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Abstract

Since its launch in December 2013, the Gaia
space mission has collected and continues to collect
tremendous amounts of information concerning the
objects that populate our Galaxy and beyond. The
international Gaia Data and Analysis Consortium
(DPAC) is in charge of developing computer
algorithms that extract and process astrophysical
information from these objects. It organizes its
work by means of work packages; one of these
packages, Outlier Analysis, is dedicated to the
exploration of vast amounts of outlier objects
detected during the main classification of the
observations. We present a method that is based
on Self-Organizing Maps (SOM) and parallelized by
means of the Hadoop framework so as to improve its
performance. We also compare the execution times
of both the sequential and the distributed versions
of the algorithm.
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1. Introduction

Gaia is the most ambitious mission carried
out by the European Space Agency (ESA)
and it is expected to become a milestone in
astronomy. The main purpose of this survey
is to provide a six-dimensional map (positions
and velocities) of our Galaxy, the Milky Way,
unveiling its composition, formation, and evolution
[1]. Furthermore, the astrometric accuracy will be
unprecedented, up to the level of micro-arcseconds,
well beyond ESA’s previous astrometric satellite
Hipparcos. Gaia will not only observe stars, but also
all objects brighter than G = 20 mag (G magnitudes
represent Gaia photometric instrument integrated
white light in the 330–1050 nm), including many
solar-system objects, such as asteroids and minor
planets, external galaxies, quasars, supernovae,
multiple stars, etc.

The spacecraft, launched in December 2013,
is expected to provide approximately 1012

observations, related to every object in the
sky, over 80 epochs on average during its 5 years
of operating time. In order to derive the main
astrophysical properties of the astronomical objects,

this observations will be processed by a software
pipeline at CNES (Centre National d’Etudes
Spatiales, France), which is being produced by an
international consortium, the Gaia Data Processing
and Analysis Consortium (DPAC). DPAC gathers
an international collaboration with memberships
from all over Europe, which nowadays includes
a community of over 500 scientists and software
engineers coming from more than 20 countries.
This organization consists of several coordination
units (CUs) and it is in charge of a well-defined
set of tasks in the Gaia data processing effort. In
particular, CU8 is devoted to both the classification
and the derivation of the main astrophysical
parameters of point-like sources [2]. This unit
is subdivided into several work packages: DSC
(Discrete Source Classifier) is the main package
for classification, whereas GSP-Phot (General
Stellar Parameterizer - Photometry) and GSP-Spec
(General Stellar Parameterizer - Spectroscopy)
are the main parameterization packages. There
are some other packages that are responsible
for more specific tasks, such as Quasar/Galaxy
parameterization (QSOC and UGC, respectively)
or specific stellar population parameterizers (ESP).
Finally, there are two packages dedicated to the
unsupervised analysis of the data, OCA (Object
Cluster Analysis) and OA (Outlier Analysis). OA
is the package on which the present work focuses,
aimed at analyzing the observations classified as
outliers by DSC and OCA.

CU8 has established a set of well-defined
general astronomical classes: STAR, BINARY
STAR, NON-PHYSICAL BINARY, GALAXY, and
QUASAR, while the specific classes UNKNOWN
and UNDEFINED are used to label non-positive
results of classification. Such labels are used
by DSC and will be used in a near future by
OCA. Although the physics of the stars is well
understood and there are extensive catalogs, which
contain information about the light distribution
of most astronomical objects, Gaia is expected to
observe such an enormous quantity of sources that
many of them could differ significantly from model
predictions or previous observations. Gaia will
observe a significant sample of peculiar objects,
such as supernovae, Wolf-Rayetstars, multiple
systems, or high redshift quasars, as well as new
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kinds of objects unseen before. In addition,
low signal-to-noise ratios, cosmic rays, instrument
artifacts, and other damaged data will eventually
occur, leading to classification errors. Thus, it is
estimated that approximately 108 objects (10% of
the total) will be labeled as UNKNOWN by DSC,
which uses an automatic outlier detector based on
a one-class SVM that rejects objects that are far
from the training data space. Moreover, some
objects will receive a set of probabilities that is not
decisive in terms of final classification and therefore
they will be labeled as UNDEFINED. The OA
module will have to deal with both sets of objects
(UNKNOWN and UNDEFINED), trying to make
an accurate classification which can help scientists
to understand and unveil their nature.

