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Abstract

Recently, Grzegorzewski [9] introduced two new
families of fuzzy implication functions called sur-
vival implications and survival S-implications.
These two classes of multivalued implications are
based on conditional copulas. In the same article
the author gave a motivation to his ideas and he
analyzed some properties of these classes of fuzzy
implications. In this paper the laws of contraposi-
tion and T-conditionality are studied for these fam-
ilies of fuzzy implications. Furthermore, we discuss
the intersections of both new families of implications
with R-implications and (S,N)-implications.

Sur-
T-

Keywords: Copula; Fuzzy implication;
vival implication; Laws of contraposition;
conditionality; Functional equations.

1. Introduction

Fuzzy implications belong to the main logical op-
erations in fuzzy logic. They generalize the classi-
cal implication, which takes values in the set {0, 1},
to the unit interval [0,1]. These functions are not
only essential for fuzzy logic systems and fuzzy con-
trol, but they also play a significant role in solving
fuzzy relational equations, in fuzzy mathematical
morphology and image processing, and in defining
fuzzy subsethood. In the scientific literature (see
the monograph [3] and the very recent book [1]) one
can find many examples of families of fuzzy impli-
cations along with the investigations on their prop-
erties and applications.

Recently, Grzegorzewski [7, 8, 10] introduced two
new families of fuzzy implications based on copu-
las - probabilistic implications and probabilistic S-
implications. These families have been further in-
vestigated in [2, 9]. Independently, in [9], Grze-
gorzewski introduced next two families of fuzzy
implications based on copulas - survival implica-
tions and survival S-implications. He also exam-
ined when these functions are fuzzy implications.
In this paper we continue the above investigations
and we examine the laws of contraposition, prin-
ciple of T-conditionality and intersection with R-
implications and (S,N)-implications for these two
families of functions.

The paper is organized as follows. Section 2 con-
tains some preliminaries, where we recall the basic
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concepts and definitions used in the paper. In Sec-
tion 3 we discuss the laws of contraposition for sur-
vival implications and survival S-implications, re-
spectively. In Section 4 we examine the principle
of T-conditionality for these two families of impli-
cations. In Sections 5 we discuss the intersections
of survival implications and survival S-implications
with R-implications and (S,N)-implications, respec-
tively. Last section contains the conclusion and the
postulate some open problems.

2. Preliminaries

According to the well-established fact that fuzzy
concepts have to generalize adequately the corre-
sponding crisp concepts, the most commonly ac-
cepted definitions of fuzzy connectives are the fol-
lowing.

Definition 2.1 ([3, Definition 1.1.1]). A function
I:]0,1]> — [0,1] is called a fuzzy implication if
it satisfies the following conditions

(I1) I is antitone with respect to the first variable,

(I2) I is isotone with respect to the second vari-
able,

(I3) 1(0,0) = I(1,1) = 1 and I(1,0) = 0.

Definition 2.2 ([11]). A function T': [0,1]*> — [0, 1]
is called a triangular norm (t-norm) if it satisfies,
for all x,y, z € [0, 1], the following conditions

(T1) T(x,y) =T(y,x),
(T2) T(2,T(y,2)) = T(T(z,y),2),

(T3) T(z,y) < T(z,2) for y < z, ie., T(x,-) is
isotone,

(T4) T(z,1) = =x.

Definition 2.3 ([11]). A function S: [0,1]? — [0, 1]
is called a t-conorm if it satisfies, for all x,y,z €
[0, 1], the following conditions

(81) S(a,y) = S(y, ),
(82) S(x,5(y, 2)) = S(S(x,9),2),
(S3) S(z,y) < S(z,z2) for y < z, ie, S(z,-) is

isotone,

(S4) S(z,0) = x.



Definition 2.4 ([4, p. 3], [11, Definition 11.3]).
An antitone function N: [0,1] — [0,1] is called a
fuzzy negation if N(0) = 1, N(1) = 0. Moreover,
a fuzzy negation N is called

(i) strict if it is strictly decreasing and continuous;
(ii) strong if it is an involution, i.e., N(N(z)) =z
for all z € [0, 1].

Definition 2.5 ([3, Definition 1.4.15]). Let I be
a fuzzy implication. The function N; defined by
Ni(z) = I(z,0), z € [0,1], is called a natural
negation of I.

