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Abstract  

Advances in distributed networking have resulted in an 

explosion in size of modern datasets while storage and 

processing power continue to lag behind. This requires 

the need for algorithms that are efficient in terms of 

number of measurements and running time. To combat 

challenges associated with large datasets in distributed 

networks we propose hierarchical intuitionistic fuzzy 

possibilistic c-means kernel clustering algorithm. The 

algorithm executes hierarchically by performing clus-

tering at each peer. The intuitionistic fuzzy degree and 

tipicality membership functions and weight-attribute-

entropy factor improves clustering performance. The 

experiments on artificial and real datasets establish the 

efficiency and effectiveness of the algorithm. 

Keywords: Hierarchical clustering, intuitionistic fuzzy 

set, peer-to-peer network, large datasets, kernel cluster-

ing, fuzzy possibilistic c-means 

1. Introduction  

In exploratory data analysis clustering [1] is a ubiqui-

tous task. In clustering each object is assigned to one or 

more groups so that objects in the same group are very 

similar. The mainstream clustering techniques are based 

on centralized operation i.e. datasets are of small man-

ageable sizes and usually reside on one central site and 

then a single process performs clustering the data. The 

k-means algorithm and fuzzy c-means (FCM) algorithm 

[2] are two well-known centralized clustering algo-

rithms. However as the modern datasets gets larger 

computational burden increases as well as infeasibility 

of collecting data to central site due to privacy and se-

curity requirements. These factors limit the practicality 

of these algorithms. So it is obvious to develop cluster-

ing algorithms that are effective on large scale problems 

from both measurement and computational perspective. 

Again for complex distributed network systems the tra-

ditional algorithm fails to give desirable clustering re-

sults. This entails development of robust clustering al-

gorithms for managing the continuously growing data. 

 

The peer to peer (P2P) [3] is a major architecture for 

distributed clustering. In P2P network each peer (data 

site) has equal functionality. A peer is a facilitator as 

well as worker. A large number of peers are connected 

in an ad hoc way where each peer can join and leave the 

network dynamically. Each peer can communicate with 

others according to the network structure. The P2P dis-

tributed clustering algorithms achieves the locally op-

timized clusters at each peer taking into consideration 

the local data in this peer and necessary information ex-

changed from others. The prototype based partition 

clustering has given satisfactory results for P2P net-

works [4]. It is a commonly used machine learning 

technique for data mining, pattern recognition and sta-

tistical analysis [5].  

 

To achieve the stated clustering objectives in this paper 

we propose a novel hierarchical intuitionistic fuzzy pos-

sibilistic c-means kernel clustering (HIFPCMKC) algo-

rithm over a distributed P2P network. HIFPCMCKC is 

the hierarchical extension of intuitionistic fuzzy possi-

bilistic c-means kernel clustering (IFPCMKC). 

IFPCMKC is the kernel version of intuitionistic fuzzy 

possibilistic c-means (IFPCM) clustering algorithm 

proposed by Chaudhuri [6]. The algorithm searches op-

timized clusters at each peer by collaborating with 

neighboring peers hierarchically till a global consensus 

of all peers is reached. It thus reduces the communica-

tion overhead among peers. The algorithm easily per-

forms high dimensional sparse data clustering using the 

intuitionistic fuzzy degree and tipicality membership 

functions. For high dimensional sparse data the cluster 

structure in the dataset is attributed to a subset of fea-

tures. A weight-attribute-entropy factor is also inducted 

into the clustering process according to the significance 

of different dimensions for cluster identification. This 

helps to achieve the ideal distribution of attribute 

weights consistent with available data. This results in 

optimal clustering so that important features are ex-

tracted for cluster identification. The kernelization of 

the algorithms allows easy handling of non-spherical 

clustering data. The experimental results on both syn-

thetic and real datasets reveal the superiority of the pro-

posed technique. This paper is structured as follows. In 

section 2 some work related to hierarchical clustering 

are given. The mathematical framework of IFPCMKC 

is highlighted in section 3. This is followed by 

HIFPCMKC in the next section. The section 5 discusses 

experiments and results. Finally conclusions are given 

in section 6.  

2. Related Work 

In recent years a considerable amount of work has been 

done towards clustering algorithms for distributed net-

works. The P2P k-means algorithm proposed by Datta 

et al [7] is the first algorithm developed for P2P sys-

tems. Kashef et al [8] presented a distributed coopera-

tive clustering method in a two tier hierarchical P2P 

network. Forero et al [9] proposed a good solution of 

distributed clustering in WSNs by capitalizing on the 
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consensus based formulation and parallel optimization 

tools. Pedrycz et al [10] introduced the concept of col-

laborative fuzzy clustering where the summarized 

knowledge structures in different peers are shared by 

communicating information granules. Coletta et al [11] 

extended Pedrycz’s method to optimize parameters in-

cluding interaction level for all peer pairs and number 

of clusters at each peer. These collaborative approaches 

considered fully connected network structures and with-

in a large dynamic network.       

3. Intuitionistic Fuzzy Possibilistic C-Means Kernel 

Clustering Analysis 

In this section we present the mathematical framework 

of IFPCMKC algorithm. The problem description is 

given followed by the description of the method. 

 

3.1 Problem Description 

 

We consider a distributed network as graph 𝐺 with 𝑃𝑟 

peers where each peer 𝑗 ∈  {1,2, … … , 𝑃𝑟} is a node. 

The edge between two nodes is the communication link. 

