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Abstract

Recently, two new families of fuzzy implication func-
tions called probabilistic implications and prob-
abilistic S-implications were introduced by Grze-
gorzewski [6, 7, 9]. They are based on conditional
copulas and make a bridge between probability the-
ory and fuzzy logic. In this paper we generalize
these two classes and propose a new kind of con-
struction methods for fuzzy implications which are
based on an a priori given fuzzy implication I and
a semicopula B.

Keywords: Copula; Fuzzy implication; Probabilis-
tic implication; Semicopula.

1. Introduction

Fuzzy implications play a key role in fuzzy logic
and various applications, like approximate reason-
ing, fuzzy control, fuzzy relational equations, fuzzy
mathematical morphology and image processing,
etc. In the literature one can find many families of
fuzzy implications along with their properties and
applications. For the overview of this class of func-
tions see the monograph [3] and the very recent
book [1].
Recently, Grzegorzewski [6, 7, 9] introduced two

new families of fuzzy implications, abased on copu-
las - probabilistic implications and probabilistic S-
implications. Further investigations on these impli-
cations were conducted in [2, 8]. Another family
of fuzzy implication operators based on the condi-
tional version of a copula function was proposed by
Dolati, Sánchez and Úbeda-Flores [4].

As it is known, copula is a particular case of semi-
copula, which generalizes also such notions like a
quasi-copulas or a t-norm. Therefore, it seems in-
teresting and important to consider also fuzzy im-
plications based on semicopulas.

The paper is organized as follows. In Section 2
we recall basic concepts and definitions used in the
paper. In Section 3 we introduce a rather general
construction method for implications based on fuzzy
implications and semicopulas. Finally, some con-
cluding remarks are added.

2. Preliminaries

In this section we recall basic notations and facts
used in the sequel.

Definition 2.1 (see [3]). A function I : [0, 1]2 →
[0, 1] is called a fuzzy implication if it satisfies
the following conditions

(I1) I is non-increasing with respect to the first
variable,

(I2) I is non-decreasing with respect to the second
variable,

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The family of all fuzzy implications will be de-
noted by FI.
We can easily deduce, that each fuzzy implication

I is constant for x = 0 and for y = 1, i.e., I sat-
isfies the following properties, called left and right
boundary conditions, respectively:

I(0, y) = 1, y ∈ [0, 1], (1)
I(x, 1) = 1, x ∈ [0, 1]. (2)

Therefore, I satisfies also the normality condition
I(0, 1) = 1. Consequently, every fuzzy implication
restricted to the set {0, 1}2 coincides with the clas-
sical implication.

Definition 2.2 (cf. [3]). We say that a fuzzy im-
plication I satisfies the identity principle if

I(x, x) = 1, x ∈ [0, 1]. (IP)

Definition 2.3 (see [10]). A function T : [0, 1]2 →
[0, 1] is called a triangular norm (t-norm) if it
satisfies the following conditions for all x, y, z ∈
[0, 1]

(T1) T (x, y) = T (y, x),

(T2) T (x, T (y, z)) = T (T (x, y), z),

(T3) T (x, y) ≤ T (x, z) for y ≤ z, i.e. T (x, ·) is
non-decreasing,

(T4) T (x, 1) = x.
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Definition 2.4 (see [10]). A function S : [0, 1]2 →
[0, 1] is called a triangular conorm (t-conorm)
if it satisfies the following conditions for all x, y, z ∈
[0, 1]

(S1) S(x, y) = S(y, x),

(S2) S(x, S(y, z)) = S(S(x, y), z),

(S3) S(x, y) ≤ S(x, z) for y ≤ z, i.e. S(x, ·) is
non-decreasing,

(S4) S(x, 0) = x.

Definition 2.5 (cf. [3]). A function I : [0, 1]2 →
[0, 1] is called an R-implication, if there exists a
t-norm T such that

I(x, y) = sup {t ∈ [0, 1] | T (x, t) ≤ y} ,

for all x, y ∈ [0, 1]. If an R-implication is generated
from a t-norm T , then we will often denote it by IT .

Theorem 2.6 ([11], see also [3, Theorem 2.5.17]).
For a function I : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) I is an R-implication generated from a left-
continuous t-norm.

(ii) I is non-decreasing with respect to the second
variable, it satisfies the exchange principle, i.e.,
for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(y, I(x, z)), (EP)

it satisfies the ordering property, i.e., for all
x, y ∈ [0, 1]

x ≤ y ⇐⇒ I(x, y) = 1, (OP)

and I is right continuous with respect to the
second variable.

