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Abstract

The emergence of more powerful computational
techniques has stimulated the development and
study of more sophisticated models for portfolio se-
lection problem including further constraints and
further financial and non-financial decision crite-
ria. In this paper, we propose a hybrid approach
composed of two genetic algorithms to solve a
fuzzy portfolio selection model with cardinality con-
straints, semicontinuous variable and non-financial
goals. An analytical description of the efficient fron-
tier and socially responsible solutions are obtained.

Keywords: Portfolio selection, Efficient frontier,
Socially responsible investment, Genetic Algorithm

1. Introduction

The modern portfolio selection problem is a classical
model for determining the optimal composition of a
portfolio according to an investor’s preferences. The
model is credited to Markowitz [10], who is right-
fully regarded as the founder of modern portfolio
theory. This problem is more naturally seen as a
bi-objective problem with two financial goals: max-
imizing the expected return and minimizing the risk
of the portfolio. Markowitz considered the return of
each asset as a random variable and measured the
expected return and the risk of a portfolio by means
of the mean of the corresponding weighted sum of
random variables and the quadratic form associated
to the variance-covariance matrix, respectively. Un-
der normality hypotheses, these can be estimated by
taking historical data as a sample. However, finer
measures of the risk and the return can be consid-
ered [7, 9, 11].
On the other hand, Markowitz just imposed the

trivial non-negativity constraints on the variables
together with the sum-one constraint for the weights
of the assets in the portfolio. Nevertheless, the
emergence of more powerful computational tech-
niques has stimulated the development and study
of more sophisticated models including further con-
straints and further financial and non-financial de-
cision criteria.

A relevant example of non-financial additional in-
vestment goals is Socially Responsible Investment

(SRI). SRI is broadly defined as an investment
process that integrates not only financial but also
social, environmental, and ethical concerns into in-
vestment decision making. However, few portfolio
selection models including these goals can be found
in the literature ([1, 2, 3, 12, 14] are some examples).
One of the main problems faced by those authors
is the rating of assets with regard to these issues.
This poses two main mathematical problems: how
to evaluate the social responsibility of the assets,
which is by its nature a vague and imprecise con-
cept, and how to aggregate in a final rating a great
amount of relevant but imprecise information about
firms and/or funds.

In [6], a model for solving a fuzzy portfolio se-
lection problem with cardinality constraints, semi-
continuous variables and non-financial goals is pro-
posed. In a first step, the efficient financial so-
lutions, in terms of risk and return, are obtained
as proposed in [5]. Then, in a second step a non-
financial secondary goal is considered and new so-
lutions are offered to the investor (interesting solu-
tions from a financial point of view are not discarded
as a result of the introduction of the non-financial
constraints). From a computational viewpoint, the
trouble with this approach emerges with medium
and large-sized portfolio problems. For small-sized
problems, in the first step, the analytical description
of the efficient frontier is exact, whereas for medium-
sized instances, a reasonable approximation of the
exact frontier is provided. Furthermore, the CPU-
time increases with the problem size, making the
calculation of the solutions unviable for medium and
large-sized problems.

In this paper, we describe a Soft-Computing
method composed of two genetic algorithms (GAs)
to solve this model, which is more adequate for
medium and large-sized problems. The rest of the
paper is organized as follows. In next section, a
measure of the social responsibility of the assets and
a formulation of the portfolio selection problem in-
cluding a non-financial goal are presented. Section
3 describes the method for solving this model. In
order to illustrate the proposed method, a example
is presented in section 4. Finally, section 5 includes
the conclusions.
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2. A fuzzy portfolio selection model with
non-financial goals

2.1. A measurement of the degree of social
responsibility

The main SRI tool is investment in socially re-
sponsible mutual funds and the most common SRI
strategy is screening, [13]. This investment strat-
egy consists of checking companies for the presence
or absence of certain social, environmental, ethical
and/or good corporate governance characteristics.
However, these characteristics have an ambiguous,
imprecise and/or uncertain nature. Therefore, eval-
uating the social responsibility of the assets is not a
simple question. In this context Fuzzy Set Theory
offers some elements which can help the experts to
assess the degree of social responsibility of a finan-
cial asset, [12].
We focus on equity mutual funds. Socially re-

sponsible equity mutual funds invest primarily in
stocks and the degree of them is measured at two
levels [6]: First, the fuzzy social performance of each
firm invested in by the mutual fund is evaluated,
and second, the quality of the non-financial informa-
tion provided by the mutual fund managers is eval-
uated by using the reports of information on com-
panies’ performance with respect to environmental,
social and governance criteria.