Each peer 𝑗 communicates with its intermediate neigh-

bors set 𝑁𝐻𝑗 . The distributed network collects objects 

and performs clustering task. Each peer 𝑗 consists of a 

set of 𝑂𝑏𝑗 objects i.e. Y𝑗 = {y𝑗𝑛|𝑛 ∈ {1,2, … … , 𝑂𝑏𝑗}}. 

Each object y𝑗𝑛 = [y𝑗𝑛1
, y𝑗𝑛2

, … … , y𝑗𝑛𝐷
] has 𝐷 dimen-

sions. The number of clusters 𝐶𝑡 is same for all peers. 

The clustering operation of the distributed network as-

signs each object to cluster 𝑡(𝑡 ∈ {1,2, … … , 𝐶𝑡}) based 

on suitable criterion to quantify similarity among ob-

jects.  

3.2Intuitionistic Fuzzy Possibilistic C-Means Kernel 

Clustering Algorithm 

The IFPCM clustering method for IFSs towards the dis-

tributed network consists of the following objective 

function where distributed dissimilarity measure is 

combined with weight entropy regularization.  

 

𝑚𝑖𝑛⏟
(𝑈,𝑇,𝐶,𝑊)

{𝐽𝑚,𝜂(𝑈, 𝑇, 𝐶, 𝑊) = ∑ ∑ ∑ ∑(𝑢𝑗𝑛𝑘
𝑚 + 𝑡𝑗𝑛𝑘

𝜂
)

𝐶𝑡

𝑘=1

𝑂𝑏𝑗

𝑛=1

𝑃𝑟

𝑗=1

∑ 𝑤𝑗𝑘𝑑𝐷𝑡𝛼
2(𝑍𝑖 , 𝐶𝑘)

𝐷

𝑑=1

𝑃

𝑖=1

+ 𝛽 ∑ ∑ ∑(𝑤𝑗𝑘𝑑)
𝑚𝜂

log(𝑤𝑗𝑘𝑑)
𝑚𝜂

𝐷

𝑑=1

𝐶𝑡

𝑘=1

𝑃𝑟

𝑗=1

} 

subject to      𝑚 > 1, 𝜂 > 1; 𝑐𝑗𝑘𝑑 = 𝑐𝑖𝑘𝑑, 𝑖 ∈ 𝑁𝐻𝑗 

∑ 𝑢𝑗𝑛𝑘

𝐶𝑡

𝑘=1

= 1, 0 ≤ 𝑢𝑗𝑛𝑘 ≤ 1, ∑ 𝑡𝑗𝑛𝑘

𝐶𝑡

𝑘=1

= 1 ∧  0 ≤ 𝑡𝑗𝑛𝑘

≤ 1  ∀ 𝑘                              (1) 

𝑤𝑗𝑘𝑑 = 𝑤𝑖𝑘𝑑 , 𝑖 ∈ 𝑁𝐻𝑗  

∑ 𝑤𝑗𝑘𝑑

𝐷

𝑑=1

= 1, 0 ≤ 𝑤𝑗𝑘𝑑 ≤ 1 

 

Here 𝑍 = {𝑍1, … … . , 𝑍𝑃} are 𝑃 IFSs each associated 

with y𝑗𝑛 objects; 𝐶𝑡  is number of clusters (1 ≤ 𝐶𝑡 ≤

𝑃𝑟) and 𝑉 = {𝑉1, … … . , 𝑉𝐶𝑡} are prototypical IFSs i.e. 

centroid of clusters. In equation (1) 𝑚 is fuzzy factor,  

𝑈 = [𝑢𝑗𝑛𝑘] is membership degree matrix and 𝑢𝑗𝑛𝑘 is 

membership of 𝑛𝑡ℎ object belongs to 𝑘𝑡ℎ cluster in 𝑗𝑡ℎ 

peer; 𝜂 is typicality factor, 𝑇 = [𝑡𝑗𝑛𝑘] is typicality ma-

trix and 𝑡𝑗𝑛𝑘 is tipicality of  𝑛𝑡ℎ object to 𝑘𝑡ℎ cluster in 

𝑗𝑡ℎ peer; 𝐶 = [𝑐𝑗𝑘𝑑] is cluster prototype matrix and 𝑐𝑗𝑘𝑑 

is 𝑑𝑡ℎ dimension of 𝑘𝑡ℎ cluster in 𝑗𝑡ℎ peer; 𝑊 = [𝑤𝑗𝑘𝑑] 

is weight matrix and 𝑤𝑗𝑘𝑑  is 𝑑𝑡ℎ dimension of 𝑘𝑡ℎ clus-

ter in 𝑗𝑡ℎ peer; 𝛽 is positive scalar and 𝐷𝑡𝛼
2(∘)is basic 

distance measure expressed as normalized Euclidean 

distance [1], [2] which is proximity function of IFPCM 

and defined as: 

 

𝐷𝑡𝛼
2(𝑍𝑖 , 𝐶𝑘) =

1

2
∑ ∑ ∑ ∑ (‖𝜇𝑍𝑖

(𝑦𝑗𝑛𝑑) − 𝜇𝐶𝑘
(𝑐𝑗𝑘𝑑)‖

2
𝐷

𝑑=1

𝐶𝑡

𝑘=1

𝑂𝑏𝑗

𝑛=1

𝑃𝑟

𝑗=1

+ ‖𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑) − 𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

+ ‖𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑) − 𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

)         (2) 

 

The first term of objective function in equation (2) con-

trols shape and size of clusters and encourages their ag-

glomeration and the second term is negative entropy of 

weights that regularize optimal distribution of weights. 

