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Abstract 

Establishing high performance cooperation and estimating nodes’ risk level in mobile ad hoc networks (MANETs) 
are currently fundamental and challenging due to the inher ent characteristics of MANETs, such as the highly  dy-
namic topology and the absence of an effective security mechanism. Trust based assessment methods were recently 
put forward but presumed restrictions to the data samples or presumed weights for node’s attributes are required. In 
this paper, Projection Pursuit bas ed Risk Assessment (PPRA), is proposed to  analyze node’s creditability. As pro -
jection pursuit turns high-dimensional node properties to low-dimension space, all nodes’ risk levels could be clus-
tered effectively and accurately. Projection index, the same as judgment index of clustering consequence, is utilized 
to reveal the b ehavior of different nodes. By maximizing projection ind ex through Genetic Algor ithm (GA), opti-
mal projection direction is obtained, and then the projection values  of e ach node could be calculated. Finally, the 
results in one-dimension or two- dimension projection space sho w that our me thod is  more efficient and practical 
than traditional methods. 

Keywords: project pursuit, genetic algorithm, risk assessment, projection direction, projection index. 
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1. Introduction 

Mobile ad  hoc n etworks (MANETs) a re co mplex d is-
tributed systems that can dynamically self-organize into 
“ad-hoc” net work topologies with arb itrariness and  
temporality, which allows people and devices seamless-
ly net worked together i n ar eas wi th n o pre-deployed 
infrastructure Ref.1. Si nce nodes m ay n ot reside i n 
physically protected places, they m ay fall unde r attack-
ers’ control. Due t o the broadcasting nature of wireless 
channels, message eavesdropping and injection are pos-
sible. Thus, the security issue of MANETs is a difficult 
problem. Howev er, classic secu rity so lutions b ased on 
certification authorities and on-line servers are inappli-
cable because of the absence of infrastructure. Therefore 

the design of a new and effective security m echanism 
for MANETs is quite important and necessary. 

Currently a variety of as sessment models are put for-
ward, most of which reflect the risk level of communi-
cation through trust or reputation evaluation.  Generally, 
these m ethods coul d be clas sified into t wo categories:  
probability-based and fuzzy theory-based.  

Many works relate closely with  p robability-based 
models. B eth and his resea rch g roup p ut forward an   
experience-and-probability-based trust m odel in  Ref.2 . 
Authors in Ref.3 ad opted the beta distribution probabil-
ity method to obtain the trust relationship according to a 
basic p rinciple, n amely the po sterior probability distri-
bution of the node action is su bject to beta distribution. 
In Ref.4, trust was derived from evidence theory. Ref.5 
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and 6 applied fuzzy theory to conceptualize the subjec-
tivity and uncertainty of tru st. Current assessment mod-
els have m ade impressive progress. However, the com-
plex ch aracteristics of M ANETs still d eserve a lo t of 
concern.  

(i)  The multiple-attribute and multiple-polarity of 
the sam ple d ata: wh en con sidering th e t rust lev el o f a 
node, the c ommunication characters (e.g., packet losing 
rate) and physic attributes (e.g., signal intensity) should 
also b e in cluded. Some attri butes are better wh en the 
data si ze g rows l arger, while ot hers are  opposite. We 
call this multiple-polarity. Attributes change temporally 
which leads to a high dimension space. Current assess-
ment models lack effective mechanisms to directly un-
veil th e informatio n with in th is high-dimension d ata, 
thus assessing nodes’ trust level is challenging.  

(ii)  Temporal ch aracteristic an d th e reliab ility of 
trust evaluation: the assessm ent is a dynam ic and c om-
plex process. We nee d to pr ocess comprehensively re-
garding each stage, without ignoring the temporal char-
acteristic. Th e stag es of trust estab lishment, feed back 
and adjustment should be  able to process direct and in-
direct information. Current evaluation systems deal with 
the data using prob ability o r exp erience, which suffer 
the problem of bad expansibility. Moreover, they cannot 
‘sense’ slight abnormal attributes which leads to unreli-
ability. 

(iii)  Uncertainty of ev aluation subj ect: th is in -
cludes the needs, the e xperience and the knowledge of 
the s ubject. E .g., c urrent e valuation sy stem uses t he 
same s trategy to  d eal with d ifferent requ irements. In 
general, if t he subject lacks experience and knowledge, 
evaluation methods will lead to  un certain ev en con tra-
dictory res ults. Therefore, we nee d more objective 
methods to reduce the negative impact brought by sub-
jective factors.  