Let us consider n equity mutual funds
{F1, F2, . . . , Fn} which invest principally in stocks
which are portions of ownership of a corporation
or firm. Let us consider a set {fk}q

k=1 of q firms in
which the funds can invest at a certain moment of
time. As equity mutual funds invest almost 100%
in stocks, [6], the degree of social responsibility of
the funds is evaluated using the degree of social
responsibility of the firms they invest in. In order
to do so, m social screens {s1, s2, . . . , sm} are taken
into account, which are the usual screens applied
by the main rating agencies it is assumed that the
expert evaluates the degree of social responsibility
of each firm k with respect to each screen j by
assigning it an interval:

s̃kj =
{

(skj , [bL
kj , b

U
kj ]), 1 ≤ k ≤ q, 1 ≤ j ≤ m

}
where [bL

kj , b
U
kj ] ⊆ [0, 1]. Thus, for each firm, the in-

terval [bL
kj , b

U
kj ] represents the membership function

of firm k with respect to the social screen j, con-
sidered as a tolerance interval. And, the interval
representing the social responsibility degree of each
firm k is the following:

[bL
k , b

U
k ] =

m∑
j=1

[bL
kj , b

U
kj ], 1 ≤ k ≤ q.

Then, taking into account the percentage invested
in each firm by each mutual fund, the degree of
social responsibility of each mutual fund is:

[bL
i , b

U
i ] =

q∑
k=1

αi
k[bL

k , b
U
k ], 1 ≤ i ≤ n, (1)

where αi
k ∈ [0, 1] represents the weighting percent-

age of firm k in mutual fund i.
Next step consists of obtaining a set of weights for

each mutual fund, [6]. These weights play a correct-
ing factor as they represent the degree of quality (in
terms of transparency and credibility) of the infor-
mation on the social screening process provided by
the mutual funds’ managers (they depend on sev-
eral criteria: quality of the description of the screen-
ing process, existence of an external research team
composed of experts in SRI, periodical non-financial
audits, description of engagement policy, public dis-
closure of proxy voting practices and education of
the fund manager on SRI practices). Therefore, a
weight is assummed each interval:

w̃i =
{

(wi, [bL
wi
, bU

wi
])
}
, 1 ≤ i ≤ n. (2)

These weights will be also a discrete set for each
mutual fund. The interval represents the member-
ship function of the weight assigned to mutual fund
i considered as a tolerance interval. Thus, for each
mutual fund Fi, its Fuzzy Social Responsibility de-
gree, S̃RDi, is defined as:

S̃RDi = w̃is̃i, 1 ≤ i ≤ n,

and taking into account (1) and (2), its membership
function is given, for each 1 ≤ i ≤ n, by

µ
S̃RDi

(Fi) = [bL
wi
, bU

wi
] ∗ [bL

i , b
U
i ] = [bL

wi
bL

i , b
U
wi
bU

i ]

Finally, we handle the Fuzzy Social Responsibility
degrees by means of their expected values, [6]: For
each 1 ≤ i ≤ n

EV (S̃RDi) = 1
2(bL

wi
bL

i + bU
wi
bU

i )

2.2. A multiobjetive model with cardinality
constraints and semicontinuous variable

Our starting point is the following crisp multiobjec-
tive portfolio selection model (CP):

Max r(x) = ex
Min R(x) = xtV x
s.t. 1x = 1 (c1)

 Xm ≤
∑

i yi ≤M (c2)
liyi ≤ xi ≤ uiyi, i = 1, . . . , n (c3)
xi ≥ 0, yi ∈ {0, 1} i = 1, . . . , n

where V is the variance-covariance matrix, e is the
vector of expected returns, the variables xi repre-
sent the weight of each asset in the portfolio (and
hence they must satisfy constraint (c1)) and the bi-
nary variable yi takes the value 1 if and only if the
corresponding asset actually appears in the portfo-
lio. These auxiliary variables allow us to introduce
cardinality and semicontinuous variable constraints
into the model. Cardinality constraints impose con-
ditions as (c2), bounding the number of assets ap-
pearing in the portfolio, but this is just an instance,
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and more particular constraints on specific sets of
assets can be introduced in the same way. Semicon-
tinuous variable constraints (c3) require the vari-
ables xi to be on an interval [li, ui] unless they take
the value 0, [4].

Constraints (c1)-(c3) are usually imposed as di-
versification constraints and we take them as the
hard constraints of our problem, that is, as the con-
straints that the investor definitely wishes to im-
pose. Furthermore, we consider two objectives: the
minimization of the risk and maximization of the
return. In particular, we can consider two models
derivatives of the model (CP): a) the first objective
as a main goal (ex ≥ r) together with the minimiza-
tion of the risk R(x) (model CPr); and b) the second
objective as a main goal (xtV x ≤ R) together with
the maximization of the return r(x) (model CPR).
Recall that the efficient frontier of a portfolio

selection problem is the set of efficient (i.e. non-
dominated) portfolios (pairs of return and risk).

