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Abstract

Currently there are not many data mining method
available to solve the classification task in datasets
with low quality values. In this paper we propose a
method of imputation/classification based on neigh-
borhood that can work with nominal and numeri-
cal attributes which can contain low quality values.
Performing a series of experiments we observe that
the method not only is competitive to other sim-
ilar method when working with datasets without
low quality values, but it also obtains robust results
when working with datasets with low quality val-
ues.

Keywords: Low quality data, Nearest neighbor,
Classification, Fuzzy distance

1. Introduction

Within the data mining phase of the Intelligent
Data Analysis process, the classification task has
always been a challenging problem [1], [9]. Many
methods and algorithms have been developed to ad-
dress this issue. However, these methods and al-
gorithms must work with information that is not
always precise and accurate.

Nevertheless, imperfect information or low qual-
ity data inevitably appear in real world applications
[16], [17]. The errors in the instruments and/or
the corruption due to noise during experiments may
lead to the obtaining of information with incom-
plete data when a value of a specific attribute is
being obtained. In other cases, the extraction of
accurate information can be excessively expensive
or unfeasible. Moreover, it could be useful to com-
plement the available data with additional informa-
tion from an expert. This information is normally
obtained by imprecise data values such as: interval
data, fuzzy concepts, etc. For these cases, it is nec-
essary to incorporate the handling of information
with attributes which may present imperfect values
in the classifier’s learning and classification phases.

One of the best known methods for classification
is the k nearest neighbors method (KNN), where
k is the number of neighbors considered, [8]. In
this work we extend this well known classification
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method in order to be able to work with low quality
data or imperfect information.

KNN is an instance-based method. To classify a
new instance, KNN computes the k nearest neigh-
bors and a class value from them is obtained. The
KNN method is a predictive method that can in-
fer both nominal attributes (the most common at-
tribute value between the k nearest neighbors) and
numerical attributes (the average of the values of
the k nearest neighbors). We are going to consider
imputation when the attribute to infer is not the
class attribute and classification when the class is
inferred. This method lacks learning phase. KNN
method does not create explicit models as a deci-
sion tree or a set of rules, since the own dataset is
used as a “vague model”. Thus, the method can be
adapted easily to predict any attribute.

However, KNN method suffers from some draw-
backs such as the need of a large memory require-
ments to store all the examples forming the training
set, the low efficiency during the working of the deci-
sion rule due to the large calculation of the distances
between the test examples and training examples
and the little tolerance to noise since all examples
are used as relevant [10].

Nonetheless, the most important limitation of the
three mentioned occurs when trying to find the
nearest examples to the example to be inferred. In
this case the issue is critical because the method
must cover all the examples in the dataset and de-
pending on the number of examples of this and
the number of attributes in each example, the time
taken may be excessive. Therefore, the dataset size
is a problem. However, in literature there are meth-
ods that attempt to solve this limitation, creating
reduced training sets only composed of prototype
examples. A review of these methods can be found
in [10].

The KNN method, like many conventional meth-
ods of Intelligent Data Analysis, does not consider
potential sources of imperfect information that may
affect the input data. As a result, incomplete, im-
precise and uncertain data are usually discarded and
ignored of the input dataset and subsequently in the
imputation/classification process.

In this situation, it would be interesting to extend
the KNN method in order to be able to work with



imperfect data or low quality data.

In this paper we are going to present our proposal
to carry out the extension of the KNN method to
impute/classify from low quality data (denoted by
KNNpqp method). Thus, in Section 2 the KNNy,qp
method to impute/classify from a dataset with low
quality values is exposed, describing all its com-
ponents. In Section 3, some experiments are per-
formed in order to measure the effectiveness of the
proposal with a number of datasets with and with-
out low quality values. In these experiments, we
will focus on the classification task. Finally, the
conclusions are presented.

2. KNNLgp: k-nearest neighbors method
from low quality data

Suppose the set of examples FE, described by
n attributes © = {x1,22,...,2,} with domains
Qzy5 Q55 ..., g, that can be nominal and numer-
ical, where we consider without loss of generality
that n-th attribute, x,,, is the class attribute. The
domain of this n-th attribute, €, , is composed of
I classes represented by {wy,ws,...,wr}.