(iv)  Unpredictability an d d iversity o f attack s: due 
to its self-organization, dynamic routing and open wire-
less channels, MANETs are vulnerable to various kinds 
of attacks, e.g., the black hole attack and rel atively cov-
ert wormhole attack. Some traditional evaluation mech-
anisms are based on particular distribution principle and 
others use fun ctions wh ich lack  eno ugh mathematic 
basis or are limited  to some particular attacks. We need 
to seek for new evaluation methods to provide all-aspect 
basis.  

Besides, t he methods a bove al l have s ome men-
tioned dr awbacks. Fir st, nodes w ith th e dynamic an d 

transitional p roperties, such as malicious no des which 
are al ways sel f-protective, deviate the  behaviors from 
the statistical l aw. Using the probability theory will re-
duce the accuracy of assessment. Second, a huge sample 
data is required when presumed d istribution is app lied; 
otherwise the result would be unconvincing. Third, the 
fuzzy theory requires the behavior of the node to satisfy 
their presumed patterns.  

To solve the above problems, PPRA is prop osed. I t 
first maps multi-dimensional data into low-dimensional 
manifolds for visual inspection, and then clusters nodes 
according to their projection val ues. Proje ction i ndex 
which is sub jected to  t he projection direction, as th e 
judgment of  clustering e ffect, sh ould be  m aximized. 
Projection pursu it (PP) algo rithm [7-10] searches all pos -
sible projection directions i n o rder t o fi nd the optimal 
projection direction t hat m aximizes t he pr ojection i n-
dex.  

Due to in complete inform ation and no presu med 
pattern of nodes’ be havior i n t he M ANETs, m any as-
pects must be considered to reveal th e risk lev el. So  a 
high-dimension matrix, called  ind icator matrix, is con -
structed. Through analyzing the sample data of the indi-
cator m atrix, Genetic Algorithm (GA) is employed t o 
search for the optimal projection direction by maximiz-
ing the projection index. PPRA model is a “data-driven” 
model an d risk lev el is ach ieved thr ough an alyzing 
sample data till the conve rgence. No presumed require-
ments are needed. Through experiment, PPRA model is 
proved to be robust, which can endure noisy of sample 
data to some degree. 

The structure of the paper i s as follows: Section 2 
provides some basic knowledge about Projection Pursuit 
Theory. Section 3 introduces the detailed procedures of 
the assessment method based on PP. Section 4 demon-
strates experimental analysis  and comparisons with oth-
er m echanisms. Pe rformance analysis is i n Section  5 
and Section 6 concludes this paper. 

2. Projection Pursuit & Genetic Algorithm 

Projection Pu rsuit (PP) is mainly u sed for an alyzing 
high-dimension data, especially non-normal population. 
The main idea of PP is: p roject high-dimension data to 
low-dimension t hrough  t he optimum proje ction di rec-
tion which could best reflect the data structure and char-
acteristic. Whi le traditional m ethods treat t ime coordi-
nate as probability o r p articular d istribution function, 
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projection pu rsuit uni fies di fferent attribute values at 
different time.  

A sim ple g enetic alg orithm (SGA) is a numerical 
search technique used to find t he exact or approximate 
solution for optimization problems. In  S GA, a  p opula-
tion is the abstract representation of candidate solutions. 
Besides, it evolves toward better solutions each step and 
models l oosely o n t he principles of nat ural sel ection: 
employing a population of individuals that undergo se-
lection i n t he presence of va riation-inducing operators 
such as mutation and crossover.  

In t he followi ng, we provide som e basic conce pts 
and definitions. 
(I) Overall Data Dispersion 

The h igh-dimension attrib ute m atrix Y i s i ndicated 
as Y= (y1, y2,…,yn). Ov erall data dispersion S(a) ind i-
cates the rate of deviation from the average: 

2

1

(( ( ) ( ))
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(II) Local Data Density 

D(a) i ndicates t he distribution of t rust e valuation 
values in one-dimension space.  
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Where, rij indicates the dista nce between evaluation 
values. Fo r o ne-dimension, rij=|yi-yj|, a nd f or tw o-
dimension, 2 2| | | ' ' | .ij i j i jr Y Y Y Y     R is th e d ensity win-
dow width, a nd i ts sel ection s hould sec ure t hat t he 
amount of nodes i n the  window a re not t oo little and 
they will not grow too high with the increase of n.  