Definition 2.1. Given two portfolios x1, x2, x1
dominates x2 if (R(x1) < R(x2) and r(x1) ≥ r(x2))
or (R(x1) ≤ R(x2) and r(x1) > r(x2))

Definition 2.2. Efficient frontier is the set P ∗ de-
fined as P ∗ = {x / @x′, x′ dominates x}

The frontier determines two functions Ref (r) and
ref (R) (defined on suitable intervals) providing the
minimum risk we can reach to ensure an expected
return greater or equal to r and the maximum ex-
pected return we can reach with a risk not greater
than R, i.e. the optimal values of (CPr) and (CPR)
respectively.

2.3. Adding fuzzy conditions and
non-financial goals

Now we state a fuzzy problem whose fuzzy con-
straint set will contain portfolios “not too far” from
a given point of the efficient frontier expressing the
investor’s initial preferences about risk and return,
and whose fuzzy goal set will contain portfolios that
are “efficient enough” and “good enough” with re-
gard to the non-financial goal, [6]. Then, a fuzzy
optimization problem has a fuzzy constraint set C̃,
which means that we consider not only feasible so-
lutions and non feasible solutions, but also partially
feasible solutions that can be acceptable for the
decision-maker to a certain extent. On the other
hand, we need a fuzzy goal set G̃, classifying the
solutions as good or bad solutions (but accepting
partially good solutions). These sets determine a
fuzzy decision set D̃ = C̃ ∩ G̃, where the fuzzy in-
tersection is usually defined as the fuzzy set deter-
mined by the minimum of the corresponding degrees
of membership, although several alternatives can be
considered. The fuzzy optimal solution of a fuzzy
problem is that possessing the best degree of mem-
bership of the decision set.

The feasible set C̃ could be C̃ = C̃r ∩ C̃R, where
the membership functions of the fuzzy sets C̃r and
C̃R are given by:

µC̃r
(x, y) =


1 if r ≥ r0,
r−r0+sr

sr
if r0 − sr < r < r0,

0 if r ≤ r0 − sr,

µC̃R
(x, y) =


1 if R ≤ R0,
R0+sR−R

sR
if R0 < R < R0 + sR,

0 if R ≥ R0 + sR,

where r and R are respectively the expected return
and the risk of the portfolio (x, y) and the values r0,
R0, sr and sR are determined from the investor’s
preferences. r0 and R0 are an expected return and
a risk that the investor considers as completely ac-
ceptable, but he/she would accept worse values un-
til reaching the tolerances sr and sR if this provides
better results for the non-financial goal.

Next we define a fuzzy goal set G̃ from two aux-
iliary fuzzy sets Ẽ and S̃, the first one defining
the “efficient enough” portfolios and the second one
defining the “good enough” ones with regard to
the non-financial goal (always according to the in-
vestor’s preferences). The set Ẽ will express what
we are loosing by accepting a non-efficient portfo-
lio, and so efficient portfolios will be now the totally
efficient portfolios, i.e. those having degree of mem-
bership of Ẽ equal to 1.

First we define efficiency with regard to the ex-
pected return and then, the efficiency with regard
to the risk by means of two fuzzy sets Ẽr and ẼR.
The membership of Ẽr is:

µẼr
(x, y) =

{
1− ref(R)−r

tr
if r ≥ ref (R)− tr,

0 otherwise,

where tr is a tolerance determined from the in-
vestor’s preferences and ref(R) is the efficient ex-
pected return corresponding to the risk R of the
portfolio. This means that the degree of efficiency
with regard to the expected return reaches the value
0 when the difference between the expected return r
of the portfolio and ref(R) exceeds a tolerance fixed
by the investor.

Analogously, we define the membership function
of ẼR as

µẼR
(x, y) =

{
1− R−Ref(r)

tR
if R ≤ Ref (r) + tR,

0 otherwise,

that is, the degree of efficiency of a portfolio with
regard to the risk is 1 for efficient portfolios and
reaches the value 0 when the difference between the
risk R of the portfolio and the efficient risk Ref(r)
for its return r exceeds a given tolerance tR.