Both these quantities can be optimally adjusted through 

positive regularizing and adjustable parameter 𝛽. The 

constraints 𝑐𝑗𝑘𝑑 = 𝑐𝑖𝑘𝑑  and 𝑤𝑗𝑘𝑑 = 𝑤𝑖𝑘𝑑 , 𝑖 ∈ 𝑁𝐻𝑗 en-

sures that local cluster prototypes and weights yield at 

each peer coincide with global ones of all objects. Min-

imizing 𝐽𝑚,𝜂(𝑈, 𝑇, 𝐶, 𝑊) with respect to constraints 

leads to constrained optimization problem where Picard 

iteration is applied to solve the problem through La-

grange multipliers. The matrices 𝑈, 𝑇, 𝐶 and 𝑊 are up-

dated through 𝑢𝑗𝑛𝑘, 𝑡𝑗𝑛𝑘 , 𝑐𝑗𝑘𝑑  and𝑤𝑗𝑘𝑑 . 

 

IFPCM uses weighted squared distance to evaluate sim-

ilarity between objects and prototypes. It is only helpful 

in clustering data with spherical clusters. For data with 

non-spherical clusters, clustering in high dimensional 

feature space with Mercer kernel based mapping is con-

sidered [2], [6]. The essence of kernel method is to per-

form a nonlinear mapping Φ from the original 𝑑-

dimensional space 𝐑𝑑 to high dimensional kernel space 

𝐻𝐷 [6]. The linear classifier in kernel space is used to 

solve the clustering problem which could be highly 

nonlinear in original feature space. The kernel method 

has been widely applied to fuzzy clustering [12]. Con-

sidering the need of exchanging the cluster prototype 

and attribute weight messages in original feature space, 

the objective function is defined as: 

 

𝑚𝑖𝑛⏟
(𝑈,𝑇,𝐶,𝑊)

{𝐽𝑚,𝜂(𝑈, 𝑇, 𝐶, 𝑊) = ∑ ∑ ∑ ∑(𝑢𝑗𝑛𝑘
𝑚 + 𝑡𝑗𝑛𝑘

𝜂
)

𝐶𝑡

𝑘=1

𝑂𝑏𝑗

𝑛=1

𝑃𝑟

𝑗=1

∑ 𝑤𝑗𝑘𝑑

𝐷

𝑑=1

Φ(𝐷𝑡𝛼
2(𝑍𝑖 , 𝐶𝑘))

𝑃

𝑖=1

+ 𝛽 ∑ ∑ ∑(𝑤𝑗𝑘𝑑)
𝑚𝜂

log(𝑤𝑗𝑘𝑑)
𝑚𝜂

𝐷

𝑑=1

𝐶𝑡

𝑘=1

𝑃𝑟

𝑗=1

} 

subject to      𝑚 > 1, 𝜂 > 1; 𝑐𝑗𝑘𝑑 = 𝑐𝑖𝑘𝑑 , 𝑖 ∈ 𝑁𝐻𝑗  

∑ 𝑢𝑗𝑛𝑘

𝐶𝑡

𝑘=1

= 1, 0 ≤ 𝑢𝑗𝑛𝑘 ≤ 1, ∑ 𝑡𝑗𝑛𝑘

𝐶𝑡

𝑘=1

= 1 ∧  0 ≤ 𝑡𝑗𝑛𝑘

≤ 1  ∀ 𝑘                        (3) 

𝑤𝑗𝑘𝑑 = 𝑤𝑖𝑘𝑑 , 𝑖 ∈ 𝑁𝐻𝑗  

∑ 𝑤𝑗𝑘𝑑

𝐷

𝑑=1

= 1, 0 ≤ 𝑤𝑗𝑘𝑑 ≤ 1 
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In equation (3) 𝑈 = [𝑢𝑗𝑛𝑘], 𝑇 = [𝑡𝑗𝑛𝑘], 𝐶 = [𝑐𝑗𝑘𝑑] and 

𝑊 =  [𝑤𝑗𝑘𝑑] are membership degree matrix, typicality 

degree matrix, cluster prototype matrix and attribute 

weight matrix respectively. The parameter Φ is nonlin-

ear mapping from original feature space to kernel space, 

𝑚is fuzzy coefficient,  is typicality coefficient and  is 

positive scalar. In this method the dot products in kernel 

space is expressed as Mercer kernel 𝐾 (𝑎, 𝑏)  =
 Φ(𝑎) Φ(𝑏), 𝑎, 𝑏  𝑹𝒅. Here Gaussian kernel is consid-

ered as the representative Mercer kernel so that: 

 

𝐾(a, b) = exp (
−‖a − b‖2

𝜎2
) , 𝜎2 > 0      (4)   

 

Φ(𝐷𝑡𝛼
2(𝑍𝑖 , 𝐶𝑘)) = 3 − exp [(

−‖𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑) − 𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
)

+ (
−‖𝜈𝑍𝑖

(𝑦𝑗𝑛𝑑) − 𝜈𝐶𝑘
(𝑐𝑗𝑘𝑑)‖

2

𝜎2
)

+ (
−‖𝜋𝑍𝑖

(𝑦𝑗𝑛𝑑) − 𝜋𝐶𝑘
(𝑐𝑗𝑘𝑑)‖

2

𝜎2
)]         (5) 

 

The Picard iteration is applied to solve the optimization 

problem in equation (3). The matrices 𝑈, 𝑇, 𝐶 and 𝑊 are 

updated corresponding to the equations (6) – (11) re-

spectively. The equations (6), (7) and (8) are given in 

Appendix. The equations (6) and (7) are valid for 1 ≤
𝑗 ≤ 𝑃𝑟, 1 ≤ 𝑛 ≤ 𝑂𝑏𝑗 , 1 ≤ 𝑘 ≤ 𝐶𝑡. The equation (8) is 

valid for 1 ≤ 𝑗 ≤ 𝑃𝑟, 1 ≤ 𝑘 ≤ 𝐶𝑡, 1 ≤ 𝑑 ≤ 𝐷.  