Theorem 1: The projection density window width R 
satisfies the following equation: rmaxR≤p. There a re n 
projection samples, the dimension is p and rmax indicates 
the maximum range between projections. 

Demonstration: Based on the definition of local da-
ta density  
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then we can get 
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assume max max( )jir r , only whe n maxR r , satisfyi ng 
( ) 1,ij yS R r D  can be t he m aximum, and the greater 

R, the greater yD .    

On t he other han d, || || 1,|| || 1X a  ,based 
on the actual physical meaning of the clustering  projec-
tion t o one-dimension s pace, 0 1a  TY X , 

so 0 iY p  ,and | |ij i jr Y Y  ,so ijr p . 

So maxr R p   comes into existence.  

(III) Projection Index 

Projection index is used to ju dge whether a projec-
tion direction is a m eaningful t arget f unction. I n our 
scheme, we use th e classic pro jection index to optimize 
projection direction. T hat i s: Q(a)=S(a)*D(a), w here 
S(a) i ndicates ove rall dat a di spersion, D(a) indicates 
partial data density, a indicates the projection direction.  

(IV) Optimum Projection Direction 

Given the high-dimension node attribute matrix, the 
projection i ndex fun ction will ch ange with pro jection 
direction. We ho pe to find out  the opt imal projection 
direction wh ich can rev eal u ltimately the attributes’ 
characteristic. The optimal d irection ca n ul timately re-
flect t he hi gh-dimension data st ructure, a nd t hen we 
analyze the  projecte d one-dimension data. W e defi ne 
projection direction searching as following: 

Opt a：

1

max :
.

. . 1
p

i
i

Q

s t a

  





 



（ ）=S( ) D( )
          (3) 

Thus, trust evaluation convert to this problem:  solv-
ing complex nonlinear optimum by optimizing parame-
ters. An appropriate method to search optimal projection 
direction i s t he real  code d genetic al gorithm (R AGA) 
[11-12]. Given the obtained optimal direction and the pro-
jection index, an alysis of u nknown nodes d epends on 
simple matrix calculation.  

(V) Visualized Clustering Projection 

In general projection pursuit, we usually project data 
to one-dimension space  to q uantize pr ojection res ults. 
While in actual analysis, we need to project data to two-
dimensional or three-dimensional space. System admin-
istrator can directly judge whether a node is abnorm al 
which streng ths th e d iscernment. We call th is two -

Published by Atlantis Press 
      Copyright: the authors 
                   751



Fu Cai, Liu Ming , Chen Jing, Zhang Li, Xiao-Yang Liu 
 

dimensional and three-dimensional projection as visual-
ized clustering projection. Vi sualized clustering projec-
tion owns two impressive characters: information loss is 
fewer and the result is visualized. 

Choose two one-dimension projection vectors, a, a’
∈Rp, calculat e projection values res pectively, Y=aTX, 
Y’=a’TX. These t wo vectors can m aximize the am ount 
of i nformation of joint distribution o f Y a nd Y’. Th e 
purpose of p rojection i s t o fi nd t he nonlinear st ructure 
of original data, so Y and Y’ should be irrelevant which 
requires a and a’ to b e or thogonal, su ch t hat aTa’=0,  
aTa=1,  a’Ta’=1. The distance of sample projections is: 

 2 2' | | | ' ' | .ij i j i jr Y Y Y Y     

In t wo-dimension p rojection, t he projection de nsity 
window w idth R is a variable to  b e d etermined, from 
theorem 1 we have the following inference.  

Corollary 1：There ar e n p rojection sam ples, th e 
dimension i s p and rmax indicates the m aximum range  
between projections. The  p rojection density wi ndow 
width R in two-dimension space satisfies the following 
equation: max 2 2r R p  . 

Demonstration: From theorem 1 we can get that  
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isfy ( ) 1,ij yS R r D   can be the m aximum, and t he 

greater R, the greater yD . 
On the other hand,|| || 1,|| || 1,|| ' || 1X a a   , Based 

on the actual physical meaning of the clustering  projec-
tion， that 1 1a   , 0 ' 1a   and from t he pr ojec-
tion TY X , then , 'i ip Y p p Y p      ,that is ：
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So  max 2 2r R p   comes into existence. 