Now we define Ẽ = Ẽr ∩ ẼR, where the member-
ship function of the fuzzy intersection is defined as
the minimum of the previously defined membership
functions. Hence the set Ẽ allows us to speak about
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partially efficient portfolios in such a way that effi-
cient portfolios in the usual sense are now the totally
efficient ones, but a portfolio close enough to the ef-
ficient frontier is considered as “almost efficient” in
the fuzzy sense.
At this point we introduce the investor’s prefer-

ences on the secondary goal. Let us assume that
these preferences are given by a fuzzy set S̃, i.e.
the membership degree of S̃ indicates “how good” a
given portfolio is with regard to the secondary goal.
When the secondary goal is SRI, we can define the
Social Responsibility Degree of a portfolio as

SRD(x) =
n∑

i=1
EV (S̃RDi)xi,

and then normalize it as

µS̃(x, y) = SRD(x)
MSRD ,

where MSRD is the maximum value that SRD(x)
attains on the set X, which can be calculated by
solving a linear problem.
Then we define our fuzzy goal set G̃ by means of

the membership function as a weighted sum

µG̃(x, y) = wµS̃(x, y) + (1− w)µẼ(x, y),

where the weight w expresses the importance of the
secondary goal for the investor with regard to ef-
ficiency. So, a high value for w means that the
investor is willing to go relatively far from the ef-
ficient frontier in order to obtain higher values of
µS̃ , whereas a small value of w means that the in-
vestor wishes to stay near the efficient frontier. In
any case, recall we have defined the feasible set in
such a way that only good enough solutions with re-
gard to the financial goals are under consideration,
and so the financial goals are always the main goals
of the problem. More specifically, a large value for
w means that, among the acceptable solutions with
regard to the financial goals, those best with regard
to S̃ are preferred, and only for similar values with
regard to S̃ the degree of efficiency becomes rele-
vant.
All in all, the degree of membership of the deci-

sion set is given by

µD̃(x, y) = min{µC̃(x, y), wµS̃(x, y)+(1−w)µẼ(x, y)}

and the fuzzy model with non-financial goals (FP) is
the problem determined by this decision set, whose
optimal solutions are those with maximum degree
of membership of D̃:

Max. min{µC̃(x, y), wµS̃(x, y) + (1− w)µẼ(x, y)}
s.t. 1x = 1

m ≤
∑

i yi ≤M
liyi ≤ xi ≤ uiyi, i = 1, . . . , n
xi ≥ 0, yi ∈ {0, 1} i = 1, . . . , n

As we can see in this model, the objective func-
tion needs the explicit form of the efficient fron-
tier in order to obtain the values ref (R) and Ref (r)
corresponding to the risk R and return r, respec-
tively. This efficient frontier, under the conditions
proposed in the set X, consists of a piecewise con-
tinuous function defined by a finite number of arcs
of parabola. The terms of cardinality and bounded
variables make the efficient frontier becomes more
complicated.

3. A hybrid metaheuristic

A portfolio selection problem can turn into a more
complex problem depending on the constraints that
are added to the problem (the more irregular the ef-
ficient frontier is, the more computational efforts are
required). To solve the problems with conventional
methods, a high computational effort is required in
medium/large-sized and complex problems. Soft-
Computing methods try to solve the drawbacks of
the conventional methods, and they can work with
less computational effort with these problems.

We propose a hybrid metaheuristic (named
GASRP-FP) for solving the model (FP) in order
to obtain the socially responsible portfolios. For
this, firstly the explicit efficient frontier and subef-
ficient frontiers have to be calculated, and then the
socially responsible portfolios are obtained taking
into account the constraints and the parameters of
the problem. Before going any further, it is im-
portant to notice that after obtaining the socially
responsible portfolios, we can offer to the investor,
not only the best option taking the result of the
efficient frontier, but also, a subefficient portfolios
near the efficient frontier from the viewpoint of their
social responsibility.

The proposed metaheuristic is composed of two
steps: The first step consists of a multiobjective GA
of second generation (NSGA-II type, [8]) and it is
responsible for the efficient to obtain explicit fron-
tier (and subefficient frontiers) from a given problem
(solutions to the model (CP)); and the second con-
sists of a GA that works in parallel and is executed
for each portfolio of the efficient and subefficient
frontier, and it is responsible for getting socially re-
sponsible portfolios (solutions to the model (FP)).

The metaheuristic scheme is shown in Figure 1.

Problem data 
Constraints 
Objectives 

Multiobjective 
GA 

G
e

n
et

ic
 A

lg
o

ri
th

m
 

Explict efficient 
frontier 

Set of feasible 
portfolios 

Socially responsible 
solutions  

Financial solutions 

STEP 1 
STEP 2 

GASRP-FP hybrid meta-heuristic 

Figure 1: Metaheuristic scheme
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3.1. Obtaining efficient frontier and feasible
portfolios (STEP 1)

The efficient frontier of the model (CP) is composed
of a set of quadratic functions that describes the
relation between risk and return, (R,r).