2. Gaia simulated datasets

Before Gaia observations are available for
processing, DPAC is providing simulated datasets,
obtained from both models and earth-based
observations, so that the software packages can
be tested properly. A powerful simulator was
developed to facilitate this process, the Gaia
Object Generator (GOG, [3]), which has generated
many datasets to test CU8 algorithms. Moreover,
some already existent catalogs were transformed
by GOG to BP/RP low resolution format and
instrumental characteristics, such as the SDSS
catalog. However, most of these datasets and
catalogs include observations whose classification
and parameterization are well known, since they
concern typical or classical object categories.
Although these types of datasets could be used to
validate the OA algorithm presented in Section 3,
this algorithm is devoted to the analysis of objects
whose nature is unclear. Hence, we decide to
use, in this work, a set of objects from the SDSS
catalog that were classified as UNKNOWN. Such
dataset is composed by 10.125 objects, mostly
faint objects, incomplete spectra, and unsuccessful
observations. Nevertheless, the size of this dataset
is not large enough to measure performance and
scalability while using a distributed computing
technique (Section 4). To this purpose, we decided
to increase the number of observations by putting
them together several times, so that we can make
further measurements.

2.1. Data preprocessing

Before processing the data presented above by
the OA module described in Section 3, it was
necessary to apply some preprocessing to the
BP/RP spectrophotometric data. Firstly, we decide
to remove the pixels that lie in the extremes of
BP and RP spectra, where the sensitivity of the
devices decays exponentially, corresponding to the
low signal-to-noise ratio (SNR) pixels. Afterwards,
the total spectrum area is scaled to a determined

quantity, so that objects with different brightness
levels can be compared by means of their spectra
using common metrics, such as Euclidean distance.
This scaling is done by dividing each spectrum pixel
by its integral value, following Equation 1.

Fi = 1000 Fi∑
i∈S(Fi)

(1)

where Fi is the flux of a spectrum in band i
and S represents the bands of the spectrum. This
method sets the target area at 1000 units. Note that
negative values can cause a failure in the previous
calculation, so they should be truncated to 0 before
scaling. Finally, the overlapping region of BP/RP
is removed, avoiding redundant wavelengths, while
maintaining the red part of the spectrum, since it
is more sensitive in that region [4]. Figure 1 shows
these operations.

(a) Original BP/RP spectrum.

(b) Spectrum after low SNR pixels extraction.

(c) Spectrum after overlapping area removal.

Figure 1: BP/RP spectrum preprocessing.

3. Outlier Analysis module

Several studies have investigated approaches
for the analysis of big datasets composed of
multidimensional outliers [5, 6]. Outliers are, by
definition, objects that can not be fitted into the
existing models, so the analysis of large outlier
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datasets must be done by means of unsupervised
algorithms. Moreover, the Gaia project presents
some additional challenges: a) the size of the
expected outlier sample; and b) the variability of
properties among individual observations. These
challenges will increase the difficulty of discovering
interesting objects, classes of objects, or data
structures. To work this out, we would like to use a
method that satisfies the following conditions: a) it
can simplify the original dataset, projecting it into
a smaller set of features, thus allowing for manual
inspection and detailed analysis; and b) it can
discover connections between the features, being
able to throw light on their nature.

In the Data Mining field, there are two main
approaches to deal with multidimensional data
based on unsupervised techniques: Dimensionality
Reduction and Clustering. Dimensionality
Reduction tries to reduce the number of dimensions
(variables, attributes) in the dataset to a level
where they can be more reasonably analyzed by
domain experts. Principal Component Analysis
(PCA) [7] is the most popular algorithm of this
type. On the other hand, Clustering is aimed
at grouping the data into a number of clusters
that share similar properties. A wide variety of
clustering algorithms has been proposed, as it is an
ill-defined problem [8, 9, 10].

To this effect, we propose an analysis algorithm
based on two stages: clustering and labeling.
Firstly, during the clustering phase, we try
to group the sources into several sets, as
homogeneous as possible, in order to facilitate
the analysis of the resulting dataset. Then,
the labeling stage takes place, trying to describe
the groups generated previously by all available
means, including both internal data, such as Gaia
photometry or astrometry, and external data, such
as other astronomical surveys, additional ground
observations, or human expert knowledge. This
algorithm will have to process an enormous amount
of data and it must be run in a limited amount of
time and resources, since a complete dataset will
be produced by DPAC every 6 months, which is
the time that the CUs have to perform their joint
processing.

