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Abstract

The morphological gradient is a widely used edge
detector for grey-level images in many applications.
In this paper, we generalize the definition of the
morphological gradient of the fuzzy mathematical
morphology based on t-norms. Concretely, instead
of defining the morphological gradient from the
usual definitions of fuzzy dilation and erosion, where
the minimum and the maximum are used, we define
it from generalized fuzzy dilation and erosion, where
we consider a general t-norm and t-conorm, respec-
tively. Once the generalized morphological gradi-
ent is defined, we determine which t-norm and t-
conorm have to be considered in order to obtain a
high performance edge detector. Some t-norms and
their dual t-conorms are taken into account and the
experimental results conclude that the t-norms of
the Schweizer-Sklar family generate a morphologi-
cal gradient which outperforms notably the classical
morphological gradient.

Keywords: Fuzzy mathematical morphology, edge
detection, t-norms, fuzzy implications, hysteresis.

1. Introduction

Edge detection is a fundamental low level operation
in image processing which is essential for develop-
ing high-level operations related with fields such as
computer vision. Its performance is crucial for the
final results of image processing methods. In re-
cent decades, a great number of edge detection al-
gorithms has been developed. There are different
approaches from the classical ones [1] based on the
use of a set of convolution masks, to the new tech-
niques based on fuzzy sets and their extensions [2].
Among the fuzzy approaches, the fuzzy mathe-

matical morphology which generalizes the binary
morphology [3] using concepts and techniques of the
theory of fuzzy sets [4, 5] can be highlighted. This
theory allows a better processing and a represen-
tation with higher flexibility of the uncertainly and
the ambiguity present in each level in an image. The
morphological operators are the basic tools of this
theory. A morphological operator P converts an in-
put image A in a new image P (A,B) using a struc-
turing element B. The four basic morphological op-
erations are dilation, erosion, closing and opening
and because the grey level images can be viewed

as fuzzy sets (see [5]), morphological fuzzy oper-
ators can be defined using fuzzy tools. Therefore,
conjunctions (continuous t-norms and uninorms, see
[6]) and their residuals implications have been used.
Recently, a fuzzy mathematical morphology based
on discrete t-norms has been introduced with good
results in edge detection [7].

The fuzzy mathematical morphology based on t-
norms in [0, 1] was studied by De Baets in [8] and [9].
In these works, a general framework was established
using conjunctions and implications to define the
morphological operators. Once analysing the prop-
erties that t-norms and implications must satisfy in
order to obtain a fuzzy mathematical morphology
with desirable algebraic properties, it was concluded
(see [5]) that the pair given by the Łukasiewicz t-
norm TLK and its residual implication is the repre-
sentative of the unique family of t-norms, the nilpo-
tent ones, which satisfy all the properties. Thus,
the previous pair (TLK, ILK) is often used to imple-
ment an edge detector based on this morphology.
This edge detector is known as the morphological
gradient, defined as the difference between fuzzy di-
lation and fuzzy erosion. In fact, the fuzzy mathe-
matical morphology based on (TLK, ILK) is closely
related to the umbra approach towards grey-level
mathematical morphology as shown by Sussner and
Valle in [10]. Nevertheless, there are more t-norms
and implications that can be used to define a mor-
phological gradient in edge detection in the fuzzy
mathematical morphology framework with notable
improvements in its performance [11] since not all
the algebraic properties are necessary for edge de-
tection. Especially, the configuration (TnM, IKD),
where TnM is the nilpotent minimum and IKD is the
Kleene-Dienes implication, has shown better results
than the configuration (TLK, ILK).