The description of the elements of the multiob-
jective GA used to obtain the efficient frontier (and
subefficient frontiers) of the model (CP) is as fol-
lows:

Individual: The individual codification is binary
where the individual length is equal to the number
of assets (y). Each gene represents an asset and
when the gene is equal to zero, the user does not
invest in this asset. On the contrary, when the gene
is equal to one, the user invests in this asset.
Besides, the individual carries associated some in-

formation. Specifically the associated information
is: the parameters (a,b,c) of the quadratic function
ar2 +b+c = R, the domain [rmin,rmax] of quadratic
function and the values L and U (lower and upper
saturated values). A value is saturated when the
value invested in the asset i is exactly li or ui.
Briefly, an individual is defined by the following

parameters: [y, a, b, c, rmin, rmax, L, U ] (these pa-
rameters are calculated by the procedure KETF de-
scribed in [5] and included in this GA). It is impor-
tant to notice that the parameter y is the individual
and the rest of parameters are additional informa-
tion.

Population: The population is composed of the
number of non-dominated individual and of the N
dominated individuals that give diversity to the
problem. The number of non-dominated individual
is not limited.

Fitness: The fitness function has a double purpose.
On the one hand, the fitness changes the domain of
the individual. The aim is to find the dominance of
the individual: the function divides the individual
and adjusts the domain in order to have dominated
and non-dominated individuals. So, the individ-
ual that dominates another individual has a fitness
equal to one and the dominated one has a fitness
equal to zero. On the other hand, besides that dom-
inance value, the fitness function uses a front and
niche function in order to discriminate when two
individuals have the same dominance value. The
aim of this function is to obtain more diversity in
the complete domain of the problem. The front and
niche function is calculated as follows:

FN = oi+1
r − oi−1

r

omin
r − omax

r

+ oi+1
R − oi−1

R

omin
R − omax

R

where oi
r represents the population ordered by re-

turn (high to low) and oi
R represents the population

ordered by risk (low to high).

Selection: The selection operator is elitist (the in-
dividuals with dominance value equal to one are

saved). To select the best individual of a popu-
lation, the operator uses a binary tournament func-
tion where two individuals are compared consider-
ing their dominance value and if these values are
equal, the operator returns the individual with the
higher value of the front and niche function.

Crossing: The crossover operator is performed by
single crossover point. Given two individuals y1 and
y2, the operator considers the number of enabled
assets of the two individuals and considers the assets
that belong to the sets L and U . The crossing is
carried out as follows:

Considering as parents:

y1 99K (
∑

y1i = A), L1, U1

y2 99K (
∑

y2i = B), L2, U2

the offsprings are defined as:

yH1 99K (A ≤
∑

yH1i ≤ B), LH1, UH1

yH2 99K (A ≤
∑

yH2i ≤ B), LH2, UH2

where LH1∪LH2 = L1∪L2 and UH1∪UH2 = U1∪U2.

Mutation: The mutation operator is applied by
individual and there are several options, that are
carried out with the same probability. The options
are: To enable and disable an asset, to add or re-
move an asset of L, to add or remove an asset of U ,
to exchange an enabled asset for a disabled asset,
to exchange a disabled asset for an enabled asset.
Before carrying out a mutation, the constraints of
the problem are always tested, and if the mutation
failed to fulfill some constraints, the mutation is not
performed.

Having presented the elements of this multiob-
jective GA, the returned solution is a set of non-
dominated individuals, and these individuals com-
pose the efficient frontier. Furthermore, this algo-
rithm obtains a set of subefficient portfolios. The
set of efficient and subefficient portfolios constitutes
the set of feasible portfolios from which a set of so-
cially responsible portfolios will be obtained.

Once the set of feasible portfolios is obtained, a
GA is used to calculate the best socially responsible
portfolios. This GA will be executed for each fea-
sible portfolio (a parallel execution will be carried
out). This GA is defined in the next section.

3.2. Obtaining socially responsible
portfolios (STEP 2)

After obtaining the efficient frontier, we want to cal-
culate other portfolios, near this efficient frontier
taking into account their social responsibility. To
do that a parallel GA has been developed. The de-
cision to develop a parallel GA is clear, the aim of
this parallel GA is to obtain the most socially re-
sponsible portfolio for each feasible portfolio taking
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into account the distance to the efficient frontier.
So, the GA launches a process in parallel for each
possible portfolio.
The input for the algorithm is the output of the

algorithm STEP 1. But in this case, the input is
only the portfolios composition, ie, the set of port-
folios {y1, y2, . . . , ym} with dominance value equal
to one and equal to zero (efficient and subefficient
portfolios). Restricting the search domain to which
the user has indicated, a portfolio is sought, with its
proper investment, in order that the user can get the
higher value of degree of social responsibility. The
GA components are described as follows:

Individual: The individual codification is real
where depending on the portfolio, each gene repre-
sents the invest of the corresponding asset and the
individual represents the investment vector x. Each
individual must verify the conditions proposed in
the set X.