The attributes of examples can be expressed using
low quality values of different types:

e The numerical attributes may be defined by
crisp, fuzzy and interval. To homogenize their
representation, these values are described in-
ternally by trapezoidal fuzzy membership func-
tions as it is shown in Figure 1. In this way,
the method works in all cases with the four rep-
resentative values of such functions (a,b,c,d)
(lower limit a, upper limit d, lower support
limit b, and upper support limit c¢) defined ac-
cording to Figure 1.

e Nominal attributes can be defined by crisp
values and crisp/fuzzy subsets. Again, to
unify their representation in the method,
all nominal values are represented internally
by crisp sets {hi,hs,...,h,} and fuzzy sets
{/J(hl)/hl, M(hg)/hg, ey ,u(hn)/hn} of domain
values. Thus, a nominal crisp value is repre-
sented by a crisp set composed of a simple do-
main value.

e In addition, both numerical and nominal at-
tributes allow missing values. These miss-
ing values are represented as follows: a)
for numerical attributes, a missing value
is represented as the trapezoidal member-
ship function (min, min, max, maz) (Figure 1)
where min and max correspond to the mini-
mum/maximum values for this attribute in the
dataset when the example class is missing or
correspond to the minimum/maximum values,
for this attribute, in the examples with equal
class to the class known of the example; b) for
nominal attributes, a missing value is repre-
sented by a crisp set containing all values of
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Figure 1: Numerical attributes as quadruples

the domain of that attribute.

As mentioned, the KNNp,qp method allows us to
perform the imputation of missing values of a given
example based on the nearest neighbors to that ex-
ample. When the attribute to impute is the class
attribute, we perform the classification task.

To perform the imputation/classification based
on neighborhood, it is necessary to obtain the near-
est neighbors using a distance function drgp(-,-).
The different characteristics and possible ways to
define this function is discussed later in this sec-
tion, although in a general way we must comment
that this function will be able to work with numer-
ical and nominal attributes defined by low quality
values.

Using the drgp(-,-) function we obtain the set
of k nearest neighbors to a given example z. This
set will be denoted by KLQD. From this set we
perform the imputation of missing values in z or
its classification. To impute attributes that are
not considered the class attribute, as the class of
z can be given with a low quality value defined by
a crisp/fuzzy subset, we must define how that class
value can be considered in the imputation.

In the case of classical KNN method from crisp
data, the known class of z causes that in the impu-
tation the only neighbors considered are those be-
long to that class. Now, in the KNNyqp method,
the contribution of each neighbor to the imputa-
tion is weighted in proportion to the similarity of
their class to the class of z. The contribution of
each neighbor z € KLQD is defined in KNNpqp
method by p1(z) = 1~ fa(wy, 2,), where fa(-,-) is a
distance function between nominal attributes and it
will be defined later. In this way, if fo(x,,2,) =0,
the classes are equal and p;(z) = 1 so the example
x contributes with maximum weight in the imputa-
tion of values of z. However, if fa(zy,2,) = 1 then
p1(xz) = 0 and the example x is not considered in



the imputation.

Furthermore, as K LQD examples can be defined
by low quality values, the method incorporates in
the imputation/classification a second weighting of
each neighbor based on the imperfection of each
one, so that the more low quality a neighbor is, the
less influence it has in the imputation/classification
(this value is defined by pa(x)). Fuzziness measures
or fuzzy entropy are used as a measure of imper-
fection of an example. Such measures characterize
the sharpness of the membership functions, [6], in
order to obtain global measures of the indefinite-
ness described by fuzzy sets, [5]. Thus, the weight-
ing of a example x, pa(x), is defined as po(x) =
1 —entropy(x) and the definition of entropy(x) will
be discussed below.

To indicate the degree with which each of the
above weights (p1(z), p2(x)) are applied, parame-
ters 0 < F; < 1and 0 < F, <1 are used, fulfilling
that F; + F» = 1. When the method is used to clas-
sify, automatically these values are set as F; = 0
and F5 = 1 since as it is not known class of exam-
ples of input, it can not be used as weighting the
distance of classes of the nearest neighbors. In this
case, the contribution of each neighbor, in the clas-
sification of a new example, will be proportional to
their “perfection degree”.

The KNN,qp method allows us to define a simi-
larity mean value to reach, defined by the threshold
0 < Usim < 1, to carry out the imputation in an
example. Thus, if the average similarity between
classes of the nearest neighbors and the example z
is below this threshold, the imputation is not per-
formed. This threshold can be interpreted as the
minimum average grade of belief with which the
user wants to perform imputations. When Ug;p,
is defined as 0 all imputations will be performed
regardless of belief that supports them, and when
Usim is 1, it is only carried out a imputation when
it is based on examples with the same class value as
the imputed example. In this last case, the method
works as the classical method.