Definition 2.6 ([3, Definition 2.5.1]). A function
I:[0,1]> — [0,1] is called an R-implication if
there exists a t-norm T such that

I(z,y) = sup{t € [0,1] [ T(z,1) <y}, a,y€[0,1].

An R-implication generated by a t-norm T will be
denoted by Ir. The set of all R-implications we
denote by I.

Definition 2.7 ([3, Definition 2.4.1]). A function
I:1]0,1]> — [0,1] is called an (S,N)-implication
if there exist a t-conorm S and a negation N such
that

I(Z’,y) = S(N(I)’y)7

n (S,N)-implication generated by a t-conorm S
and fuzzy negation IV will be denoted by Is . The
set of all (S,N)-implications we denote by Ig .

x,y € [0,1].

Definition 2.8 ([12
copula) is a function C': [0, 1]
fies the following conditions

(C1) C(z,0) =C(0,y) =0, for all z,y € [0,1],
(C2) C(x,1) =z, for all x € [0,1],

). A copula (specifically, a 2-
2 — [0, 1] which satis-

(C3) C(1,y) =y, for all y € [0,1],

(C4) C(z2,y2)—C(w2,41)—C(21,y2)+C(21,91)
0, for all x1,x2,y1,y2 € [0,1] such that x;

22,1 < Yo

>
<

Example 2.9. The following are some basic copu-
las investigated in the literature.

(a) C(x,y) = M(x,y) = min(z,y).

(b) C(x,y) = W(z,y) = max(z+y — 1,0).

(c) Cla,y) =1l(z,y) =z - y.

(d) the Farlie-Gumbel-Morgenstern family,
FGM(6), where 0 € [—1,1]:

Co(z,y) =2 -y+0x-y(1—2)(1—y).

It can be shown that every copula is bounded
by the so-called Fréchet-Hoeffding bounds, i.e., for
any copula C and for all z,y € [0, 1] the following
inequalities hold

W(z,y) < C(x,y) < M(z,y).
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The notion of conditional copula was applied for
defining probabilistic implications and probabilistic
S-implications.

Definition 2.10 (see [7, 10]). Let C be a copula.

A function I¢: [0,1]% — [0, 1] given by
1 if =0
Io(z,y) = ’
cl(z,y) {C(ivy) if x>0,

is called a probabilistic implication (based on a
copula C).

Definition 2.11 (see [7, 10]). Let C be a copula.
A function I¢: [0,1]2 — [0, 1] given by

jC(xay) = C(IL’,y) —x+ 1;

is called a probabilistic S-implication (based on
a copula C).

These two families of multi-valued implications
have been deeply investigated in [2].

Definition 2.12 ([12]). Let C be a copula. A func-
tion C*: [0,1]? — [0,1] defined by

Cr(z,y) = +y—-14+C1-=z,1-y)
is called the survival copula (based on a copula C).

The notion of survival copula was applied
for defining survival implications and survival S-
implications.

Definition 2.13 ([9]).

). Let C be a copula. A func-
tion I%: [0,1]% — [0, 1]

given by

* 17 IZO
It(z,y) = {C*(I’ZJ) x>0

z=0,
x>0,

1,
= {m+y1+C(lz,1y) (1)

x )

for all z,y € [0, 1], is called a survival implication
(based on a copula C).

The set of all survival implications will be denoted
by If.

Definition 2.14 ([9]). Let C be a copula. A func-
tion I} : [0,1]% — [0, 1] given by
I(2,y) = C*(z,y)—a+1 = C(1—z,1-y)+y, (2)

for all z,y € [0,1], is called a survival S-
implication (based on a copula C).

The set of all survival S-implications will be de-
noted by If.
The following result is obvious.

Remark 2.15 (|9, Lemma 2]). If C* = C, then
the survival implication based on C' is equal to the
probabilistic implication based on the same copula,
and the survival S-implication based on C' is equal
to the probabilistic S-implication based on the same
copula, i.e., I = Ic and 1:(”} =Ic.



Example 2.16. Let C(z,y) = min(y/zy,z/y),
then function C' is a copula that belongs to the
Cuadras-Augé family (see [12]). Furthermore, C* #
C. Indeed, for x =y = % we obtain that C* # C.
Hence, I}, # Ic and I} # Ic.

It is worth noting that a survival implication is
not necessarily a fuzzy implication. To guarantee
that a survival implication is also a fuzzy implica-
tion we need to add condition (I1) that I}, is anti-
tone with respect to the first variable (other condi-
tions in Definition 2.1 are satisfied by any survival
implication, see [9]).