3. Projection Pursuit Model 

The purpose of PPRA Model i s to assess e very node’s 
risk level. PPRA can add time character which is appre-
ciated because some attack behaviors seem well in most 
of the time and only through temporal analysis they can 
be detected. Secondly, the indicator matrix is construct-
ed. Finally, risk level clustering is assessed by calculat-
ing every no de’s pr ojection v alue. I n this p aper, o ne-

dimension projection and two-dimension projection are 
presented. 

3.1. Elementary principle of PP model 

3.1.1 Constructing indicator matrix 

Let  St
ij  be the property value for indicator Yj in node 

Xi  at the time t (i = 1,2,…,n,  j = 1,2,…,m, t=1,2,…,T ).  
Then the indicator matrix, in symbol S, is as follows: 

1 1 1
1 1 111 12 1

1 1 1
2 2 221 22 2

1 1 1
3 33 31 32 3

1 1 1
1 2

.
...

t T
j mm

t T
j mm

t T
j mm

t T
nj nmn n n nm

S s ss s s

S s ss s s

S s sS s s s

s sS s s s

  
  
  
   
  
  
     

 

 

 

  

 

 

3.1.2 Normalizing 

To eliminate this negative impact of indicators’ unit, 
normalization of St

ij is necessary. If indicator j (j=1, 2 … 
m) is positive-effect, then, 

min( )
.

max( ) min( )

i i
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After normalization, indicator characteristic matrix S 
ranges from 0 to 1. Normalization can reduce the influ-
ence of different unit of each at tribute, a nd m ake ou r 
comprehensive analysis possible. 

 3.1.3 Constructing projection index 

Projection pursuit is to map high-dimension data on-
to low dimension through linear co mbination. Let Z be 
the projection value as follows: 

1
( ) a * .

m

i j ij
j

Z f s


  （ ）
   (6) 

Where, a is projection direction. In order to objectively 
reflect charact er of high dimension, pr ojection pu rsuit 
regression adopts the sum of a series of ridge function to 
approximate r egression f unction. We a dopt t he su per 
smooth regression as in Ref.8. The convergence condi-
tion, namely, projection index is as follows: 

( ) ( ) * ( )Q a S a D a                 (7)         
Where, Sz stands for standard deviation of projection 

Z, Dz stands for local density of projection Z. As to two-
dimension projection, projection index is as follows: 
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(a , ) ( , ) * ( , )z zQ b S a b D a b             (8) 

3.1.4 Optimizing projection index by GA 

Different pr ojection di rections r eflect d ifferent d ata 
structure cha racters. Pro jection ind ex s hould be 
maximized to reach  the la rgest  differe nce am ong all  
nodes. 

PPRA model could be described as follows: 
max: ( ) *z zQ S D   

s.t.: 
40

2

1
1

0 1 1, 2...40

i
i

i

a

a for i






   



    

(9)

 
Where R is  a n e xperiment-driven pa rameter, which is  
decided by experiment result and r(i,j)=|z(i)-z(j)|. 

As mentioned above, GA algorithm i s employed to 
solve the problem. Through searching possible solutions 
in the whole solution space, optimal projection direction 
a is obtained. 

Similar to above, two-dimension projection could be 
described as follows: 
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 3.1.5 Sorting the candidate nodes 

First, let’s show that the relationship between node’s 
projection value and its corresponding risk level. 

Theorem 2: Through the steps above, the l arger the 
projection value is, the higher the creditability is. 

Demonstration: Let us  assume one vi rtual n ode 
named n ode V. V rep resents th e op timal n ode, i.e. at  
anytime at any attrib ute nod e V get th e best attribu te 
value. And after the temporary normalization, obviously 
node V’s attribute value is all 1.  

Because   

1
( ) a * .

m

i j ij
j

Z f s


  （ ）
   

 

And all attribute values of V node are 1, thus: 

1

( ) a 1 .
m

V j
j

Z f 


  （ ）
    

 

That means the optimal node’s projection value is 1. 
So if real node’s projection value is greater, the differ-

ence betwee n it and optim al node is sm aller, i.e. this 
node is better. This proves our conclusion is right. 

 Therefore, after obtaini ng the pr ojection value o f 
each node by the steps above , a final evaluation for the-
se candidate n odes can be achieved. The  no de’s risk  
level decreased with the increase of th e projection value; 
meanwhile there still exist more simila rities for speci fic 
two nodes when they’re more close to eac h other. And 
the sam e co nclusions c ould be i nferred for tw o-
dimension proj ection. The more si milar t o (1, 1), the 
higher the creditability is. 