Likewise, the KNNpqp method allows us to de-
fine a degree of mean maximum entropy (Uent)
between the nearest neighbors to perform the im-
putation/classification. Thus, if the imperfection
degree of the nearest neighbors were very high,
we could indicate that the imputation/classification
was not carried out. When U,.,; = 0 the impu-
tation/classification is only carried out when the
neighbors are defined by crisp values and when
Uent = 1 all imputations are carried out regardless
of the quality of the neighbors.

The process of the KNNy,qp method is described
in Algorithm 1.

2.1. Fuzzy distance measures

An important aspect in the definition of KNNpqp
method is the distance function, drgp(:,-), be-
tween two examples x and y. We define the dis-
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tance drop(z,y) as a heterogeneous distance func-
tion that can work with numerical and nominal at-
tributes that could be defined by low quality values.
The drop(-,-) function is defined as follows:

drgp(z,y) =

where function f(-,-) is a heterogeneous measure of
the distance between two attributes that could be
defined by low quality values.

Therefore, function f(+,-) is, in a general way, de-
fined as:

if 1 is numerical

Ji(zi,vi)
fa(wi, ys)

Among possible functions to calculate the dis-
tance between low quality values expressed by gen-
eralized trapezoidal functions as described above in
the case of numerical attributes, we have considered
the functions in Section 2.1.1. Therefore, any one
of these functions could be part of the definition of
the function fi.

Among possible functions to calculate the dis-
tance between low quality values expressed by
crisp/fuzzy subsets in the case of nominal at-
tributes, we have considered the functions in Sec-
tion 2.1.2. Therefore, any one of these functions
could be part of the definition of the function f.

As an additional characteristic, we are interested
in functions that are computationally efficient given
the large number of distances to be calculated in this
kind of methods.

f(wg,y:) =

if 1 is nominal

2.1.1. Numerical attributes

Next, we describe some distance measures, which
are used for expressing the distance of trapezoidal
shaped fuzzy sets:

e The distance of Diamond [4] (denoted by NU;)
is defined between the numerical values of the
i-th attribute of two examples = and y as:

\/ (a=a")?+(b=b")>+(c=c')2+(d=d')?
NU: (w5, y:) = -

max; — man;

where z; and y; are numerical values defined
by quadruples (a,b,c,d) and (a’,b’,c’,d’) respec-
tively and max;, min; are the maximum and
minimum values of attribute 7 in the dataset.

e The distance of Hausdorff generalized to fuzzy
sets by Ralescu and Ralescu [14] (NUz) be-
tween the numerical values of two examples x
and y is defined by:

1
NUx(z4,yi) = Z maz{|zi1—yil, [Ti2—Yiz2

a=0

}



Algorithm 1 — KNNpqp - K Nearest neighbor applied to low quality data

Introduce z;
Introduce k, 1 < k < |E|;
Introduce Fi, Fa, Ugim, Uent;

Obtain the set K LQD with the k nearest examples to z according to distance function drop(z, x);

if the class of z is missing then
Fy=0; F, =1,

else
for all x in KLQD do pi(z) =1 — fo(xn, 2n)
Plgrgp = ,exropP1(2)

end if

for all z in KLQD do pa(x) =1 — entropy(z)

P2rk1op = ek rop P2(2)

ENTROP,, — 2uscxnap “rorv(®)

k
P1
Sln [ v KkLQD

end for

end for

if ((STMyy > Usim, and Plgrop # 0) or F1 = 0) and (ENTROP,, < Uent and P2iop # 0) or F5 =0))

then
for all z; missing in z do
if z; is numerical then

zi=Fy - 2sexrgp (@)
;=

+ Fy -

ZmeKLQD p2(z)-z; .

Plkrgp
else if z; is nominal then

P2krop

b — {Fl'zmeKLQD pl(x)'#zj (h)JrFZ'ZmeKLQD p2(2) Hay
=

k

end if
end for

else
Imputation/classification is not realized,;

end if

/h}; Vh € Q.

where [z;1,%; 2] and [y; 1, ¥s 2] are the intervals
defined by the a-cuts of x; and y;.

e The Dissemblance index to fuzzy sets defined
by Kaufman and Gupta [13] (NUs) that it is
defined as:

1

Ti1 — + |z i
NU3 wl’yz Z | 7,1 y1;|2 _51)2 yz,2|)

where [z; 1, 2; 2] and [y; 1,¥:,2] are the intervals
defined by the a-cuts of x; and y;, and 5, and
B2 are the bound values of the interval covering
the last two intervals.