In reference to Example 2.9 we can easily con-
clude that applying copulas M or II (which are
equal to their survival versions) we obtain well
known fuzzy implications. Actually,

. L, z<y,
IM(xay) = IGG(xay) = {y

T

(3)

x>,

ie., Ity = Iy = Igg is the Goguen implication,
while

1, z=0,
y, x>0,

In(z,y) = { (4)

ie., Iy = In = Ip is the least (S,N)-implication
(see [3]). However, the survival implication

. 1, =0,
IW(JC,Z/) = IW(l',y) = {max(x+y1,0) x>0

x

(5)
based on the lower Fréchet-Hoeffding bound W is
not a fuzzy implication. On the other hand sur-
vival implications based on copulas belonging to
the Farlie-Gumbel-Morgenstern family FGM(6) are
fuzzy implications only for 8 > 0. It should be
stressed that any survival S-implication - contrary
to survival implication - is a fuzzy implication. To
finish this preliminary section we examine the rela-
tion between two new families of implications.

Proposition 2.17. The family of all survival
implications and the family of all survival S-
implications are disjoint, i.e.,

Ia NTE = 0.
Proof. Suppose that there exist two copulas C; and
Cy such that I, = I7, € Ig NI Therefore, we

have for all z,y € [0,1],2 # 0

r+y—1+C1(1—2,1-
x

v) =Cy(l—z,1—y)+y.

Substituting ¥y = 0 in the above equation we obtain
that 0 = ¢ = 1 — 2, which is not true for z € (0,1).
This contradicts our assumption and finishes the
proof. O
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3. The Laws of Contraposition

3.1. Introduction

One of the most important tautologies in the clas-
sical two-valued logic is the law of contraposition:

pP—q=—q— p.

Since the classical negation satisfies the law of dou-
ble negation (—(—p) = p), the following laws are
also tautologies in the classical logic:

P 4="9 =D,

Natural generalizations of those classical tautologies
to fuzzy logic which play an important role in var-
ious applications are based on fuzzy negations and
fuzzy implications.

Definition 3.1 ([3, Definition 1.5.1]). Let I denote
a fuzzy implication and N be a fuzzy negation. We
say that I satisfies

(i) the law of contraposition (or contraposi-
tive symmetry) with respect to N if
I(z,y) = I(N(y), N(z)), z,y € [0’ 1];
(CP)
(ii) the law of left contraposition with respect
to N if

x,y € 10,1];
(L-CP)
(iii) the law of right contraposition with respect
to N if
I(J},N(y)):I(y,N(JZ)), z,y € [O’ 1]'
(R-CP)

If I satisfies the contrapositive symmetry (left,
right) with respect to N, then we also denote it
by CP(N) (L-CP(N), R-CP(N), respectively).

It can be proved that the three properties intro-
duced in Definition 3.1 are equivalent when N is a
strong negation (see [3, Proposition 1.5.3]).

3.2. The Laws of Contraposition for
Survival Implications

Let us firstly consider the natural negation based
on a survival implication. The following result may
be proved.

Lemma 3.2. Let I}, be a survival implication based
on a copula C. The natural negation Nr: based on
I}, is the least fuzzy negation (cf. [3, p. 14]), i.e.,

1, =0,
0, x>0,

N[é(l‘) = NDl(i) = {

for all x € ]0,1].



Proof. For any survival implication I} and any x €
[0,1] we have

* ]-7 =0
Niz (z) = I6(2,0) = {z—1+0(1—w,1) 2> 0

x b

= ND]_(.T,‘).
O

Now we are able to investigate the laws of con-
traposition for survival implications.

Theorem 3.3. No survival implication satisfies the
law of contraposition (CP) or the law of left contra-
position (L-CP) with any negation N.

Proof. Let wus firstly recall that a function
I:]0,1]2 — [0,1] satisfies the left neutrality prop-
erty (see [3, Definition 1.3.1]) if

Il,y) =y

y € [0,1]. (NP)

Observe that

Cl4+y-1+4CQA-1,1-y)

so each survival implication I/, satisfies the left neu-
trality property (NP). However, by Lemma 3.2 the
only natural negation Nyx based on a survival im-
plication is Np1 which is not a strong negation. It
is well-known (see [3, Corollary 1.5.5]) that if the
natural negation based Ny on a function I satisfy-
ing (NP) is not strong, then I does not satisty (CP)
with any fuzzy negation. Consequently, I, does not
satisfy (CP) with any fuzzy negation.