 

𝑝𝑗𝑖𝑘𝑑 = 𝑝𝑗𝑖𝑘𝑑 + 𝜗1(𝑐𝑗𝑘𝑑 − 𝑐𝑖𝑘𝑑)         (9) 

 

The equation (9) is valid for 1 ≤ 𝑗 ≤ 𝑃𝑟, 1 ≤ 𝑘 ≤
𝐶𝑡, 1 ≤ 𝑑 ≤ 𝐷, 𝑖 ∈ 𝑁𝐻𝑗.  

 

𝑤𝑗𝑘𝑑 =
exp (−𝛽−1 ∑ (𝑢𝑗𝑛𝑘

𝑚 + 𝑡𝑗𝑛𝑘
𝜂 )Φ(𝐷𝑡𝛼

2(𝑍𝑖 , 𝐶𝑘)) − 2𝛽−1 ∑ 𝑞𝑗𝑖𝑘𝑑𝑖∈𝑁𝐻𝑗

𝑂𝑏𝑗

𝑛=1 )

∑ exp (−𝛽−1 ∑ (𝑢𝑗𝑛𝑘
𝑚 + 𝑡𝑗𝑛𝑘

𝜂
)Φ(𝐷𝑡𝛼

2(𝑍𝑖, 𝐶𝑘)) − 2𝛽−1 ∑ 𝑞𝑗𝑖𝑘𝑣𝑖∈𝑁𝐻𝑗

𝑂𝑏𝑗

𝑛=1 )𝐷
𝑣=1

        (10) 

 

The equation (10) is valid for 1 ≤ 𝑗 ≤ 𝑃𝑟, 1 ≤ 𝑘 ≤
𝐶𝑡, 1 ≤ 𝑑 ≤ 𝐷.  

 

𝑞𝑗𝑖𝑘𝑑 = 𝑞𝑗𝑖𝑘𝑑 + 𝜗2(𝑤𝑗𝑘𝑑 − 𝑤𝑖𝑘𝑑)          (11) 

 

The equation (11) is valid for 1 ≤ 𝑗 ≤ 𝑃𝑟, 1 ≤ 𝑘 ≤

𝐶𝑡, 1 ≤ 𝑑 ≤ 𝐷, 𝑖 ∈ 𝑁𝐻𝑗. Here, 𝑃 = [𝑝𝑗𝑖𝑘𝑑] and 𝑄 =

[𝑞𝑗𝑖𝑘𝑑] are two Lagrange multiplier matrices and 𝜗1, 𝜗2 

are positive scalars. 

4. Hierarchical Intuitionistic Fuzzy Possibilistic C-

Means Kernel Clustering Analysis 

Based on IFPCMKC, HIFPCMKC is formulated in this 

section. The hierarchical version of IFPCMCKC is effi-

cient both in terms of the number of similarities used as 

well as the running time [13]. To recover any single hi-

erarchy split, IFPCMKC is run on a small subset of the 

data to compute a seed clustering of the dataset. Using 

the initial clustering, each remaining object is placed 

into the seed cluster for which it is most similar on av-

erage. This results in IFPCMKC of the entire dataset, 

using only similarities to the objects in the small subset. 

By recursively applying this procedure to each cluster, 

HIFPCMKC is obtained using a small fraction of the 

similarities. In this recursive phase, we do not observe 

any measurements between clusters at the previous split 

i.e. to partition cluster 𝐶𝑡𝑗 we only observe similarities 

between objects in 𝐶𝑡𝑗. This results in a robust version 

of HIFPCMKC that aligns its measurements𝑚𝑡 to re-

solve the higher resolution cluster structure. The pseudo 

code for HIFPCMKC is shown in Algorithm 1.  

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: HIFPCMKC (IFPCMKC, 𝑚𝑡, {𝑦𝑖}
𝑖=1

𝑂𝑏𝑗
, 𝐶𝑡𝑗) 

𝐢𝐟 𝑂𝑏𝑗 < 𝑚𝑡 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 {𝑦𝑖}
𝑖=1

𝑂𝑏𝑗
 

Select𝑊 ⊆ {𝑦𝑖}𝑖=1

𝑂𝑏𝑗
of size w uniformly at random 

𝐶1
′, … … , 𝐶𝐶𝑡𝑗

′ ← 𝐼𝐹𝑃𝐶𝑀𝐾𝐶(𝑊, 𝐶𝑡𝑗) 

Set𝐶1 ← 𝐶1
′, … … , 𝐶𝑂𝑏𝑗

← 𝐶𝑂𝑏𝑗

′  

𝐟𝐨𝐫 𝑦𝑖 ∈ {𝑦𝑖}
𝑖=1

𝑂𝑏𝑗
 \𝑊 𝐝𝐨 

∀𝑘 ∈ [𝐶𝑡𝑗], 𝛼𝑘 ←
1

|𝐶𝑗
′|

∑ 𝑆(𝑦
𝑖
, 𝑦

𝑠
)