Definition 2.7 (see [10]). A non-increasing func-
tion N : [0, 1]→ [0, 1] is called a fuzzy negation if
N(0) = 1, N(1) = 0. Moreover, a fuzzy negation N
is called

(i) strict if it is strictly decreasing and continuous;
(ii) strong if it is an involution, i.e. N(N(x)) = x

for all x ∈ [0, 1].

Definition 2.8 ([12]). A copula (specifically, a 2-
copula) is a function C : [0, 1]2 → [0, 1] which satis-
fies the following conditions

(C1) C(x, 0) = C(0, y) = 0, for all x, y ∈ [0, 1],

(C2) C(x, 1) = x, for all x ∈ [0, 1],

(C3) C(1, y) = y, for all y ∈ [0, 1],

(C4) C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1) ≥
0, for all x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤
x2, y1 ≤ y2.

A family of functions from [0, 1]2 to [0, 1] that
generalize copulas are quasi-copulas.

Definition 2.9 ([12]). A functionQ : [0, 1]2 → [0, 1]
which satisfies conditions (C1)-(C3) and

(C4’) for all x1, x2, y1, y2 ∈ [0, 1] such that
x1 ≤ x2, y1 ≤ y2 it holds

Q(x2, y2)−Q(x2, y1)−Q(x1, y2)+Q(x1, y1) ≥ 0,

where at least one of x1, x2, y1, y2 ∈ {0, 1},

is called a quasi-copula.

It is worth noting that condition (C4’) is equiva-
lent to requiring that quasi-copulas are nondecreas-
ing in each variable, i.e. for all x1, x2, y1, y2 ∈ [0, 1]
such that x1 ≤ x2, y1 ≤ y2

Q(x1, y1) ≤ Q(x2, y2), (ND)

and satisfy the 1-Lipschitz property, i.e.

|Q(x1, y1)−Q(x2, y2)| ≤ |x1−x2|+ |y1−y2|, (Lip)

for all x1, x2, y1, y2 ∈ [0, 1].
It is clear that every copula is a quasi-copula.

Quasi-copulas that are not copulas are called
proper quasi-copulas. The family of all quasi-
copulas will be denoted by QC.

Another interesting family of functions is given
by the semicopulas.

Definition 2.10 ([5]). A function B : [0, 1]2 →
[0, 1] is called a semicopula if it satisfies conditions
(C2)-(C3) and (ND).

The family of all semicopulas will be denoted by
SC.
By Definition 2.10 we have

0 ≤ B(x, 0) ≤ B(1, 0) = 0,
0 ≤ B(0, y) ≤ B(0, 1) = 0,

which shows that each semicopula satisfies condi-
tion (C1).

It is worth noting that the notion of semicopula
generalizes some concepts mentioned above. The
proof of the following proposition is immediate.

Proposition 2.11 ([5]). (i) A semicopula C
which is 2-increasing, i.e., satisfying condition
(C4), is a copula.

(ii) A semicopula Q which satisfies the 1-Lipschitz
property (Lip) is a quasi-copula.

(iii) A semicopula which is both commutative (T1)
and associative (T2) is a t-norm.

It can be shown (see [5, Proposition 2.1]) that
each semicopula is bounded, i.e., for any semicopula
B and for all x, y ∈ [0, 1] the following inequalities
hold

TD(x, y) ≤ B(x, y) ≤ TM (x, y),

where

TD(x, y) =
{

0 if x, y ∈ [0, 1),
min{x, y} elsewhere,

(3)
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is the so-called drastic product and

TM (x, y) = min{x, y}. (4)

The notion of conditional copula was applied for
defining probabilistic implications and probabilistic
S-implications.

Definition 2.12 ([9]). Let C be a copula. A func-
tion IC : [0, 1]2 → [0, 1] given by

IC(x, y) =
{

1 if x = 0,
C(x,y)
x if x > 0,

(5)

is called a probabilistic implication (based on a
copula C).

Definition 2.13 ([9]). Let C be a copula. A func-
tion ĨC : [0, 1]2 → [0, 1] given by

ĨC(x, y) = C(x, y)− x+ 1, (6)

is called a probabilistic S-implication (based on
a copula C).

Please note that the family FI is convex (see [3,
Theorem 6.2.2]) and the same holds for probabilistic
implications and probabilistic S-implications. In-
deed, for any λ ∈ [0, 1] and for any two probabilistic
implications IC1 , IC2 based on copulas C1 and C2,
a function K = λIC1 + (1− λ)IC2 is given by

K(x, y) = (λIC1 + (1− λ)IC2)(x, y)
= λIC1(x, y) + (1− λ)IC2(x, y)

=
{

1 if x = 0,
λC1(x,y)+(1−λ)C2(x,y)

x if x > 0.

