behavior demonstrated by

expert. The reward index construction methods only use

the good trajectories that are demonstrated by experts.

IRLCS not only considers the good demonstrations, but

also uses the bad demonstrations. Furthermore, the pol-

icy through IRLCS is more close to the expert’s policy

than the policy via IRL algorithm based on whole state

space. Moreover, with the dimension increases, the

computational cost will be exponential amplification. In

summary, IRLCS algorithm can find a useful reward

function in low computational time.

References

[1] J. Kolter, P. Abbeel and A. Ng, Hierarchical ap-

prenticeship learning with application to quadruped

locomotion, Advances in Neural Information Pro-

cessing Systems, vol. 20, 2008.

[2] P. Abbeel, A. Coates and A. Ng, Autonomous heli-

copter aerobatics through apprenticeship learning,

International Journal of Robotics Research, vol. 29,

no. 13, pp. 1608–1639, 2010.

[3] P. Abbeel, D. Dolgov, A. Ng, and S. Thrun, Ap-

prenticeship learning for motion planning with ap-

plication to parking lot navigation, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Sys-

tems, pp. 1083-1090, 2008.

[4] P. Abbeel and A. Ng, Apprenticeship learning via

inverse reinforcement learning, in Proceedings of

the 21st international conference on Machine learn-

ing, 2004.

[5] S. Levine, Z. Popovic and V. Koltun, Feature con-

struction for inverse reinforcement learning, Ad-

vances in Neural Information Processing Systems,

2010.

[6] S.-Y. Chen, H. Qian, J. Fan, Z.-J. Jin and M.-L. Zhu,

Modified reward function on abstract features in in-

verse reinforcement learning, Journal of Zhejlang

University - Science C, vol. 11, no. 9, pp. 718-723,

2010.

775