𝑦𝑠∈𝐶𝑗
′

 

        𝐶argmax
𝑘 ∈[𝐶𝑡𝑗]

𝛼𝑘 ← 𝐶argmax
𝑘 ∈[𝐶𝑡𝑗]

𝛼𝑖 ∪ {𝑦𝑖} 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐨𝐮𝐭𝐩𝐮𝐭{𝐶𝑘, HIFPCMKC(IFPCMKC, 𝑚𝑡, 𝐶𝑘 , 𝐶𝑡𝑗)}
𝑗=1

𝐶𝑡𝑗
 

 

HIFPCMKC is characterized in terms of probability of 

success in recovering the true hierarchy𝐶𝑡∗, measure-

ment and runtime complexity. Some mild restrictions 

are placed on the similarity function 𝑆 such that the 

aforementioned specifications work. This ensures that 

similarities agree with the hierarchy up to some random 

noise: 

 

𝐒𝟏 For each 𝑦𝑖 ∈ 𝐶𝑡𝑗 ∈ 𝐶𝑡∗ and 𝑗′ ≠ 𝑗: 

min
𝑦𝑝∈𝐶𝑡𝑗

𝔼𝕩𝕡[𝑆(𝑦𝑖 , 𝑦𝑝)] − max
𝑦𝑝∈𝐶𝑡𝑗

′
𝔼𝕩𝕡[𝑆(𝑦𝑖 , 𝑦𝑝)] ≥ 𝛾 > 0 

 

Here expectations are taken with respect to the possible 

noise on 𝑆. 

 

𝐒𝟐 For each object𝑦𝑖 ∈ 𝐶𝑡𝑗, a set of 𝑉𝑗 objects of size 𝑣𝑗 

drawn uniformly from cluster 𝐶𝑡𝑗 satisfies: 

ℙ𝕣 ( min
𝑦𝑝∈𝐶𝑡𝑗

𝔼𝕩𝕡[𝑆(𝑦𝑖 , 𝑦𝑝)] − ∑
𝑆(𝑦𝑖 , 𝑦𝑝)

𝑣𝑗
𝑦𝑝∈𝑉𝑗

> 𝜖) ≤ 2𝑒
{

−2𝑣𝑗𝜖2

𝜎2 }
 

 

Here 𝜎2 ≥ 0 parameterizes the noise on the similarity 

function 𝑆. Similarly a set 𝑉𝑗′  of size 𝑣𝑗′  drawn uni-

formly from cluster 𝐶𝑡𝑗′ with 𝑗 ≠ 𝑗 satisfies: 

ℙ𝕣 ( ∑
𝑆(𝑦𝑖 , 𝑦𝑝)

𝑣𝑗′
𝑦𝑝∈𝑉𝑗′

− max
𝑦𝑝∈𝐶𝑗′

𝔼𝕩𝕡[𝑆(𝑦𝑖 , 𝑦𝑝)] > 𝜖) ≤ 2𝑒
{

−2𝑣
𝑗′𝜖2

𝜎2 }

 

 

The condition 𝐒𝟏 states that the similarity from an ob-

ject 𝑦𝑖  to its cluster should in expectation are larger than 

the similarity from that object to any other cluster. This 

is related to tight clustering condition [13] and less 

stringent than earlier results which assume that within-
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and-between-cluster similarities are constant and 

bounded in expectation [14]. The condition 𝐒𝟐 enforces 

that within-and-between-cluster similarities concentrate 

away from each other. This condition is satisfied if sim-

ilarities are constant in expectation, perturbed with any 

subgaussian noise [14], [15]. 

 

The algorithm has certain shortcomings that are unde-

sirable for practical applications. Specifically if 𝐶𝑡is 

known and constant across splits in the hierarchy and 

the balance condition are both assumptions that are 

likely to be violated in any practical situation. This can 

be resolved by fine tuning the algorithm with several 

heuristics. The eigengap heuristic is employed in which 

𝐶𝑡 is chosen so that the gap in eigenvalues of the La-

placian is large. All the subsampled objects are discard-

ed with low degree when restricted to the sample with 

the hope of removing underrepresented clusters from 

the sample. In averaging phase, if an object is not high-

ly similar to any cluster represented in the sample a new 

cluster for this object is created. It is expected these two 

heuristics will help in recovering small clusters.  

5. Experiments and Results 

In this section we evaluate the performance of 

IFPCMKC and HIFPCMKC algorithms with respect to 

several FCM type clustering algorithms: (a) centralized 

clustering methods viz. FCM [2] and weighted entropy 

fuzzy c-means (WEFCM)[16] (b) kernel based cluster-

ing method viz. kernel based fuzzy c-means and fuzzy 

clustering (KFCM-F)[17] (c) parallel and distributed 

clustering methods viz. parallel fuzzy c-

means(PFCM)[18], soft distributed k-means (Soft-

DKM)[19] and kernel based collaborative distributed 

fuzzy c-means (KCDFCM)[20]. The algorithms are im-

plemented in MATLAB with 3.6 GHz CPU and 6 GB 

RAM. The Table 1 (given in Appendix) shows the pa-

rameter of the clustering algorithms used for experi-

ments on the synthetic and real datasets. 