It could be also shown that if N} based on a func-
tion I satisfying (NP) is not a continuous negation,
then I does not satisfy (L-CP) with any fuzzy nega-
tion [3, Corollary 1.5.15]. Since Ni;, = Np1 isnot a
continuous negation we may conclude that I}, does
not satisfy (L-CP) with any fuzzy negation. O

Theorem 3.4. FEwvery survival implication satis-
fies (R-CP) only with respect to the least fuzzy nega-
tion Npq.

Proof. One can easily check that any survival im-
plication satisfies (R-CP) with Npp. Indeed,

I& (2, Np1(y)) =

_ {1, =0
- z+Np1(y)—1+C(1—z,1—Np1(y))
D1(Y m D1(Y , x> 0
1, z=0

e+C(-2.0) x>0and y=0

7x—1+CI(1—a:,1)7 z>0andy >0
1, z=0

1, z>0andy=20

0, z>0andy >0

= I¢:.(y, Np1(x)).
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Thus, actually, any survival implication I sat-
isfies (R-CP) with Np;. As it was mentioned
above, I} satisfies the left neutrality property
(see [9, Lemma 9]), but it may be showed (see [3,
Lemma 1.5.21]) that if a function I: [0,1]? — [0, 1]
satisfies (NP) and (R-CP) with a fuzzy negation N,
then I satisfies (I8) and N = Nj. Therefore, in our
case we obtain that for any survival implication I
there exists a unique natural negation N Iy = Np1
such that the law of right contraposition holds. [J

3.3. The Laws of Contraposition for
Survival S-Implications

Similarly as before, we start our considerations in
this subsection by examining the natural negation
based on a survival S-implication.

Lemma 3.5. Let f(’} be a survival S-implication
based on a copula C'. The natural negation Nig 18
the strong classical negation, i.e., for all x € [0,1]
we have

Ni

C(x) = N¢(z)=1—=x.
Proof. For any survival S-implication T, Scandallz €
[0,1] we have

Ny

*
C

() =I5(z,00=C(1 —2,1) +0=1—z
ZNc(JS).
O

Proposition 3.6. Let fé be a survival S-
implication. If I}, satisfies the (CP) with respect to
a fuzzy megation N, then N is the strong classical
negation Ng.

Proof. It is easy to show that any survival
S-implication satisfies the left neutrality prop-
erty (NP). Thus, knowing that if a function
I:[0,1)> — [0,1] satisfies (NP) and (CP) with re-
spect to a fuzzy negation N, then N = Ny is a
strong negation (see [3, Lemma 1.5.4 (v)]). Hence,
we conclude that N = Nfg = Nc.

Combining (2) and (CP) we obtain immediately

Corollary 3.7. The law of contraposition (CP)
(with respect to Ng) holds for a survival S-
implication fé based on a copula C if and only if
C satisfies the following equation

C(.T,y)—$+1=0(1—y,1—l‘)+y, (6)
for all x,y € 10,1].

Please observe that the above functional equation
is strictly connected with the following equation

which often occurs in the literature connected with
copulas (cf [12, Theorem 2.7.3] or [6, p. 97]) and for
which we know some partial solutions, in particular



when C' is an Archimedean continuous t-norm [5].
Solving (6) we may obtain a characterization of a
family of copulas leading to survival S-implications
for which the law of contraposition (with respect to
N¢) holds. However, finding that (general) solution
is still an open problem. At this moment we can list
several examples of such copulas C' that the survival
S-implications I, satisfies (CP), e.g. survival S-
implications based on copulas II, M, W or copulas
from the family FGM(0).

Proposition 3.8. Let fé be a survival S-
implication. If If, satisfies the (L-CP) or (R-CP)
with respect to a fuzzy negation N, then N is the
strong classical negation Nc.