Fitness: The fitness function defines the social re-
sponsibility taken into account the distance of the
portfolio to the efficient frontier. The greater the
fitness function is, the better the portfolio is from a
non financial viewpoint. The fitness function is the
objective function of the model (FP).

min{µC̃(x, y), wµS̃(x, y) + (1− w)µẼ(x, y)}

Selection: The selection is performed by bi-
nary tournament, being better the individual with
greater fitness value.

Crossing: The crossover operator is performed
by using a version of the α-BLX operator.
The crossover operator takes two individuals cr1
and cr2 defined by (xcr11, xcr12, . . . , xcr1n) and
(xcr21, xcr22, . . . , xcr2n), respectively and calculates
the following values:

Tai = ai − αIi, T bi = bi + αIi with α ∈ [0, 1]

where Tai ≤ li, Tbi ≤ ui, ai = min{xcr1i, xcr2i},
bi = max{xcr1i, xcr2i} and Ii = bi − a− i.
Taking n values randomly in the interval

[Tai, T bi], HP = (hp1, hp2, . . . , hpn) is built and
HC = (l1, l2, . . . , ln) where S =

∑
i li.

To complete a correct offspring, a random value
hpj from HP is taken and HCj=hpj and S = S +
(hpj − li). This process is carried out until S > 1
or until having used all hpj values S < 1. In these
situations the HC values must be modified to fulfill
the constraints

∑
i HCi =1.

Mutation: The mutation operator is applied by in-
dividual and has two options. The first option is to
exchange the investments between two genes. With
this option the constraint that all the investments
have to sum one is fulfilled. The second option is
to change the investment of a gene and to fulfill
the constraint to sum one, adding or removing the
difference between other genes.

For each feasible portfolio, the GA returns the de-
gree of social responsability and investment in each
asset.

4. An example of socially responsible
portfolio selection

In order to compare the solutions provided by pro-
posed approach, we will analyze in this section a
small real numerical example.

We consider a problem with the 10 funds listed
in Table 1, for which we determine the portfolio’s
environmental responsibility degree SRD(·) based
on mutual funds’ fuzzy environmental responsibility
degrees (see Table 2).

# Name

F1 Calvert Large Cap Growth A
F2 Calvert Social Investment Equity A
F3 Domini Social Equity Inv
F4 Green Century Equity
F5 MMA Praxis Core Stock A
F6 BlackRock Index Equity Inv A
F7 Dreyfus Appreciation
F8 JPMorgan Equity Index Select
F9 Legg Mason Cap Mgmt All Cap B
F10 MFS Blended Res. Core Equity A

Table 1: Selected funds

SR Fund bL
i bU

i bL
wi

bU
wi

SRDL
i SRDU

i EV (S̃RDi)

Y F1 0.3574 1.795 0.2 0.4 0.0715 0.6527 0.3621
Y F2 0.295 1.6667 0.2 0.4 0.059 0.6061 0.3325
Y F3 0.746 2.727 0.3 0.5 0.224 1.736 0.98
Y F4 0.274 2.185 0.1 0.4 0.082 0.993 0.538
Y F5 0.25 1.649 0.3 0.4 0.025 0.6 0.312

N F6 0.224 1.692 0 0 0 0 0
N F7 0.752 2.61 0 0 0 0 0
N F8 0.249 1.952 0 0 0 0 0
N F9 0.315 1.943 0 0 0 0 0
N F10 0.339 1.995 0 0 0 0 0

Table 2: Environmental responsibility degrees

For the sake of brevity we omit the variance-
covariance matrix and the vector of expected re-
turns, but we are using weekly data from 31-12-
2006 to 31-12-2007 provided by Morningstar Ltd.
Assume we wish to select a portfolio consisting of a
minimum of 3 and of a maximum of 6 funds in such
a way that each non-zero weight is at least 0.05. As
upper bounds for the weights, we fix 0.25 for the
first five (the socially responsible ones) and 0.15 for
the conventional ones. These weights allow up to
a 75% of conventional funds and up to a 100% of
socially responsible funds in each feasible portfolio.