3.2. Procedures of PPRA model 

The procedures of PPRA are as following:  
Step1: selecting key indicators.  
Step2: normalizing S, and obtaining the S’.  
Step3: using GA algorithm to obtain optim al projec-

tion direction.  
Step4: sorting the candidate nodes.  
Once the optimal projectio n directio n is obtained, 

every ca ndidate nod e’s proj ection value wi ll be calcu-
lated in optimal projection direction. Then after sorting 
these projection values, we  can get reliable and precise 
results concerning nodes’ risk and their similarities. 

4. Risk Assessment Scheme in MANETs 

Theoretical PPRA m odel is showe d a bove. A real e x-
ample in MANET  is presented below. However, before 
carrying out t he e xperiment, de fining key  attributes is 
also of significance. Afte r fulfilling PPRA model, anal-
ysis of  final result and comparison between PPRA and 
other methods are co nducted. We conclude that PPR A 
model is m ore s uitable to  various network behaviors, 
not only for its accuracy but also its convenience as well. 

4.1. Defining key attributes 

The selected in dicators should  properly r eflect th e 
behavior c haracteristics of  th e n odes i n order to  m ake 
the risk assessment objective and efficient. Establishing 
basic principle for selection’s convenience is necessary.  

(I) Accessible. T he i ndicator’s value m ust be  ob-
tained easily. As data is sampled fr om real M ANETs, 
accessibility is basic. 

(II) Relative. The  c hosen indicators should directly 
reflect node’s property. 
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(III) C omplete.  E very node’s value  sh ould be ob-
tained so that each node could be reflected by the corre-
sponding indicators. 

For t he risk a ssessment of nodes in M ANETs, as -
pects incl uding network co mmunication f eatures (i.e . 
loss tolerance), physical attr ibutes (i.e. m obility), wire-
less signal and position should  all be taken into consid-
eration. In  this pape r f our indicators are pitched  on:  
transmission speed (TS), losing rate (LR), signal inten-
sity (SI), and signal changing rate (SCR). The categories 
of these  four in dicators a re as follows: P re presents 
positive-effect, whereas N re presents negative-effect. 
And before c onducting e xperiment, basic analysis of 
selected indicators is prepared. 

Table 1. Categories of selected indicators 

TS LR SI SCR 
P N P N 

 

4.2. Risk assessment example 

Our experiment platform is NS  2 .28. Six nodes are 
designed, in whic h one attack node  and one low-
efficiency node are i ncluded. Node 5 l oses pa rt of t he 
packet tem porarily and node 6 transm its packet  very 
slow but com pletely. We obtained ten successive m o-
ments’ n ode a ttributes for e xperiment. For  the sa ke of 
brevity, only losing rate data is s hown in  Fig.1. From 
Fig.1, the losing rate of node 6 is very high even though 
it’s very stable; and the value of node 5 is small but not 
stable, more likely to under an attack. Generally speak-
ing, node 1 and node 2 is better than other nodes. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

node1

node2

node3

node4

node5

node6

 
Fig.1. Package losing rate curve 
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Fig.2. Package losing rate curve after normalization 

(I) Construction of indicator matrix  
From the original sample data, S is obtained. Here S 

is consisted of 6*(10*4) data.  
(II) Normalization  

Using formulas in Section 3.1 for positive and nega-
tive attributes to normalize, package losing rate normal-
ization is show in Fig.2. 
(III) Construction of projection index  

One-dimensional pr ojection could be de scribed as 
formula (9). Two-dimension projection, as formula (10), 
is more complex than one-dimension p rojection. How-
ever, t wo-projection rem ains more i nformation so it’s 
more accurate. 
(IV) GA Searching 

Our platform is M ATLAB 7. 9. M ATLAB G A 
toolbox is taken in t o solv e the problem . To find the  
optimal projection mechanism, we adopt three methods: 
MI, project respectively according to each moment then 
process condensed projection; MII, one-dimension with 
time characteristics togeth er; MIII, visualized two-
dimension projection, shown as following. 
X 