Proof. Since any survival S-implication satisfies the
left neutrality property, then, assuming (L-CP), in
view of [3, Lemma 1.5.14 (ii)], we have Np. (N(x)) =
x for each z € [0,1]. Tt means that Ni. = Nc
and consequently N = Ng. Similarly, assum-
ing (R-CP), by [3, Lemma 1.5.21], we conclude that
N =Nj. = Ne. 0

4. T-Conditionality

An implication operator plays an important role in
the deductive process of a logic which is usually re-
alized by some rules of inference. Modus ponens is
one such rule of inference, wherein given two classi-
cal logic propositions A — B and A we infer B. A
similar rule of inference in the case of dealing with
fuzzy propositions is called the generalized modus
ponens (GMP) wherein given two fuzzy propositions
A — B and A’ we infer B’. The highlight of this
inference is even if A’ # A we still will be able to
infer a reasonable conclusion B’. One of the condi-
tions that any inference scheme employed to realize
GMP is expected to satisfy is that the GMP should
coincide with T-conditionality (see [13]) in the case
A’ = A, i.e., B should be B’.

Definition 4.1. An implication I and a t-norm T’
satisfy T-conditionality if and only if
T(x,I(z,y)) <y, for all x,y € [0,1]. (TC)
The following theorem characterizes shortly sur-
vival implications which satisfy (TC) with all t-
norms.

Theorem 4.2. If I, is a survival implication based
on a copula C, then the following statements are
equivalent:

(i) It satisfies (TC) with any t-norm T.
(ii) C(1—u,1—v) < (1—u)(1—v) for allu,v € [0,1]

such that u > v.

Proof. (1) = (ii): If I} satisfies (TC) with any t-
norm, then in particular it satisfies (TC) with
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minimum

min(u, I5(u,v)) =
) ( u—|—v—1+C’(1—u,1—v))
= min ( u,

U
<.

utv—14+C(1—u,1—v) )

If min(u, - = u, then u < v,
which is a contradiction with the assumption
w > v. Thus, min(u, “H’*H%l*“’l*”)) =
“+'U_1+lel_“’1_'“) < w. Therefore, we have
Cl—u,1—v)<(1—-u)(1—v)foru>ov.
= (i): Since the greatest t-norm is the mini-
mum we have for each t-norm T

T(u, I&(u,v)) < min(u, I5(u,v)) < u.

Thus if u < v, then obviously inequality (TC)
is satisfied for all implications and t-norms.
Therefore, only situation when u > v will be
of our interest. Every t-norm T is increas-
ing with respect to both variables. Thus, for
C(l—u,1—v) <(1—u)(1—v)we have

T(u,If(u,v))

:T(u,u—l—v—l—&—C(l—u,l—v))
u

u—l—v—l—l—(l—u)(l—v))

< min (u,
u

:’U7

which completes the proof.
O

Using Theorem 4.2 we can easily check which sur-
vival implications satisfy (TC) with all t-norms. For
instance, functions based on copulas II, W and func-
tions based on copulas from families FGM(6), for
6 € [—1,0], satisfy (TC) for any t-norm. However,
functions based on copula M or based on copulas
from families FGM(6) for § € (0,1], do not sat-
isfy (TC).

Contrary to survival implications none of survival
S-implications satisfies (TC) for all t-norms. How-
ever, each survival S-implication satisfies (TC) for
at least one t-norm.

Proposition 4.3. No probabilistic S-implication
satisfies (TC) for the t-norm Tyy.

Proof. Suppose that function 1:5 satisfies (TC) for
t-norm T;. Then for u > v,

min(u, v+ C(1 —u,1 —v)) <,

so, v+ C(1 —u,1—v) <w. Thus, C(1 —u,1—v) =
0 for u > v. Using the lower Fréchet-Hoeffding’s
bound for u = 0.8 and v = 0.1, we obtain that

0.1 = max(1—0.8—0.1,0) < C(1-0.8,1—0.1) = 0.

This is a contradiction with our assumption. O



Proposition 4.4. Each probabilistic S-implication
satisfies (TC) for the t-norm W.

Proof. Suppose that function fé does not satisfy
(TC) for t-norm W. Then,

max(u+v+C(1 —u,1—v)—1,0) > v,

for some u,v € [0,1]. Hence, C(1—u,1—v) >1—u
this is contradiction with upper Fréchet-Hoeffding’s
bound. O

5. Intersections Between Families of
Implications

5.1. Intersections with R-Implications

Lemma 5.1. If a copula C' is idempotent, then C' =
M.