Since any convex linear combination of copulas is
a copula (see [12]), our function K is a proba-
bilistic implication, which is the desired conclusion.
The similar reasoning applies to probabilistic S-
implications.
In the next section we will discuss the possibil-

ity of utilizing semicopulas for constructing fuzzy
implications.

3. Semicopula based implications

Assume that I is a fuzzy implication and B
is a semicopula. Let us consider a function
JI,B : [0, 1]2 → [0, 1] based on I and B defined as
follows

JI,B(x, y) = I(x,B(x, y)). (7)

One can easily see that the following proposition
holds.

Proposition 3.1. For any fuzzy implication I and
any semicopula B a function JI,B : [0, 1]2 → [0, 1]
defined by (7) satisfies the following conditions:

(i) JI,B is non-decreasing with respect to the sec-
ond variable,

(ii) JI,B(0, y) = 1,
(iii) JI,B(1, y) = I(1, y),
(iv) JI,B(x, 0) = I(x, 0),
(v) JI,B(x, 1) = I(x, x).
As semicopulas are more general notions than

copulas, similarly functions JI,B defined by (7)
may be perceived as a generalization of implications
based on copulas, i.e., probabilistic implications and
probabilistic S-implications. Indeed, the following
propositions hold, for which the proofs are straight-
forward.
Proposition 3.2. Let I = IGG be the Goguen im-
plication, i.e.,

IGG(x, y) =
{

1 if x ≤ y,
y
x if x > y,

and let C denote a copula. Then JIGG,C is given by

JIGG,C(x, y) =
{

1 if x = C(x, y),
C(x,y)
x if x > C(x, y),

and hence JIGG,C is a probabilistic implication.
Proposition 3.3. Let I = ILK be the Łukasiewicz
implication, i.e.,

ILK(x, y) = min{1, 1− x+ y}

=
{

1 if x ≤ y,
1− x+ y if x > y,

and let C denote a copula. Then JILK,C is given by

JILK,C(x, y) =
{

1 if x = C(x, y),
1− x+ C(x, y) if x > C(x, y),

= C(x, y)− x+ 1

and hence JILK,C is a probabilistic S-implication.
It is known that a probabilistic implication is not

necessarily a fuzzy implication, while each proba-
bilistic S-implication is a fuzzy implication. There-
fore, by Propositions 3.2 and 3.3 we conclude that
JI,C may be or may not be a fuzzy implication.
Looking for the necessary and sufficient criteria re-
quired for (7) to obtain a fuzzy implication we get
immediately the following theorem.
Theorem 3.4. A function JI,B : [0, 1]2 → [0, 1] de-
fined by (7) is a fuzzy implication if and only if it
satisfies (I1).
Proof. Let us assume that JI,B given by (7) is a
fuzzy implication. In particular it satisfies (I1).
Now let us assume that a function JI,B given

by (7) satisfies (I1). From Proposition 3.1 it always
satisfies (I2) and

JI,B(0, 0) = 1
JI,B(1, 1) = I(1, 1) = 1
JI,B(1, 0) = I(1, 0) = 0

since I is a fuzzy implication. Thus JI,B satisfies
all axioms in Definition 2.1.
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Please note that if a function JI,B defined by (7)
is a fuzzy implication, then I satisfies also the iden-
tity principle (IP). Indeed, (2) holds in this case,
so JI,B(x, 1) = 1 for all x ∈ [0, 1]. But by Propo-
sition 3.1 we know that JI,B(x, 1) = I(x, x) thus
I(x, x) = 1 for all x ∈ [0, 1].

What is interesting, the identity principle (IP) is
not sufficient for being the JI,B defined by (7) a
fuzzy implication, as the following example shows.

Example 3.5. Let us consider the nilpotent mini-
mum t-norm

TnM(x, y) =
{

0, if x+ y ≤ 1,
min{x, y}, elsewhere,

and the residual implication to TnM i.e., the Fodor
implication given by the formula

IFD(x, y) =
{

1, if x ≤ y,
max{1− x, y}, elsewhere.

The IFD satisfies (IP) as the R-implication gener-
ated from a left-continuous t-norm (see [3, Theo-
rem 2.5.7]). But JIFD,TnM given by the formula

JIFD,TnM(x, y) =

=


1 if x = 0 or x ≤ y and x+ y > 1,
1− x if x > 0 and x+ y ≤ 1,
y elsewhere,

is not a fuzzy implication since it is not a non-
increasing function with respect to the first variable.
For the plot of this function see Figure 1. �

Now, let us consider a few more examples.