2.1.2. Nominal Attributes

Now, we describe some distance measures for nom-
inal attributes:

e The dissimilarity measure proposed by Dubois
and Prade [7] (NO;) is defined between two

928

nominal values of two examples x and y as:

Card(z; (N yi)
Card(x; Jy:)

where xz; and y; are fuzzy sets and
Card(z;(Ny:) and Card(z;Jy;) are de-
fined as the cardinality of fuzzy sets resulting
from the union and intersection of z; and y;
respectively.

NO1(z,y:) =1 —

The family of distance measures that general-
izing the geometric distance models to fuzzy
subsets [19] is defined as:

1/r
-Tzayz = (Z |/sz /‘yl(h)lr> yr>1

heQ

The cases r =1 (NOz) and r = 2 (NO3) were
studied by Kaufmann [12]. Case d3 (NO,) was
studied by Kacprzyk [11].

e Disconsistency Measure [18] between values z;



and y; (NOs) is defined as:

NOs(xi,y:) =1 — sup (fz,ny, (b))
heQ;

where z;Ny; is the min ¢-norm and pg;ny, (h) =

2.2. Fuzzy entropy functions

Another important aspect in the definition of
KNNpgp method is the fuzzy entropy function,
entropy(x), of an example x. The entropy(x) func-
tion is defined as follows:

entropy(x) =

where function g(+) is a proper fuzzy entropy func-
tion for each attribute type x;.

Among possible functions g(-) of fuzzy entropy we
consider the following;:

e Function of Termini and Luca [5] (ENT}) that
defines the entropy of a fuzzy set z; as:

> Chaay (h) -log(pa, (h)) +
heQ;
+ (1 = pra; (h)) - log(1 — pua; (h)) )

e Function of Kaufmann based on the Hamming
distance [12] (ENT5):

ENT(z;) = —

2
ENTy(x;) = m Z |ptz; (h) — M%,zi(h”
" heqy

where

[0 if g, (h) <
“éwﬂh)—’{ 1 if g (h) >

e Funtion of Kaufmann based on the Euclidea
distance [12] (ENT3):

{

he;

SRS NI

2.3. Classification Accuracy

As we have commented above, KNNpqp method
can provide low quality values as output in classi-
fication. To obtain the results of classification ac-
curacy of KNNpqp method, we apply the decision
process shown in Algorithm 2.

Since the class value assigned to an ex-
ample 2z by the method can be a fuzzy
set {pz, (w1)/wi, iz, (W2)/wa, .oy iz, (Wr)/wr}, this
value is transformed to a crisp set {wi,...,w;} as
follows.

Let wy, be the class with the highest member-
ship degree in the previous fuzzy set, the crisp set
is obtained as:
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Algorithm 2 — Decision in classification

success=0;
error=_0;
Success_ error;
for all z in E;.s do
if (class(z) = classknN,op(2)) then
success=success+1;
else
if (class(z) (classk NNpop (2) # 0) then
success__error=success__ error—+1;
else
error=error+1;
end if
end if
end for

classkNNyop(2) =

Mz, (wm) — Mz, (wc)

U {r | L) e )
where v is an external parameter to indicate how
close to the majority class of the output set, wy,,
should be a class w,. to be considered a final class.
With v = 0 the final class tends to be a set com-
posed of a single class, the majority class, but it can
be a set composed by more than one class in case
of a tie between majority classes. With v = 1, the
final class is the one obtained by the algorithm.

Therefore, to obtain the results of classification
accuracy, we apply the decision process shown in
Algorithm 2.

From Algorithm 2, the interval [min,maz] of
classification accuracy is constructed, where min is
calculated as the percentage of success considering
only the variable success and max is calculated as
the percentage of success considering the sum of the
variables success + success _error. We can inter-
pret the lower bound of the interval as a pessimistic
percentage of accuracy and the upper bound as an
optimistic percentage of classification accuracy con-
sidering those cases where the real class is contained
in the inferred class as success.

3. Experimental Results

In this section we evaluate the performance of the
proposed approach when it is applied to datasets
without/with low quality values.