4.3. Experiment results 

MI has two processes: project at each m oment and 
then condensed-project for previous values on t he time 
axis. Firstly, use SGA to obtain opti mal proj ection di-
rections of the ten m oments in the first stage shown in 
Fig. 3. The optimal projection result is showed in Fig. 4.  
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Fig.3. Optimal projection directions of the ten moments 
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Fig.4. The optimal projection result 

Next, project above results on the time axis, the final 
results is i n Fig.5. Nodes 4 and 5 have lower values so 
they are more risky, PPRA concludes that they are low-
efficient or ha ving low trust level. Fig.6 shows that fit-
ness is relatively convergent in this mechanism. 
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Fig.5. One-dimension projection for MI 

 
Fig.6. Convergent of one-dimension projection 
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Fig.7. Optimal direction in one-dimension projection 
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Fig.8. One-dimension projection for MII 

 
Fig.9. Convergent of one-dimension projection 

In MII, with t he help of GA, the optimal 40 dimen-
sion projection direction is obtained, presented in Fig.7. 
Given Z, the risk level could be calculated using formu-
la ( 6), shown in Fig.8. Th e first an d s econd nodes a re 
the best. Moreover, the  distance between them is quite  
small, so they  are t hought t o have sim ilar properties. 
And node 5 is vulnerable so its pr ojection value is quite 
small. Meanwhile node 6 is a low-efficiency node; its 
projection value is sm all too. Fi g.9 s hows that the fit-
ness value is relatively converge nt. From the above ex-
periments, we can see the goals of the  two mechanisms 
are consistent. However, MII has better projection result 
than MI, because MI has two stages, and during the first 
stage some time characteristics of attack behaviors have 
been lost already, which expands the gap from the reali-
ty.   X 

Even though t he result is relatively satisfying, from 
one-dimension projection, a plenty of information is lost. 
For example, in o ne-dimension projection both node 5  
and node 6 are b ad nodes and it’ s hard to d ifferentiate 
them. M oreover, one-dimension projection ha s wea k 
visibility. So i ntroducing t wo-dimension proj ection is 
quite significant. 

As for the two-dimension projection, the experiment 
result is showed in Fig.10. In Fig.10 there are four cate-
gories. Node 1 and  nod e 2 belong to  th e relative g ood 
nodes, while the projection value of node 5 is quite low 
and so as the node 6. What’s more, node 5 is quite dif -
ferent from  node 6. T he re sults accuratel y match our 
analysis to the ori ginal da ta. Fig .11 shows th e conv er-
gent of two-dimension projection and it’s  the certifica-
tion of our model’s correctness. 
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Fig.11. Convergent of two-dimension projection 

 
Fig.12. Compare of PP and PCA 

5. Performance Analysis  

5.1. Projection effectiveness 

We have showed the fitness of c onvergence. Now 
we would like  to ex plain the reason. In the  analysis of 
PP effectiveness, we mainly depend on the convergence 
of SGA algorithm. The most difficult problem in GA is 
to prove the convergence process. Usually, we adopt the 
method of a nalyzing the ev olution process of optimal 
function values, so we list the figures of convergence of 
optimal function values. The convergent process is o b-
vious in these figures. 

5.2.  Data mining experience-irrelevance  

With the nodes in MANET, their attributes are high-
dimensional a nd variable, from this as pect, dy namic 
trust ev aluation based on pro jection pur suit can be re-
garded as a kin d of  data mining base d o n hig h-
dimensional a nd variable data. T hrough th e establis h-
ment and use of PP model, we can project any multiple-
dimension dat a which repres ent m ultiple attributes of 
nodes in MANET to one-dimension space, so as to ob-
tain the only trust attribute and finish the t rust evalua-
tion. T he data in the eval uation p rocess c omes from  
multiple-attribute an d dynamic values ba sed on n odes 
behaviors. 

The drawback of traditional mechanism involves the 
massive attributes they need and the large data must fit 
some particular distributions suc h as  beta  an d B ayes. 
While for our model, high-dimension dynamic data can 
be disp osed b efore pr ojection, so  that we do  not need  

massive data for analysis. Even better, a little infor-
mation can finish the evaluation and we do not need the 
attributes to accord with any experience probability dis-
tribution. Our m odel is applicable for any  high-
dimension dy namic data and has  pretty  go od experi-
ence-irrelevance. Traditional evaluation need to prepro-
cess the data, while in our model, even without pre-
treatment, suitable proj ection ind ex an d projection di-
rection can ensure the acc uracy of the result.  Therefore, 
RRPA has litt le requirem ents for data and owns good 
robustness. 