Proof. Let copula C will be idempotent. By upper
Fréchet-Hoeffding bound C(z,y) < min(z,y) for all
x,y € [0,1]. Suppose that C(zg,yo) < min(zg,yo)
for some g, yo € (0,1) such that zy < yo. Using
(C4) we obtain o > C(xg,y0) > C(xo,z0) = xg
and this is contradiction with our assumption. In
the case when yg < xg the proof is analogue. O

Theorem 5.2. The only survival implication which
is an R-implication is the Goguen implication (3),
i.e.,

It N ]IEE = {Igg}.

Proof. If I}.(x,y) is an R-implication, then I}, sat-
isfies the identity principle, i.e., I5(x,x) = 1 (see [3,
Theorem 2.5.4]). This implies that

r+x—-14+4C1Q—-=2,1—2x)
T
—=2r—-1+C(l—z,1-z)==x
—=Cl-zl-2)=1—=x

=1

for all z > 0. Putting y := 1—x we have C(y,y) =y
for all y < 1. But C(1,1) = 1, so C(y,y) = y
for all y € [0,1], i.e., C is idempotent. However,
the only such copula is M, and we already know
that Iy, = Igg. The Goguen implication is an R-
implication based on the t-norm II (see [3, p. 70]).
Thus we obtain that Iy NI¢ = {Ige}. O

Theorem 5.3. The only survival S-implication
which is an R-implication is the Lukasiewicz im-
plication, i.e.,

It N ﬁEE = {ILK}

Proof. If fg(x, y) is an R-implication, then fé sat-
isfies the identity principle, i.e., I (z,x) = 1 (see [3,
Theorem 2.5.4]). This implies that C(1—z,1—x)+
x = 1, so putting y := 1 — = we have C(y,y) =y
for all y € [0,1], i.e., C is idempotent. How-
ever, the only idempotent copula is M, but then
f]*\/[ = I k. Of course the Lukasiewicz implication
is an R-implication generated from the t-norm W
(See [3, p. 70]). Thus, It NT5 = {ILk}. O
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The results related to intersections between R-
implications and survival implications or survival
S-implications, respectively, are represented by dia-
grams in Figure 1.

{Ik} I

Figure 1: Intersections between Ir, T4 and I%

5.2. Intersections with (S,N)-Implications

Theorem 5.4. The only survival implication
which is an (S,N)-implication is the least (S,N)-
implication Ip, i.e.,

]IgyN n ]I:{: = {ID}

Proof. If a survival implication I, based on a copula
C is also an (S,N)-implication, i.e., I} € Isy NI,
then there exist a t-conorm S and negation N such
that I (z,y) = S(N(z),y) for all z,y € [0,1].
Therefore, If(z,0) = S(N(z),0) = N(x), so by
Lemma 3.2 N(z) = Npi(z). This implies that
IE(z,y) = S(0,y) =y for « > 0. Thus, by (1),
forz >0wehave C(l—z,1—y)=1—ax—y+ay=
(1—-2)(1—1y), so one can easily deduce that C' = II.
Hence, I = I}; = Ip is the least (S,N)-implication,
which proves the theorem. O

Since survival S-implications and (S,N)-
implications are derived from the same classical
tautology

A— B=-AAB,

one may expect that both families of implications
are somehow related. Suppose I € Igy N ﬁ?&. Then,
by (2), there exists a copula C, a t-conorm S and
negation N such that

C(l—u,1-y)+y=S(N(),y). (7)

Substituting y = 0 into (7) we obtain that
1—2=8(N(x),0) = N(x),

which means that N(z) = 1 — 2 = Ng(z). There-

fore, equation (7) may be expressed, for all z,y €

[0,1], as
CA-=zl-y)+y=501-1zy). (8)

Rewriting (8) we have

C(l*.%,l*y):S(l*x,y)*y.



It is easy to check, that so defined function satis-
fies conditions (C1)-(C3) in Definition 2.8 for any
t-conorm S. However, to ensure that (C4) in Def-
inition 2.8 is also satisfied we obtain the following
requirement for S for all z1,x2,91,y2 € [0,1], such
that 1 < z2,91 < yo:

C(l—29,1—y2) —C(1 — 22,1 —1y1)
—C(l—21,1—y2)+C(1—21,1—4y1) >0
<

S(1—22,y2) —y2 — S(1 —22,51) + 11

=S —==1,y2) +y2+ S(L —z1,91) —y1 >0
<~

S(x,y2) — S(x,y1) — S(ah,y2) + S(ah,y1) > 0,

where 2] = 1 — 25 and 2§, = 1 — z1. Since 77 <
x2 thus the last inequality holds for any =} < z).
To sum up these results we have actually proved a
lemma given below.