These values determine an instance of model
(CP) whose efficient frontier (red curves) is shown in
Figure 2. The explicit efficient frontier is described
in Table 3.
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y a b c rmin rmax
√

Rmin
√

Rmax L U

(0,1,0,1,1,1,1,0,0,0) 41.518962 -7.215402 3.632117 0.099653 0.104012 1.823566 1.825049 {} {2,4,6}
(0,1,0,1,1,1,1,0,0,1) 9464.790397 -2168.389589 127.532271 0.114550 0.114599 1.826857 1.826863 {10} {2,4,5}
(0,1,0,1,1,1,1,0,0,1) 5.204454 -0.266181 3.299585 0.114599 0.115076 1.826864 1.826985 {10} {2,4}
(0,1,0,1,1,1,1,0,0,1) 41.518962 -8.624072 3.780483 0.115076 0.116412 1.826985 1.827346 {10} {2,4,6}
(0,1,0,1,1,1,1,0,0,1) 9.761555 -1.230165 3.350112 0.116412 0.160769 1.827346 1.845168 {} {2,4,6}
(0,1,0,1,1,1,1,0,0,1) 41.518962 -11.441413 4.170941 0.160769 0.162011 1.845168 1.845827 {} {2,4,6,10}
(0,1,0,1,1,1,0,0,1,1) 10.449619 -1.630339 3.400727 0.162011 0.166108 1.846854 1.848848 {9} {2,4,6}
(0,1,0,1,1,1,0,0,1,1) 3.618703 0.638996 3.212250 0.166108 0.186736 1.848848 1.859505 {} {2,4,6}
(0,1,0,1,0,1,1,0,1,1) 48.649512 -16.415042 4.825024 0.187620 0.189504 1.859505 1.860483 {} {2,4,6,7}
(0,1,0,1,0,1,1,0,1,1) 3.827972 0.572660 3.215408 0.189504 0.219765 1.860483 1.877801 {} {2,4,6}
(0,1,0,1,0,1,1,0,1,1) 17.114074 -5.266986 3.857083 0.219765 0.230119 1.877801 1.884495 {} {2,4,6,9}
(0,1,0,1,0,1,1,0,1,1) 1817.414100 -804.886017 92.530170 0.230119 0.231076 1.884495 1.892935 {} {2,6,9,10}
(1,1,0,1,0,1,0,0,1,1) 7.079298 -2.402226 3.760292 0.231076 0.239175 1.892935 1.894916 {} {2,4,6,10}
(1,1,0,1,0,1,0,0,1,1) 16.521800 -3.033362 3.371089 0.239175 0.256769 1.894916 1.918724 {} {2,4,9,10}
(1,1,0,1,0,1,0,0,1,1) 9.584809 1.514194 2.660776 0.256769 0.264140 1.918724 1.931183 {6} {2,9,10}
(1,1,0,1,0,0,0,0,1,1) 7.079298 -2.859469 3.990845 0.264140 0.265566 1.931183 1.931511 {} {2,4,10}
(1,1,0,1,0,0,0,0,1,1) 9.584809 1.502603 2.655724 0.265566 0.275246 1.931511 1.948193 {} {2,9,10}
(1,1,0,1,0,1,0,0,1,1) 9.584809 1.514194 2.660776 0.275246 0.276128 1.950307 1.951845 {6} {2,9,10}
(1,1,0,1,0,1,0,0,1,1) 842.926787 -448.629747 63.418568 0.276128 0.277893 1.951845 1.960133 {} {1,2,9,10}
(1,1,0,0,0,1,1,0,1,1) 14.767512 -3.236231 3.618871 0.277893 0.278517 1.964678 1.965469 {} {2,6,9,10}
(1,1,0,1,0,0,0,1,1,1) 7.079298 -2.963295 4.441416 0.278517 0.284024 2.040892 2.042267 {8} {2,4,10}
(1,1,0,1,0,0,0,1,1,1) 9.584809 1.628508 2.935113 0.284024 0.303383 2.042267 2.076385 {8} {2,9,10}
(1,1,0,1,0,0,0,1,1,1) 31.708895 -0.012223 1.396550 0.303383 0.305703 2.076385 2.087140 {} {1,2,9,10}
(1,1,0,0,0,1,0,1,1,1) 35.526478 -2.583291 1.819489 0.306031 0.360541 2.087140 2.346529 {} {1,2,9,10}

Table 3: Explicit efficient frontier
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Figure 2: Efficient frontiers and subefficient portfolios