5.3.  Accuracy of Risk Assessment  

The quantization value from PPRA can  appropriate-
ly reflects trust inform ation of nodes, especially the 
cluster status from visualiz ed clusteri ng projection, s o 
that we  ca n judge whethe r the n odes suffer f rom the 
grey ho le attack  or DoS attack  and so on. Our m odel 
does not depend on experience probabilit y distribution 
and has m ore accuracy. Traditional evaluation m echa-
nisms choose a few principal components as evaluation 
index o r p rocess com prehensive jud gment. Pre viously, 
the risk value has been defined which actually damage 
the o riginal a mount o f in formation. While o ur m odel 
bases on the original data so there is no impair or influ-
ence for the analysis. The result is ce rtainly more accu-
rate. 

To illustrate the advantage,  we provide an exam ple 
to compare our m odel with Principal Component Anal-
ysis (PCA) 

In view of the above 6 nodes, 4 attrib utes in 10 dif-
ferent m oments o f distribution, use  PC A t o cluster  f or 
evaluation then obtain the following 6 evaluation values: 

1 2 3 4 5 6

1.0000 0.9404 0.3916 0.6129 0
Y [ , , , , , ]

.4041 0[ ]

PCA PCA PCA PCA PCA PCA PCAY Y Y Y Y Y

 ， ， ， ， ，

 

Compare this to Fig.12, we find that Node 4 is more 
risky than Node 5 in PC A, while in actual original data, 
Node 5 , as a suspicious node, its risk value should near 
to Node 6’. This result indicates that there exists errone-
ous judgment of PCA algorithm. PCA is based on math-
ematic model and its expandability is very limited, es-
pecially in dealing with the high-dimension data. Com-
parably, projection pursuit can search the optimal direc-
tion to reduce dimensions. This kind of method consid-
ers the inner connection am ong data so the information 
loss is very little. We can conclude from the figures that 
the evaluation value from PPRA is much better than that 
from PCA. PCA m ay even reduce som e effective in-
formation and rely only on a few principal components. 
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Our m odel ul timately saves the original information. 
From above  re sults, we can f ind o ut that  P CA ig nores 
the dangerous node 5 which conflicts the fact. 
 
5.4. Time complexity of PPRA  

The a nalysis of tim e co mplexity should be consid-
ered from two aspects: one is without optimal direction; 
the other is with the optimal direction. 

If we do not have optimal direction, GA is necessary. 
The time complexity of PPRA mainly includes Q(a). 

For one-dimension a nd t wo-dimension projection, 
the total dispersion com plexity of pr ojection data is 
O(nm), n indicates the amount of nodes and m indicates 
the dimensions of vector space 

( * ) dim
(s(a))= .

( *( ( ( ) ( )))) ( * ) dima b

O n m one ension
O

O n O d y d y O n m two ension


   

 

The calculation method of local density is:  
2(D(a))=n*n* (r )= ( ).ikO O O n m  

Moreover, the com plexity of GA is proportional to  
the am ount of projection directions of initial subgroup 
(k), so that the time complexity of GA is: 

2(Q(a))= (S(a)+D(a))*k= ( ).O O O n mk  

About the  spa ce com plexity, because a few sub-
groups are produced which include projection directions, 
the com plexity is:  O(wmk), w indicates the objective 
projection dimensions (in this paper, w=1 or w=2). And 
the space of original data is  O(nmT),T is t he time point 
for sampling (here, T=10). 

If we have obtained the projection index and optimal 
projection direction for a special kind of attack t hrough 
training with massive sam ple data, the evaluation just 
needs som e sim ple matrix calculations to obtain the 
nodes’ trust level. Under such circumstances, time com-
plexity is O(n). E.g., for the grey hole attack, we define 
projection index as Q(a)=Sz*Dz and the optimal projec-
tion directio n a. We adopt the obtaine d o ptimal direc-
tion to calculate the proj ection values of  any node: 
a(node 1), a(node 2), …, a(node n), by analy zing th e 
trust level, so we can decide whether or not to include  
some nodes in the  routing of  self-organize networks.  

5.5. Analysis for realization mechanism 

According to the data f rom stim ulation u nder the  
gray hole attack, we obtained the sample of 6 nodes and 
4 relevant attributes in 10 different moments. If the pro-
jection index is given, we  have  dif ferent projection 

methods to get the optimal projection direction for eval-
uating node risk. 