Lemma 5.5. An (S,N)-implication Is N is a sur-
vival S-implication if and only if N = N¢ and the
t-conorm S satisfies the following condition

S(x1,y1) + S(z2,y2) — S(x1,y2) — S(z2,1) <0

for all x1,x9,y1,y2 € [0,1] such that v1 < x9,y1 <
Y2

This result leads to the next theorem.

Theorem 5.6. An (S,N)-implication Is n is a sur-
vival S-implication if and only if N = N¢ and the
t-conorm S is dual to the t-norm T which is a cop-
ula.

Proof. Let T be a t-norm such that S(z,y) =1 —
T(1 —z,1—y). Then for z1,x2,y1,y2 € [0,1], such
that 1 < x5 and y; < yo we have

S(z1,y1) + S(@2,92) — S(z1,y2) — S(22,91) <0
=

Tl —21,1=1p1) =T — 22,1 —yo)
+T(1—21,1—y2)+T(1 —29,1—y1) <0

=

T (@, y1) + T(2h,y5) — T, y5) — T, y1) > 0,

where 2] =1 — 21, 2 = 1— x5, y} =1 —y; and
yy = 1 —yo, ie, x5 < 2} and y) < yj. The last
inequality is equivalent to (C4) in Definition 2.8.
Other conditions, i.e., (C1)-(C3) in Definition 2.8,
are implied directly from Definition 2.2. Therefore,
T is a copula, which proves the theorem. O

Going back to (8) we may consider a reverse
problem and ask, for which copula C' a function
S(1—z,y) = C(1 —z,1 —y)+y is a t-conorm
and hence when a survival S-implication is also an
(S,N)-implication. The answer is delivered by the
following result.
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Proposition 5.7. A survival S-implication Ic
based on a copula C is an (S,N)-implication if and
only if C' satisfies the two following equations:

Cz,1-C(y,1—2)—y)+C(y,1 — 2)
=C(C(z,1—y)+y,1—2), (10)

for all z,y,z € 10, 1].

Proof. Using argumentation analogous to that pre-
ceding Lemma 5.5 we have to identify the require-
ments on a copula C' which guarantee that the func-
tion S(1—2,y) = C(1—x,1—y)+y is a t-conorm.
Substituting 1 — = by = we may consider a func-
tion S(z,y) = C(x,1 —y)+y. By Definition 2.3 we
should verify conditions (S1)-(S4).

1. Commutativity:

S(z,y) =Sy, =)
C(x,l—y)+y:C(y,l—x)+z,

which gives requirement (9).
2. Associativity:

S(Qﬁ,S(y,Z)) = S(S(ac’y),z)
— C(z,1-C(y,1—2)—y)+C(y,1 —2)+ =
=C(C(x,1—y)+y,1—2)+ 2z,

which gives requirement (10).
3. S(x,-) is isotone — but it holds since any copula
C is an isotone function for both arguments.
4. Zero is a neutral element of S — but it holds
since S(z,0) = C(z,1) +0 = z.

O

By Corollary 3.7 and condition (9) in the last
lemma we obtain straightforwardly an interesting
conclusion.

Corollary 5.8. Survival S-implications which are
(S,N)-implications satisfy the law of contraposition
(CP) with respect to Nc¢.

To sum up the results related to intersections be-
tween (S,N)-implications and survival implications
or survival S-implications, respectively, they are
represented by diagrams in Figure 5.2. By I« n,
we denote a set of (S,N)-implications such that
N = N¢ and S* is t-conorm dual to t-norm being a
copula (such as in Theorem 5.6). Please note, that
some well known fuzzy implications, like Ik, the
Reichenbach implication Irc(z,y) =1 — x + zy or
the Kleene-Dienes implication Ik p(x,y) = max(1—
x,y) belong to Is~ n. (see [3]).



Ts- o I%

Figure 2: Intersections between Is, 5 and I%

6. Conclusion

In this paper we have examined some inter-
esting properties of survival implications and
survival S-implications, like laws of contraposi-
tions (CP), (L-CP), (R-CP), T-conditionality (TC)
and intersections between survival implications
or survival S-implications and R-implications and
(S,N)-implications.

However, some questions are still open. For in-
stance, is there any particular family of copulas
which satisfies conditions (9) and (10)? Is there
any particular family of copulas which satisfies con-
dition (6)?
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