The datasets without low quality values used to
test the proposed approach have been obtained of
[2] and are summarized in Table 1, where to each
dataset is shown the abbreviation (Abbr), the num-
ber of examples (|E|), the number of numerical at-
tributes (Nu), nominal attributes (No), the number
of classes (I) and if it contains missing values (M).

We have included explicitly low quality values in
these datasets using the NIPip tool to management
of low quality datasets [3]:



Datasets Abbr |E|] Nu No I M
Australian AUS 690 6 8 2 N
Credit Screen CRX 690 6 9 2 N
Glass GLA 214 9 0 6 N
Hepatitis HEP 155 6 13 2 Y
Horse-colic HOR 368 7 15 2 Y
Zoo ZOO 101 1 16 7 N

Table 1: Datasets description

10%-20% of interval values,

10%-20% of fuzzy values,

10%-20% of crisp subsets,

10%-20% of fuzzy subsets, and

10%-20% in total divided between all the above
types of low quality values.

These percentages do not affect the class at-
tribute. In addition, some of these datasets contain
missing values as it is shown in Table 1.

The Table 2 shows the interval of average clas-
sification accuracy percentage for a 10-fold cross-
validation to datasets without low quality data. We
use several distance measures to obtain the nearest
neighbors:

e drop(z,y) = DM;(x,y) is defined by:
fi(z,y) = NUL(2,y) and fo(z,y) = NO:1(z,y)
drop(z,y) = DMs(z,y) is defined by:
fi(z,y) = NUz(2,y) and fa(z,y) = NO1(z,y)
drop(z,y) = DMs(z,y) is defined by:
fi(z,y) = NUs(z,y) and fa(z,y) = NO:1(z,y)
drop(z,y) = DMy(z,y) is defined by:
fi(z,y) = NUL(2,y) and fo(z,y) = NOs(z,y)
drop(z,y) = DMs(x,y) is defined by:
fi(z,y) = NUz(z,y) and fa(z,y) = NOs(z,y)
drop(z,y) = DMg(z,y) is defined by:

fl(:ray) = NU3(£L'7y) and f2(x7y) = NO5(.’£,y)

To each measure, two columns show the classi-
fication accuracy when several values to k, k = 1
and k > 1, are used. In the latter case k = \/E
for all datasets except ZOO where k = 2 and GLA
where & = 3 due to these datasets have few ex-
amples and a greater number of classes so that the
value of k = \/@ is too large. Others parameters
are defined in the experiment as follows:

o 7=0;
0F1:O, FQZL
L4 ent:0~2;
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e g(z;) = ENTy(x;) to define entropy(x);

It is not necessary to define Ug;,, since we per-
form classification and in this case, as discussed in
Section 2, no weighting of similarity between classes
is used. In case kK = 1, the obtained class by the
KNNpgp method is a crisp value, so the interval
extremes generated by the decision rule 2 match.
When k > 1, the obtained class tends to be impre-
cise generating an accuracy interval. This interval,
given that v = 0, appears when the class obtained
by the KNNy,qp method has several majority classes
with the same degree of membership. For this rea-
son, and according to the decision rule of Algorithm
2, columns corresponding to k > 1 of Table 2 show,
on the one hand, a crisp accuracy when in the class
inferred by KNNy,qp there is a majority class and on
the other hand an interval accuracy when the class
inferred by the KNNy,qp method has several major-
ity classes with the same membership degree. With
the value v = 0, the class inferred by the method
is less imprecise and a clearer comparison of the re-
sults obtained £ = 1 and k > 1 can be carried out.
On the other hand, experiments performed previ-
ously, show that with the entropy function ENT5(-)
with Ueyn: = 0.2 a good performance of the method
is obtained, since the imperfection percentage in the
data are not so high.

The accuracy results are expressed by intervals or
by crisp values depending on the class inferred. To
compare how good the accuracy results are the hl
measure has been defined. This measure is directly
proportional to the mean value of the interval and
inversely proportional to the width of the interval.
That is, we consider that the higher accuracy and
the less imprecise the interval is, the better a result
is. Therefore, hl measure is expressed as:

Bl = (max —2i— min

) - maz — min)

where min and max are the extremes of intervals.

In Table 2 the best results for each dataset are
indicated in bold. We use the distance hl when
results are obtained in the form of intervals. In the
last row the mean value of each column is shown.
We can see that the best result is obtained with the
distance defined by DM, and k = 1.