Our choice for analyzing outlier is based on
Self-Organizing Maps (SOM) [11], which have been
used extensively in a number of specific fields.
However, they have been used sparingly thus far in
Astronomy [12, 13, 14, 15, 16]. SOM are a type of
Artificial Neural Networks (ANN) that project the
input data space into a fixed set of clusters (called
neurons in the ANN field) usually arranged in a
2D (or 3D) grid specified by a matrix with N rows
by M columns. Each cluster has a representative,
called prototype (neuron weights in the ANN field),
which is a virtual pattern that better represents
or resembles the set of input patterns belonging
to this cluster. To achieve this solution, an

unsupervised learning or training procedure, based
on a competition between the clusters to fit the data
as best as possible, is carried out. Such a procedure
is described in Section 3.1.

3.1. SOM training algorithm

During the learning stage, the algorithm tries to
find the best prototypes (weights) for the SOM
clusters. Since it is a NP-hard problem, an iterative
optimization procedure is followed to reach an
acceptable solution from a randomly initialized set
of neuron weights. There are several learning
algorithms that can be used to train the SOM:
online, batch, fuzzy, etc. We have tried many of
them, obtaining the best results for both the online
and the batch algorithms. Nevertheless, the batch
algorithm was found to be more stable than the
online algorithm, as its results do not depend on the
order in which the input patterns are presented to
it [17]. Moreover, the online learning algorithm can
not be parallelized because the neuron weights have
to be updated for each input item; however, we can
parallelize the batch learning algorithm, achieving
a scalable solution. Therefore, the integration of
this algorithm in an industrial environment is more
feasible, because it is deterministic, reproducible,
and scalable, so it was decided to use this algorithm
at the Gaia software pipeline.

Before presenting this algorithm we need to define
some concepts:

The neighbourhood When dealing with ANN,
the neighbourhood determines how many
neurons are updated during the learning phase
and it is obtained by a function, called the
neighbourhood function. This neighbourhood
is usually large during the first iteration, but
shrinks as the iterations succeed themselves
(typically, a Gaussian function).

Similarity distance This similarity distance is
used to determine which neuron fits best into
an input pattern, according to its prototype.
Usually, the squared euclidean distance is used.

Convergence criteria This criteria determines
whether the training stage must continue or
not. If the weights of the neurons have
not changed in the current iteration or the
maximum number of iterations is reached, then
the procedure is finished.

The batch algorithm consists of the following
steps, which can be observed in Figure 2:

1. Set up properly the configuration parameters:
the topology of the output grid, the
neighbourhood function, the similarity
distance, etc.

2. Initialize, randomly, the neurons and its
weights.
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3. If it is necessary, then update the
neighbourhood function, according to the
current iteration.

4. For each pattern in the input space, calculate
the winner neuron, depending on the specified
similarity distance.

5. For each neuron, update its weights, according
to the observations assigned to it, the
observations assigned to its neighbours, and the
neighbourhood function.

6. Check if the algorithm has converged, then the
learning phase is over. Otherwise, go back to
step 3.

Figure 2: SOM batch learning algorithm.

4. Distributed computing for OA

The large amount of data that the OA module
will have to process makes the OA module
unfeasible to be run on one single machine, due
to exceedingly long execution times and physical
memory requirements. To this effect, we decided
to start thinking about improving OA so that it
can be run on a set of machines or cluster, so as
it will be done once OA is integrated in the Gaia
software pipeline, at CNES. According to DPAC
software developments, which are carried out using
Java, we decided to use Hadoop because it offers a
solution for both distributed storage (HDFS) and
distributed processing (Map-Reduce) [18]. HDFS
is the file system used by Hadoop to distribute
input files, after being splitted into many blocks

of data (chunks), among the nodes included in the
cluster. Hadoop Map-Reduce is a programming
model that allows the user to distribute data
processing through a cluster. Mainly, it consists
of two tasks: a) the Map, which takes several
key/value pairs from the input file(s), processes
each, and outputs zero or more key/value pairs;
and b) the Reduce, which receives the output given
by the map procedure, sorted and grouped by key
(shuffle), and processes each, generating zero or
more outputs.