Example 3.6. Let B = TD denote the smallest
semicopula (3). Then

JI,TD (x, y) =


I(1, y) if x = 1,
I(x, x) if y = 1,
I(x, 0) elsewhere,

is a fuzzy implication if and only if I satisfies (IP)
and I(1−, 0) ≥ I(1, 1−), where the value I(x−, y−)
denotes the left-hand limit. It happens rather
rarely, e.g. if I = ITD is a residual implication gen-
erated by drastic t-norm TD, where

ITD (x, y) =
{

1 if x < 1,
y if x = 1.

�

Example 3.7. Now let us consider the strongest
semicopula B = TM given by (3). Then

JI,TM (x, y) =
{
I(x, x) if x ≤ y,
I(x, y) elsewhere,

is a fuzzy implication for any fuzzy implication I
which satisfies the identity principle (IP). Indeed, if

I(x0, x0) < 1 for some x0 ∈ (0, 1), then in particular
JI,TM (x0, 1) < 1, which contradicts (2). Moreover,
if I satisfies (IP), then from the monotonicity 1 =
I(x, x) ≤ I(x, y) ≤ 1, so I(x, y) = 1 for all x ≤ y.
Thus

JI,TM = I

when I satisfies (IP). �

Example 3.8. Let us consider the Gödel implica-
tion I = IGD, i.e. the residual of the largest t-norm
(semicopula) TM given by (3), where

IGD(x, y) =
{

1 if x ≤ y,
y elsewhere.

(8)

Then

JIGD,B(x, y) =
{

1 if x = B(x, y),
B(x, y) if x > B(x, y).

is a fuzzy implication if and only if B(x, y) =
min{x, y}, so JIGD,B(x, y) = IGD. Indeed, let
us assume that JIGD,B is a fuzzy implication for
some semicopula B. We know that if x > y, then
B(x, y) ≤ B(1, y) = y < x thus for any fixed
y0 ∈ [0, 1) we have

JIGD,B(x, y0) = B(x, y0)

for all x > y0. As B is semicopula, on this seg-
ment B(·, y0) it is non-decreasing. But as we have a
fuzzy implication, it satisfies also (I1), so it is non-
increasing with respect to the first variable. Hence
B(·, y0) is a constant function for all x > y0. But
B(1, y0) = y0 and thus

B(x, y0) = min{x, y0}

for any fixed y0 and all x ∈ [0, 1]. Therefore

JIGD,TM (x, y) =
{

1 if x = min{x, y}
min{x, y} if x > min{x, y}

=
{

1 if x ≤ y
y elsewhere

= IGD(x, y)

in this case again. �

Proposition 3.9. Let B = T denote a strict t-
norm and let I = IT be a residual implication gen-
erated by T . Then

JIT ,T (x, y) =
{

1 if x = 0 or y = 1,
y elsewhere.

(9)

Proof. We know that each continuous Archimedean
t-norm T could be expressed as

T (x, y) = f−1(min{f(x) + f(y), f(0)}),
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Figure 1: The JIFD,TnM function (see Example 3.5)

for all x, y ∈ [0, 1], where f : [0, 1] → [0,∞], called
an additive generator, is a continuous, strictly de-
creasing function with f(1) = 0, which is uniquely
determined up to a positive multiplicative constant.
It is also known (see [10]) that

IT (x, y) = f−1(max{f(y)−f(x), 0}), x, y ∈ [0, 1],

with the same f (see [3, Theorem 2.5.21]).
Moreover, T is strict if and only if its generator f

satisfies f(0) = ∞ (see [3, Remark 2.1.7]). Hence,
for a strict T norm we have

T (x, y) = f−1(f(x) + f(y)), x, y ∈ [0, 1],

and we obtain

JIT ,T (x, y) = IT (x, T (x, y))
= IT (x, f−1(f(x) + f(y)))
= f−1(max{(f(x) + f(y))− f(x), 0})
= f−1(max{f(y), 0}).

If f(y) > 0 then the above expression is equal to
f−1(f(y)) = y, and if f(y) = 0 then f−1(0) = 1
and it happens if y = 1. Of course, we also have
JIT ,T (0, y) = 1, so finally we obtain

JIT ,T (x, y) =
{

1 if x = 0 or y = 1,
y elsewhere,

which is the desired assertion.

Let us recall that a fuzzy implication is said to
satisfy the left neutrality property if

I(1, y) = y, y ∈ [0, 1]. (NP)

Please, note that the implication (9) discussed in
the above proposition is the smallest fuzzy implica-
tion satisfying the left neutrality principle (NP).