 

Each algorithm is executed on each dataset for 200 

times. The cluster prototypes are randomly initialized at 

each time. As the range of values of raw data varies 

widely in clustering algorithms, the objective functions 

work properly with normalization only. In this work 

simple normalization method is adopted which rescales 

the features in the range [0, 1] to make them independ-

ent of each other. For comparative analysis three kinds 

of performance metrics are applied in the experiments. 

They are: 

 

(a) Classification Rate (CR): The classification rate is a 

measure that used to determine how well the cluster-

ing algorithm performs on the given dataset with a 

known cluster structure [2]. It is expressed in terms 

of percentage. Better results are obtained from larg-

er classification rate values. For 200 executions the 

average classification rate is used in experiments. 

 

(b) Normalized Mutual Information (NMI): The nor-

malized mutual information provides a symmetric 

measure to quantify the statistical information 

shared between two cluster distributions [2]. Better 

results are obtained from larger normalized mutual 

information values. For 200 executions the average 

normalized mutual information is used in experi-

ments.  

 

(c) Transmission Energy Consumption (TEC): It de-

notes the energy consumption level of each sensor 

for data transmission in wireless sensor networks 

and gives an indication of the network state [20]. 

The average transmission energy consumption and 

the maximum transmission energy consumption are 

calculated 200 times. Better results are obtained 

from smaller transmission energy consumption indi-

ces. 

 

5.1 Synthetic Datasets 

 

The wireless sensor network based synthetic datasets 

are used for experiments. The dataset is generated 

through sensor nodes which are randomly distributed 

over 200 m × 200 m region. The communication range 

of each sensor is set to 60 m approximately. Each sen-

sor exchanges information with the neighbors in com-

munication range. The wireless sensor network is de-

ployed to collect the monitoring data and perform clus-

tering. It is assumed that each sensor node collects 180 

objects belonging to 3 clusters. Each object has 6 at-

tributes. Three synthetic datasets are created in the 

wireless sensor network for the experiments, where S1 

collects 4500 data rows using 30 sensor nodes, S2 col-

lects 7500 data rows using 50 sensor nodes and S3 col-

lects 10500 data rows with 70 sensor nodes. The dataset 

generation algorithm is summarized in [20]. The Table 

2 (given in Appendix) shows the clustering results of 

different algorithms on three wireless sensor network 

based synthetic datasets S1, S2 and S3. As the results 

from different datasets are similar, dataset S2 is consid-

ered for analysis. We observe that the encapsulation of 

attribute-weight-entropy regularization in the proposed 

algorithm improves the clustering performance in terms 

of ACR and ANMI. In Table 2 WEFCM, KCDFCM 

and HIFPCMKC show better ACR and ANMI than rest 

of the algorithms. For the attribute-weight clustering 

algorithms viz. WEFCM, KCDFCM and HIFPCMKC, 

the performance in terms of ACR and ANMI parame-

ters are very close. HIFPCMKC need less iterations to 

reach convergence than KCDFCM. The information 

exchange between different sensors extends the conver-

gence time of KCDFCM. HIFPCMKC performs clus-

tering hierarchically and shortens the convergence time. 

The Table 3 (given in Appendix) shows the final as-

signments of the attribute-weight clustering algorithms 

viz. WEFCM, KCDFCM and HIFPCMKC. The attrib-

ute-1 is more important and contributes much more 

than other attributes when differing cluster-1 from clus-

ter-2 and cluster-3. So higher weight is assigned to at-

tribute-1 in cluster-1 for each attribute-weight cluster-

ing algorithm. A similar situation happens for attribute-

2 and attribute-3. These evidences support the efficien-

cy of the attribute-weight-entropy regularization tech-
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nique for clustering. The three distributed clustering al-

gorithms viz. Soft-DKM, KCDFCM and HIFPCMKC 

have less ATEC than other algorithms. This is because 

distributed clustering algorithms exchange only a small 

data quantity like cluster prototypes and attribute 

weights which is not so for other algorithms. Moreover 

the distributed algorithms yield much more balanced 

transmission energy consumptions among sensors 

which leads to longer network lifetime. These aspects 

prove the superiority of HIFPCMKC for clustering in 

distributed energy efficient network applications com-

pared with other clustering algorithms. The kernel 

based algorithms do not provide significant improve-

ments in ACR and ANMI as compared with other ap-

proaches. This is explained by the spherical shapes of 

the generated synthetic data. For these datasets, the ca-

pability of kernel based clustering in separating non-

spherical data has not shown advantages.  

 

From the above discussion it is obvious that the pro-

posed HIFPCMKC algorithm is best suited in terms of 

technical constraints such as data size volume as well as 

privacy and security problems. HIFPCMKC algorithm 

is also preferred for non-spherical data clustering as il-

lustrated by experiments in the following section. 

 

5.2 Synthetic Datasets (Non-spherical) 

 

Three synthetic datasets with non-spherical shaped 

clusters viz. fuzzy “X”, parabolic and ring are consid-

ered [21], [22]. Each sensor node collects objects be-

longing to 2 clusters and each object has 2 attributes. 

The fuzzy “X” has 640 data rows using 8 sensor nodes. 

The parabolic has 960 data rows using 8 sensor nodes. 

The ring has 750 data rows using 5 sensor nodes. As the 

number of peers is relatively small, the simple network 

structure shown in Figure 1 is applied on the datasets. 

Each peer exchanges messages only with its nearest 

neighbors. 