The irregular shape of the frontier is due to the
fact that the function Ref (r) can be calculated
as the pointwise minimum of the functions Ry

ef (r)
corresponding to the subproblems CPr(y) result-
ing of fixing a specific value y for the binary vari-
ables. These auxiliary subproblems are quadratic,
and so their efficient frontier is a continuous piece-
wise parabolic curve. Furthermore, in this example,
the feasible portfolios are shown in Figure 2.
On the efficient frontier, the investor can choose

the zone of the risk-return plane he is interested in.
Formally, this means to determine the fuzzy set C̃.
For this, we fix (r0, R0) = (0.26, 1.98) with toler-
ances (sr, sR) = (0.01, 0.02) (box in Figure 2). It
contains just 13 subefficient portfolios and 3 port-
folios which belong to the efficient frontier. This
implies that each (efficient or not) feasible portfolio
of any subproblem different from those appearing in
the feasible region, is completely infeasible.
In order to define the fuzzy set Ẽ determining

the partially efficient portfolios, we must fix the tol-
erances (tr, tR). In absence of a concrete investor
to adopt a more specific criterion, a default choice

could be taking as tr the maximum distance from
a return in the efficient frontier to the minimum
return in the feasible region, and analogously for
tR. In our case: tr = 0.2785 − 0.25 = 0.0285 and
tR = 2−1.9093 = 0.0907. To determine an instance
of the model (FP), we need to fix the weight w for
the social responsibility degree in the goal function.
Let us set a quite high value, namely w = 0.8 to
favor those portfolios being quite far from the effi-
cient frontier if they are good with regard to SRI.
The obtained solutions are shown in Table 4

The parameters for the different algorithms are:
(# Individuals: 20; # Generations: 400; Mutation
prob: 0.4; Crossover prob: 0.8) for the GA in STEP
1 and (# Individuals= 60; # Generations: 800; Mu-
tation prob.: 0.1; Crossover prob.: 0.85) for the GA
in STEP 2. The results were obtained on a Cluster
32 cores - Intel Core i7 CPU 940 with 2.93GHz and
2GB of memory. The CPU time for STEP 1 is 3
seconds and STEP 2 is 0.126 seconds.

The optimal solution of model (FP) is the port-
folio N1 in Table 4, whose degree of membership of
the decision set is 0.6250. With this solution, the
investor gets an expected return r = 0.264, with
a risk R = 1.931 and a social responsibility degree
SRD = 0.2922.

It is interesting to compare this optimal solution
with other alternatives, and therefore Table 4 con-
tains the six best portfolios that are optimal with
regard to the portfolios with the same composition.
Notice that this does not mean that portfolio N2
is the second best solution of model (FP), since
there are infinitely many portfolios near to N1 that
are better than N2. What we can say is that, if
we look for a portfolio with a composition different
from that of N1, the best possibility is N2.
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Portfolio µD̃ SRD return risk

N1 0.205847 0.25 0 0.25 0 0 0 0 0.144153 0.15 0.6250 0.2922 0.264 1.931
N2 0.225809 0.236769 0.25 0 0 0 0 0 0.15 0.137423 0.6168 0.4055 0.260 1.980
N3 0.25 0.25 0.15 0.05 0 0 0 0 0.15 0.15 0.6091 0.3476 0.272 1.974
N4 0.166901 0.25 0 0.233099 0 0.05 0 0 0.15 0.15 0.5912 0.2690 0.260 1.924
N5 0.168049 0.25 0 0.231951 0 0 0.05 0 0.15 0.15 0.5811 0.2688 0.260 1.926
N6 0.25 0.25 0.15 0 0 0.05 0 0 0.15 0.15 0.5697 0.3207 0.273 1.978

Table 4: The six best solutions for different portfolio compositions

Let us also remark thatN1 belongs to the efficient
frontier (composition y = (1, 1, 0, 1, 0, 0, 0, 0, 1, 1)).
However, N2 is quite far from the efficient fron-
tier but it is an efficient portfolio of its subprob-
lem, namely, that corresponding to the composi-
tion y = (1, 1, 1, 0, 0, 0, 0, 0, 1, 1). And if we observe
the solution N2, its social responsibility grade is
SRD = 0.4055 but with a higher risk and a lower
return than the values of the solution N1.

In general, when applying the approach for solv-
ing an instance of model (FP), it is useful to save
not only the best portfolio along the search process,
but the best portfolio found for each composition.
Hence, in the end we can present the investor not
only the optimal portfolio, but also a list of alterna-
tives for different compositions. These alternatives
are ordered a priori according to his/her own prefer-
ences. In this way the investor is given a last chance
to decide which portfolio suits better his/her pref-
erences with regard to the trade off between risk,
return and social responsibility.

5. Conclusions

In this paper, we have proposed a hybrid approach
(named GASRP-FP) composed of two genetic al-
gorithms to solve a fuzzy portfolio selection model
with cardinality constraints, semicontinuous vari-
able and non-financial goals. An analytical descrip-
tion of the efficient frontier and social responsibility
solutions are obtained. This approach is more ad-
equate for medium as well as large-sized problems.
The proposed approach provides the investor not
only the optimal portfolio but a list of alternatives
for different compositions. In this way the investor
is given a last chance to decide which portfolio suits
better his/her preferences with regard to the trade
off between risk, return and social responsibility.
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