Example 3.10. If the t-norm T is nilpotent we
have a slightly more general situation than that con-

sidered in the last proof, i.e.,

JIT ,T (x, y) = IT (x, T (x, y))
= IT (x, f−1(min{f(x) + f(y), f(0)}))
= f−1(max{min{f(x) + f(y), f(0)} − f(x), 0})
= f−1(max{min{f(y), f(0)− f(x)}, 0})
= f−1(min{f(y), f(0)− f(x)})
= max{y, f−1(f(0)− f(x))}.

In particular case of the Łukasiewicz t-norm

TLK = max{x+ y − 1, 0},

with the additive generator f(x) = 1−x, we obtain

JITLK ,TLK(x, y) = max{1− x, y} = IKD(x, y),

known as the Kleene-Dienes implication (see [3]). �

Keeping in mind the above mentioned examples
it seems to be interesting to characterize both fuzzy
implications I and semicopulas B so that the result-
ing functions JI,B would be also fuzzy implications.
Therefore, let us define the following two sets.

For a fixed semicopula B let

JB = {I ∈ FI | JI,B ∈ FI} (10)

denote a subfamily of fuzzy implications for which
JI,B would be a fuzzy implication.

Similarly, for any fixed fuzzy implication I let

BI = {B ∈ SC | JI,B ∈ FI} (11)

denote a subfamily of semicopulas for which JI,B
would be a fuzzy implication.

Example 3.11. Let IS,N (x, y) = S(N(x), y) be an
(S,N)-implication (see [3]). Moreover, let T denote
a family of all t-norms. Then

BIS,N = {T ∈ T | JIS,N ,T ∈ FI},

i.e., BIS,N with restriction to t-norms, yields impli-
cations of the following form

JIS,N ,T (x, y) = S(N(x), T (x, y)),
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which are the so-called QL-operation generated by
the triple (T, S,N). It is well-known that not
all QL-operations are fuzzy implications (see [3,
Lemma 2.6.5]). But, e.g., if T is the minimum
t-norm TM , then the QL-operation generated by
(TM , S,N) is a fuzzy implication. �

By Proposition 3.2 we know that JIGG,C is a
probabilistic implication for any copula C. Now let
us consider a finite set of copulas C1, . . . , Cn. Let
us adopt the following notation

∨Ci(x, y) = max{C1(x, y), . . . , Cn(x, y)},
∧Ci(x, y) = min{C1(x, y), . . . , Cn(x, y)}.

It is worth noting that both ∨Ci and ∧Ci may not
be copulas but they are semi-copulas. However, the
following theorems hold.

Proposition 3.12. Let I = IGG be the Goguen im-
plication. If JIGG,Ci is a fuzzy implication for each
copula C1, . . . , Cn then both JIGG,∨Ci and JIGG,∧Ci
are fuzzy implications.

Proposition 3.13. Let I = ILK be the Łukasiewicz
implication and let C1, . . . , Cn denote a set of cop-
ulas. Then both JILK,∨Ci and JILK,∧Ci are fuzzy
implications.

In fact, we may even formulate a more general
theorem by considering not only finite systems of
copulas but any nonempty set of copulas. Actually,
it can be shown (see [12]) that for any nonempty set
of quasi-copulas U ⊂ QC functions U ,U : [0, 1]2 →
[0, 1] defined as follows

U(x, y) = inf{Q(x, y) | Q ∈ U},
U(x, y) = sup{Q(x, y) | Q ∈ U},

are quasi-copulas, i.e. U ,U ∈ QC. Therefore, as-
suming that U denotes a nonempty set of copulas
and keeping in mind that any copula is a quasi-
copula, we obtain stronger versions of the above
propositions.

Proposition 3.14. Let I = IGG be the Goguen im-
plication. If JIGG,C is a fuzzy implication for each
copula C ∈ U then both JIGG,U and JIGG,U are fuzzy
implications.

Proposition 3.15. Let I = ILK be the Łukasiewicz
implication and let U denote a set of copulas. Then
both JILK,U and JILK,U are fuzzy implications.

4. Conclusions

We have introduced a new construction method for
implications based on a fuzzy implication I and a
semicopula B. The resulting implication JI,B is an
extension of the boolean implication, however, its
monotonicity in the first coordinate may fail, and
thus it need not be a fuzzy implication, in general.

Our method generalizes the probabilistic implica-
tions (they also need not be fuzzy implications, in
general) and the probabilistic S-implications. Sev-
eral distinguished fuzzy implications can be repre-
sented in the form JI,B , for example the Kleene-
Dienes implication, of QL-implications. Our pro-
posal opens several problems, especially a full char-
acterization of the classes JB (when a semicopula
B is fixed) and BI (when a fuzzy implication I is
fixed).
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