These key/value pairs are just two Java special
objects (the types of which may be chosen by
the programmer) that can be written to a file
by Hadoop framework, so they can be used for
communication between the different tasks as well
as general input/output. The programmer only
needs to specify the behaviour of two functions,
the map function and the reduce function, which
are invoked by the Map and the Reduce tasks.
Commonly, the Map task is invoked by Hadoop
using each one of the items contained in the input
file (the value component) and the line number
of the input file related to that item (the key
component). Figure 3 illustrates this idea. The
number of Map and Reduce tasks, so as many other
parameters, can (and must) be configured properly
in order to obtain the best possible performance.

Figure 3: Hadoop Map-Reduce job.

4.1. Hadoop-based SOM training algorithm

In this section, we propose a Hadoop-based
implementation for the SOM learning algorithm
described in Section 3.1. Since it is an iterative
algorithm and the result produced by one iteration
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depends on the previous one, we can not run
multiple iterations simultaneously. So, we decided
to parallelize the content of each iteration.

Firstly, we store all the spectra on a single
file (usually a Hadoop sequence file) which is
distributed through all the machines in the cluster
via HDFS.

Then, we define both the Map and the Reduce
tasks in the following manner:

Map This procedure receives a spectrum (the
value) and the line number of the input file
associated with it (the key), calculates the
winner neuron for the given spectrum, and
outputs a key/value pair which consists of
the winner neuron (the key) and the input
spectrum (the value).

Reduce This task receives a neuron (the key)
and a collection of spectra (the value), whose
winner neuron has been determined to be the
neuron specified by the key. Partial updates
for the weights are worked out and produced
as output.

Finally, we have to use a main application or
driver where we can launch and configure the
training process. Moreover, it invokes the Hadoop
job where Map and Reduce tasks take place and
commits the weight update to the network by
gathering the partial results from the Reduce tasks.

5. Scenario

The next section compares the performance of
the sequential algorithm and the Hadoop-based
algorithm. As such we are describing the scenario
that was used to carry out some experiments.

5.1. Single machine description

To execute the sequential algorithm we used
a machine whose details are shown in Table
1. However, certain issues related to memory
requirements had to be solved, since we could not
load the full dataset into memory. To work this
out, we decided to implement a custom collection
object which loaded partial sets of data in advance
by using a background thread to fetch it.

CPU Intel Core i7 950 @ 3.07GHz × 8
Mem. 11.8GB DDR2 (2GB × 6)
OS Debian 8 Jessie - 3.16.0-4-amd64

Table 1: Single machine details.

5.2. Cluster description

To execute the Hadoop-based algorithm we used
a cluster that consists of 6 machines running
under Debian 7.7 Wheezy - Linux 3.2.0-4-amd64
Operating System and 64-bit compiled Hadoop

2.5.2 whose particular details can be found in Table
2.

2× CPUs Intel Xeon CPU E5420 @ 2.50GHz × 4
Intel Xeon CPU E5420 @ 2.50GHz × 4

Mem. 24GB DDR2 @ 667MHz (4GB×6)

2× CPUs Intel Xeon CPU E5472 @ 3.00GHz × 4
Intel Xeon CPU E5472 @ 3.00GHz × 4

Mem. 32GB DDR2 @ 667MHz (4GB×8)

1× CPUs Intel Xeon CPU X5550 @ 2.67GHz × 41

Intel Xeon CPU X5550 @ 2.67GHz × 41

Mem. 24GB DDR3 @ 1333MHz (4GB×6)

1× CPUs Intel Xeon CPU X5660 @ 2.80GHz × 62

Intel Xeon CPU X5660 @ 2.80GHz × 62

Mem. 32GB DDR3 @ 1333MHz (8GB×4)

Table 2: Cluster details.

Hadoop has been also parameterized, so that
an acceptable performance was achieved. Hence,
we decided to use a block size of 64Mb, which
determines the number of splits of the input file
and therefore the number of Map tasks launched.
Finally, the number of Reduce tasks was set up to
4.

5.3. SOM configuration

To perform the experiments we decided to use
the following configuration for the SOM: firstly,
both the topology and the number of clusters
to use was determined empirically by means of
several processes of train/analysis, resulting in a
30×30 square map, which is a trade-off between
retrieval error and data compression. On the other
hand, it was decided to run the algorithm up to
200 iterations, since it was found that the SOM
usually converges around the 200th iteration. In
the same way, we also need to choose a suitable
neighbourhood function, so we have tested some
of them (Bubble, Gaussian, Epanechicov), getting
better results for the Gaussian one, whose width
shrinks for the 200 learning iterations with a
minimum size of 1 (the immediate neighbourhood,
Figure 4). Finally, we need to use a function to
decide which neuron is activated for each input
pattern. Among different distance functions such
as Euclidean, Chebyshev or Manhattan distance
functions, we selected the Minimal Euclidean
distance, as it was the one which offered a better
performance.