 

 
Figure 1: Simple network architecture  

 

The Table 4 (given in Appendix) shows the clustering 

results of different algorithms on three synthetic da-

tasets. For most of the synthetic datasets the kernel 

based clustering algorithms viz. KFCM-F, KCDFCM 

and HIFPCMKC give excellent clustering results in 

terms of ACR and ANMI. HIFPCMKC algorithm 

achieves 100 % in ACR on the ring dataset. These re-

sults verify the efficiency of HIFPCMKC in compari-

son to other algorithms for non-spherical shaped data 

clustering.  

 

5.3 UCI Machine Learning Datasets 

 

Three real datasets from UCI repository [23] viz. iris, 

glass and ionosphere are applied on the clustering algo-

rithms. The iris has 150 data rows using 3 sensor nodes 

with each sensor node collecting objects belonging to 3 

clusters and each object has 4 attributes. The glass has 

214 data rows using 3 sensor nodes with each sensor 

node collecting objects belonging to 6 clusters and each 

object has 9 attributes. The ionosphere has 351 data 

rows using 4 sensor nodes with each sensor node col-

lecting objects belonging to 2 clusters and each object 

has 33 attributes. The simple network structure shown 

in Figure 1 is applied. The Table 5 (given in Appendix) 

shows the clustering results of the algorithms. It is evi-

dent from Table 5 that HIFPCMKC shows superior per-

formance in terms of ACR and ANMI. The best case is 

for the iris dataset. The consideration of attribute weight 

assignment highlights good clustering results in ACR 

and ANMI. This performance is as good as the best 

case which is obtained by the centralized attribute-

weight algorithm viz. WEFCM. It again proves the effi-

ciency of HIFPCMKC algorithm.  

6. Conclusion  

In this research work we propose a hierarchical intui-

tionistic fuzzy possibilistic clustering algorithm viz. 

HIFPCMKC for distributed P2P networks. The central-

ized clustering problem is solved in a distributed mode 

at each peer with neighboring peers. The clustering per-

formance is improved by the intuitionistic fuzzy degree 

and typicality membership functions and weight-

attribute-entropy factor. The intuitionistic membership 

intervals capture the data semantics more appropriately 

through its degrees of membership and non-

membership. The choice of the membership and non-

membership boundary also has interesting implications 

on modelling relationship between vague data existing 

in the distributed network. HIFPCMKC has superior 

clustering performance than the centralized clustering 

approaches. It also reduces and balances the communi-

cation overhead among peers. Based on the attribute-

weight-entropy regularization technique important fea-

tures are extracted through the optimal distribution of 

attribute weight. The kernelization of the algorithm sat-

isfies the requirements of non-spherical shaped data 

clusters. The experiments on several synthetic and real 

datasets shows that HIFPCMKC yields comparative 

better performance with respect to other clustering 

methods. The proposed algorithm for distributed P2P 

network can be generalized for various system control 

and distributed network applications. The objective 

function of algorithm can further be optimized through 

metaheuristics and hybrid optimization approaches 

which will improve the clustering performance.  
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Appendix  

[Equations (6), (7) and (8); Tables 1–5] 

 

𝑢𝑗𝑛𝑘 =
1

∑ (
∑ 𝑤𝑗𝑘𝑑(

1
2

∑ ∑ ∑ ∑ (‖Φ(𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑)−Φ(𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)))‖

2

+‖Φ(𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

+‖Φ(𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

)𝐷
𝑑=1

𝐶𝑡
𝑘=1

𝑂𝑏𝑗
𝑛=1

𝑃𝑟
𝑗=1 )𝐷

𝑑=1

∑ 𝑤𝑗ℎ𝑚
𝐷
𝑑=1 (

1
2

∑ ∑ ∑ ∑ (‖Φ(𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑)−Φ(𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)))‖

2

+‖Φ(𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

+‖Φ(𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

)𝐷
𝑑=1

𝐶𝑡
𝑘=1

𝑂𝑏𝑗
𝑛=1

𝑃𝑟
𝑗=1 )

)

2 (𝑚−1)⁄

𝐶𝑡
ℎ=1

       (6) 

 

 

𝑡𝑗𝑛𝑘 =
1

∑ (
∑ 𝑤𝑗𝑘𝑑(

1
2

∑ ∑ ∑ ∑ (‖Φ(𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑)−Φ(𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)))‖

2

+‖Φ(𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

+‖Φ(𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

)𝐷
𝑑=1

𝐶𝑡
𝑘=1

𝑂𝑏𝑗
𝑛=1

𝑃𝑟
𝑗=1 )𝐷

𝑑=1

∑ 𝑤𝑗ℎ𝑚
𝐷
𝑑=1 (

1
2

∑ ∑ ∑ ∑ (‖Φ(𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑)−Φ(𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)))‖

2

+‖Φ(𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

+‖Φ(𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑))−Φ(𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑))‖
2

)𝐷
𝑑=1

𝐶𝑡
𝑘=1

𝑂𝑏𝑗
𝑛=1

𝑃𝑟
𝑗=1 )

)

2 (𝜂−1)⁄

𝐶𝑡
ℎ=1

       (7) 

 

 

𝑐𝑗𝑘𝑑 =

∑ (𝑢𝑗𝑛𝑘
𝑚 + 𝑡𝑗𝑛𝑘

𝜂 )𝑤𝑗𝑘𝑑 exp [(
−‖𝜇𝑍𝑖

(𝑦𝑗𝑛𝑑)−𝜇𝐶𝑘
(𝑐𝑗𝑘𝑑)‖

2

𝜎2
) + (

−‖𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑)−𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
) + (