The results are competitive with those obtained
in [15] where they carry out the classification of a
set of datasets using the KNN method with &k = 1
and using several heterogeneous distance measures.
The only low quality values that contain datasets of
[15] are missing values.

Next, with datasets of Table 1 with low quality
values we obtain some results using the four best
distance measures from the Table 2.

The Table 3 shows the average classification ac-
curacy percentage for a 10-fold cross-validation to
datasets with low quality data. The parameters
used in the experiment are the following:



DM DM, DM3 DMy DM D Mg
Datasets k=1 k>1 k=1 k>1 k=1 k>1 k=1 k>1 k=1 k>1 k=1 k>1
AUS 81.4 86.4 65.4 68.3 74.6 82.9 81.4 86.4 65.4 68.3 74.6 82.9
CRX 81.4 85.9 63.9 67.4 68.6 78.8 81.2 85.9 63.9 67.4 68.4 79.7
GLA 71.9 [67.2,73.7] 72.9 [67.7,72.8] 53.1 [41.1,57.9] 71.9 [67.2,73.7] 72.9 [67.7,72.8] 53.1 [41.1,57.9]
HEP 82.8 [81.0,88.6] 64.2 [77.8,80.3] 68.3 79.7 81.6 [77.8,86.0] 64.2 [77.8,80.3] 73.0 79.7
HOR 76.9 [81.3,83.4] 58.2 [69.2,73.3] 514 [60.3,65.4] 79.6 [77.7,84.2] 582 [69.2,73.3] 50.8 [60.8,64.1]
Z0OO 97.0 [91.2,97.0] 94.0 [90.1,95.0] 94.0 [90.1,95.0] 97.0 [91.2,97.0] 94.0 [90.1,95.0] 94.0 [90.1,95.0]
Average 81.85 80.3 69.8 72.0 68.3 69.9 82.1 78.8 69.8 72.0 69.0 70.3

Table 2: Results with datasets of Table 1 without low quality data

° F1 = 0, F2 = 1,

o k= IE];

o Uept = 0.2;

g(x;) = ENTy(z;) to define entropy(z);
v = 0.05.

In Table 3 the best results for each dataset are
indicated in bold. In the last column the best dis-
tance measure to each dataset is indicated. In the
last row of the table, the best distance measure to
the experiments with 10% and 20% of low quality
values is indicated. Again, to measure the goodness
of results expressed by intervals, we use the mea-
sure hl. The results of dataset GLA corresponding
a Subset and Fuzzy Subset are not obtained because
the dataset does not contain nominal attributes.

In general, distances DMs(+, ) and DM5(-,-) ob-
tain bad results except for the GLA dataset which
has the characteristic of being formed by numerical
attributes. In this case, DMs(-,-) and DMs5(-,-)
are working in the same way. Therefore, the
good performance is produced by numerical dis-
tance NUs(+,-) common to both distances.

In the remaining datasets where numeric and
nominal attributes appear, the distances with best
performance are DM (+,-) and DMy(-,-), although
overall DM;(-,-) has better performance. There-
fore, the numerical distance NU; (-, -) and the nom-
inal distance NO (-, -) have the best performance.

According to hl measure, we can establish the
ranking displayed in Table 4.

Ranking hl
1 drgp(x,y) = DMi(-,-) 789
2 dpgp(z,y) = DMy(-,) 782
3 drop(w,y) = DMs(-,-) 67.9
4 drep(w,y) = DMy(-,-) 67.8

Table 4: Ranking of the distance measures with low
quality data using hl measure

Comparing the results obtained in the datasets
with and without low quality values, we can con-
clude that the method has a robust performance,
maintaining accurate results, somewhat smaller but
very similar, when adding different types of low
quality values.
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4. Conclusions

In this paper we have presented an extension of clas-
sical KNN method so it can work with low qual-
ity values, leading to the KNN,qp method. Thus
we have a method to impute/classify datasets with
missing, fuzzy and interval values in numerical at-
tributes; and crisp/fuzzy subsets in nominal at-
tributes. Experiments have been focused on the
classification task using different distance measures.
The results show that the method is competitive
with the classic method when working with datasets
without low quality values and is robust, keeping
similar results when working with datasets with low
quality values. As future works a comparison of the
proposed method with other methods of literature
that works with low quality data will be carried out.
It is also necessary to carry out the extension of ex-
amples reduction methods to withstand treatment
of low quality data to improve the efficiency of the
method. Finally, a more detailed analysis of the dif-
ferent parameters of the method must be performed.
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