6. Results

Once the algorithms, the scenario, and the dataset
are defined, the proposed experiments can be
carried out and its results presented.

Firstly, we briefly address the results of the
classification achieved by the SOM while dealing
with the original dataset of outliers provided by the
SDSS classification pipeline, so as to show the power

1It provides up to 8 threads.
2It provides up to 12 threads.
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Figure 4: Neighborhood width decay with
iterations. The plot was cut at 200 iterations since
the width of the neighbourhood remains 1 up to the
end of the training phase.

and usefulness of this method. As it was stated
in Section 2, we are trying to proccess a dataset
which contains observations whose nature is mostly
unknown, so we can not measure the accuracy given
by the SOM algorithms over this dataset (Using
a reference dataset, where all the observations are
appropriately labeled, we were able to obtain an
accuracy near to the 75%). Figure 5 shows such
classification, where we can observe that the clusters
have been labeled after performing some template
matching across a predefined set of well known
spectral templates. Thus, a scientist can explore
each cluster deeply in order to clarify, even more,
the nature of the observations. This discussion was
thoroughly addressed in previous works [15, 16].

Figure 5: Results of the SDSS outliers classification
obtained by the SOM.

We then focus on the performance achieved by the
SOM for both the sequential and the Hadoop-based
algorithms. Table 3 show the execution times that
were measured for several datasets with different
sizes. Note that the Hadoop-based algorithm takes

more time to be executed than the sequential
approach when the size of the dataset is fairly small,
since we have to take into account the processes
initialization and communication overhead while
using the Hadoop approach. However, when the
volume of the dataset increases up to a huge number
of observations we can reduce the execution times
significantly. Such a behaviour can be observed in
Figure 6.

Size S. machine (h) Hadoop cluster (h)
10125 10.75 14.05
20250 21.44 25.08
81000 84.57 39.23
324000 338.11 43.09
1296000 1364.55 55.47
5184000 5454.51 224.08
10368000 10909.03 426.45

Table 3: Obtained performance for SOM algorithms
over different datasets.

Figure 6: Obtained performance for SOM
algorithms over different datasets.

7. Discussion and future work

This paper addresses the situation that the Outlier
Analysis module from the CU8 of DPAC for the
Gaia mission will encounter. We need to process
huge amounts of data (the outliers detected by
the main classification module from CU8, DSC) by
means of unsupervised techniques. To work this
out, we propose the use of one type of ANN that
can reduce the input dimensionality of the data
while discovering relationships between the features
of the input observations, the Self-Organizing Maps
(Section 3). Such method needs a learning or
training algorithm, so that the similarity between
the observations can be found and then they can
be grouped. To this effect, we propose the use
of the batch learning algorithm because it is more
stable than the online algorithm. However, it
is not feasible to execute this algorithm in a
sequential way, since it is expected to process over
108 observations (10% of the total) and we can
not manage such an amount of memory in one
single machine. Moreover, the DPAC software
pipeline will use a Hadoop cluster to carry out
this processing. We have therefore proposed a
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distributed version of the algorithm based on such
a framework (Section 4). Execution times were
measured (Section 6) in order to compare the
performance between both the sequential and the
Hadoop-based algorithm.

On the basis of the results we can say that the
Hadoop-based algorithm offers a very interesting
solution for the training of the SOM, since we
can reduce the amount of time required for
execution in a significant manner for large datasets.
Furthermore, the achieved solution is scalable, since
the more number of Map/Reduce tasks one uses,
the better performance one obtains. Indeed, the
number of map tasks was determined by the number
of splits into which the input file was divided, so the
number of map tasks will be larger for larger input
datasets.

Finally, although the Hadoop-based algorithm
achieves much better performance than the
sequential algorithm, we should look forward for
new optimizations, such as considering a straight
neighbourhood as the iterations succeed themselves,
trying to exploit the fact that the SOM is getting
ordered. We can also explore new training
algorithms for the SOM or even new methods,
such as Growing Neural Gas (GNG) or Adaptive
Resonance Theory Maps (ART-Maps). On the
other hand, we can continue this work and try
to combine the Hadoop framework with some
other computing techniques, obtaining even better
performance.
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