−‖𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑)−𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
)] 𝑦𝑗𝑛𝑑 −

𝜎2

2
∑ 𝑝𝑗𝑖𝑘𝑑𝑖∈𝑁𝐻𝑗

𝑂𝑏𝑗

𝑛=1

∑ (𝑢𝑗𝑛𝑘
𝑚 + 𝑡

𝑗𝑛𝑘

𝜂
)

𝑂𝑏𝑗

𝑛=1
𝑤𝑗𝑘𝑑 exp [(

−‖𝜇𝑍𝑖
(𝑦𝑗𝑛𝑑)−𝜇𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
) + (

−‖𝜈𝑍𝑖
(𝑦𝑗𝑛𝑑)−𝜈𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
) + (

−‖𝜋𝑍𝑖
(𝑦𝑗𝑛𝑑)−𝜋𝐶𝑘

(𝑐𝑗𝑘𝑑)‖
2

𝜎2
)]

        (8) 

 

 

Algorithm Parameters 

FCM  = 2 

WEFCM  = 2;  varied from 0.01 to 1 

KFCM-F  = 2; 2 varied from 2-10 to 25 

PFCM  = 2 

Soft-DKM = 2;  varied from 10-8 to 1 

KCDFCM  = 2; 2 varied from 2-10 to 25;  var-

ied from 0.01 to 1; 1and 2varied 

from 10-8 to 1  

HIFPCMKC m = 2;  = 2;  varied from 0.01 to 1; 

1 and 2 varied from 10-8 to 1 

 

Table 1: The parameters of FCM-type clustering algorithms 

 

Datasets FCM WEFCM KFCM-F PFCM Soft-DKM KCDFCM HIFPCMKC 

 

S1 

90.31 97.23 91.63 90.33 88.73 97.63 98.63+ 

0.7103 0.8863 0.7193 0.7103 0.7063 0.8912 0.9013+ 

4.3506 4.3506 4.3506 2.7517 0.7093+ 2.2773 2.2763 

 

S2 

90.62 97.16+ 91.72 90.63 89.70 97.00 98.33 

0.7203 0.8883+ 0.7269 0.7203 0.7198 0.8842 0.8942 

4.1833 4.1836 4.1836 2.9069 1.0183+ 3.0603 3.0303 

 

S3 

90.33 97.03+ 91.66 90.33 90.33 96.83 98.63 

0.7107 0.8879+ 0.7196 0.7107 0.7107 0.8843 0.8943 

4.3750 4.3750 4.3750 2.7393 1.1003+ 2.7103 2.7003 
+The best performance among the group 

Table 2: The results of clustering algorithms on wireless sensor network based synthetic datasets in terms of ACR, 

ANMI and ATEC 
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WEFCM 

 Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 

Cluster1 0.4308 0.1213 0.0655 0.1482 0.1379 0.0963 

Cluster2 0.1096 0.3309 0.0953 0.1753 0.1575 0.1316 

Cluster3 0.0859 0.1273 0.3723 0.1477 0.1406 0.1263 

KCDFCM 

 Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 

Cluster1 0.4009 0.1279 0.0788 0.1463 0.1413 0.1049 

Cluster2 0.0723 0.3370 0.1073 0.2027 0.1153 0.1656 

Cluster3 0.0797 0.1386 0.3503 0.1818 0.1247 0.1249 

HIFPCMKC 

 Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 

Cluster1 0.3933 0.1283 0.0869 0.1433 0.1513 0.1096 

Cluster2 0.0623 0.3393 0.1096 0.2323 0.0933 0.1933 

Cluster3 0.0696 0.1396 0.3303 0.2326 0.1033 0.1233 

 

Table 3: Assignments of attribute weight obtained by attribute-weight clustering algorithms on the wireless sensor 

network based synthetic dataset  

 

Datasets FCM WEFCM KFCM-F PFCM Soft-DKM KCDFCM HIFPCMKC 

Fuzzy “X” 
50.16 50.90 65.67 50.16 50.12 67.48 69.43+ 

0.0008 0.0033 0.1487 0.0008 0.0003 0.1923 0.2023+ 

Parabolic 
88.13 88.43 88.53 88.13 88.10 88.73 89.63+ 

0.4766 0.4843 0.4878 0.4766 0.4743 0.4943 0.4986+ 

Ring 
50.13 52.09 99.59 50.13 50.13 100.00 100.30+ 

0.0013 0.0023 0.9653 0.0013 0.0013 1.00 1.30+ 

+The best performance among the group 

Table 4: The results of clustering algorithms on three synthetic datasets in terms of ACR and ANMI 

 

 

Datasets FCM WEFCM KFCM-F PFCM Soft-DKM KCDFCM HIFPCMKC 

Iris 
89.33 96.66+ 92.03 89.33 87.33 96.23 98.23 

0.7433 0.8801+ 0.7773 0.7433 0.7293 0.8793 0.8993 

Glass 
42.08 53.33 50.83 42.03 40.53 55.73 56.93+ 

0.2973 0.4263 0.3333 0.2973 0.2843 0.4593 0.4633+ 

Ionosphere 
70.93 76.53 73.36 70.93 67.73 78.63 79.33+ 

0.1299 0.2023 0.1823 0.1299 0.1033 0.2353 0.2633+ 

+The best performance among the group 

Table 5: The results of clustering algorithms on the UCI machine learning datasets in terms of ACR and ANMI 
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