(a)  Firstly reduce the dim ensions o f t he four at-
tributes of each node in every time point. For each tim e 
point, we establish a 6*4 m atrix, including all attributes 
of t he six nodes. After p rojection, f our a ttributes be -
come a single com prehensive value. Apply this m ethod 
to each node, and t hen we  obtain si x c omprehensive 
values. Synthesizing ten  m oments, use th e re ducing-
dimensions process again, attributes in ten moments are 
projected t o one-dimensional space. This can produce 
an unique trust value for each node. 

(b)  There a re forty releva nt da ta for each node, 
reduce dimensions at the sa me tim e, projecting these  
forty data to one-dimensional space. It deals with a 6*40 
matrix directly. Applying the same projection index, we 
obtain t he p rojection in dex t hrough PP , w hich re flects 
the c haracteristics of all attributes i n t he whole tim e 
domain.  

(c)  Project hi gh-dimension data t o two -
dimensional space, as form ula (10). MI adopts one-
dimension projection and projects ten moments respec-
tively. This can lead  to the l oss of information that ex-
pends the ga p with fact.  MII adopts direct one-
dimension projection and combined time characteristics 
with samples. The result is relatively accurate after op-
timizing pro jection direction. MII I not on ly co nsiders 
the time characteristics but a lso reduces the loss of in-
formation. So two-dimension projection is more accu-
rate than one-dimension, but the calculation is m ore 
complex. T herefore, whe n c alculating t he risk val ues, 
we usually adopt MII, however, if the data is extraordi-
narily suspicious, we can combine with MIII t o process 
visualized risk evaluation in order to  dig out abnormal 
nodes which may exert attacks.  

5.6. Comparison with other methods 

PPRA model has advantages in node risk assessment 
for MANETs, as following: 

First, compared with reputation-based and probabil-
ity-based models, PPRA model is “data-driven” without 
presumed requirement to sam ple data. Even the sam ple 
data is noisy, PPRA model could be accurate as both the 
projection in dex an d direction a re well c hosen. While 
in XRef.3, the sample data must obey the beta distribution, 
so i n the  case  that  the distri bution cannot be satisfied, 
the assessment result won’t be accurate. 

Second, P PRA is a visual risk asse ssment m ethod. 
Risk level is not sim ply cal culated, but clustered and 
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visualized. We turn the risk calculation int o risk level  
clustering and the final results prove our idea is practi-
cal and reliable. 

Third, PPRA model could be applied to node behav-
ior’s analysis. Only a little  calculation would be re-
quired if optimal projectio n inde x an d direction u nder 
special condition are found. As we known, the behavior 
of node in M ANETs is quite  com plex, but behi nd the  
complexity there is simplicity. Although the data is 
huge, corresponding projection index and direction aim-
ing at ce rtain node’s specific behavior can be found by 
supervised learning; and analysis of its behaviors will be 
proper after quite easy calcula tion. For example, for the 
gray hole attack, if the behavior’s projection direction is 
obtained, judgment concerning whether the node is un-
der the gray hole attack or not  can be made on the basis 
of cor responding pr ojection values. Moreover, only 
simple matrix calculation is needed. 

6. Conclusion 

In this paper, a new model is proposed to deal with the 
following problems for nodes’ risk assessment:  

(1) Indicators are high dimensional and multi-polar; 
(2) Node’s behavior is complex and caprice. Using a 

comprehensive method to analyze is challenging.  
The m erits of  ou r proposed schem e could  be s umma-
rized as follows: 

(1) There is no restriction for sample data.  
(2) PPRA model is simple and does not need com-

plex calculation. How to define more suitable projection 
index and projection direction for node behavior’s anal-
ysis remains to be solved in the future. 

(3) Our risk a ssessment is m ore accurate  than t he 
traditional methods for the reason that the optimal pro-
jection direction in PPRA is a comprehensive and effec-
tive way to measure nodes’ multiple-attributes.  

The final result shows the PPRA m odel is  effective 
and s uitable for risk asses sment in mobile ad hoc  
network. 

7. Further Work 

Our model is elementary but useful. In our future work 
specific network behaviors will be analyzed, such as 
gray hole attack, how to construct corresponding projec-
tion index and what’s the optimum direction to discrim-
inate nodes under various conditions is of significance. 
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