In this work, a generalization of the fuzzy erosion
and dilation is proposed to define a morphological
gradient with a better performance than the classi-
cal morphological gradient. In this way, the erosion
and dilation of fuzzy mathematical morphology can
be generalized by changing the minimum and the
maximum in their expressions. The maximum can
be considered as a particular case of a t-conorm and
the minimum, as a particular case of a t-norm and
therefore, they can be changed by a general operator
of these families of aggregation functions. The def-
inition of these generalized operators will be intro-
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duced, changing the maximum by any t-conorm and
the minimum, by any t-norm. Because the max-
imum is the smallest t-conorm and the minimum,
the largest t-norm, the new morphological gradient
should be able to detect more edges in the image.
Therefore, the next step will be to compare the re-
sults obtained by the two approaches, both from the
visual and the quantitative point of view.
To perform a comparison of the results, several

performance measures will be used, like the measure
proposed by Pratt FoM (see Chapter 15 of [1]), the
ρ-coefficient [12] and the F -measure [13]. To use
these measures, the edge image must be binary and
the width of the edges has to be of one pixel, consis-
tent with the restrictions imposed by Canny in [14].
Therefore, once the fuzzy edge image is obtained,
a thinning algorithm as Non-Maxima Suppression
(NMS) introduced by Canny, will be implemented.
After that, the non-supervised algorithm of hystere-
sis based on the determination of the “instability
zone” in the image histogram, proposed in [15], will
be performed to binarize the image.
The paper is organized as follows. In Section 2,

the definitions of the classical morphological oper-
ators and the fuzzy operators that define them are
introduced. In Section 3, the generalized dilation
and erosion, as well as the morphological gradient
derived from them are defined. In the next section,
the comparison of both edge detectors is performed,
comparing the results results both from the visual
and the quantitative point of view. Finally, some
conclusions and future work are exposed.

2. Preliminaries

Fuzzy morphological operators are defined from
fuzzy operators such as t-norms and implications.
For more details on this connectives, see [16] and
[17], respectively.

Definition 1. A t-norm T (t-conorm S) is a com-
mutative, associative and increasing function from
[0, 1]2 to [0, 1] with 1 (0) as neutral element.

Let us recall that t-norms and t-conorms are dual
operators. Given a t-norm T , its dual t-conorm T ∗

is defined as T ∗(x, y) = 1 − T (1 − x, 1 − y) for all
x, y ∈ [0, 1] and vice-versa. The t-norms that we will
use throughout the paper have been listed in Table
1. Let us note that the t-norms T SS

λ belong to the
parametric family of Schweizer-Sklar and are strict
if λ ∈ [0,+∞) and nilpotent if λ 6∈ [0,+∞). The
t-conorms considered in this work are their duals.
Moreover, for any t-norm T and t-conorm S it is
satisfied that T ≤ TM and SM ≤ S, with SM = TM

∗.
The associativity of a t-norm T (t-conorm S) al-

lows us to extend it to an n-ary operator using
recursion, defining for each n-tuple (x1, . . . , xn) ∈

[0, 1]n:
n

T
i=1

xi = T

(
n−1
T
i=1

xi, xn

)
= T (x1, x2, . . . , xn)(

n

S
i=1

xi = S

(
n−1
S
i=1

xi, xn

)
= S(x1, x2, . . . , xn)

)
.

Definition 2. A binary operator I : [0, 1]2 → [0, 1]
is a fuzzy implication if it is decreasing in the first
variable, increasing in the second one and it satisfies
I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.
From now on, we will follow this notation: I will

denote a fuzzy implication; T a t-norm; A a grey-
level image and B a grey-level structuring element,
both modelled as mappings A : dA → [0, 1] and
B : dB → [0, 1] where dA, dB ⊆ Z2 both finite and
Tv(A) will denote the translation of a fuzzy set A
by v ∈ Z2 defined as Tv(A)(x) = A(x− v).
Definition 3. The fuzzy dilation DT (A,B) and the
fuzzy erosion EI(A,B) of A by B are the grey-level
images defined as

DT (A,B)(y) = max
x∈dA∩Ty(dB)

T (B(x− y), A(x)),

EI(A,B)(y) = min
x∈dA∩Ty(dB)

I(B(x− y), A(x)).

With some few properties, the following propo-
sition ensures the extensivity of the fuzzy dilation
and the antiextensivity of the fuzzy erosion.
Proposition 1. Let T be a t-norm, I a fuzzy im-
plication that satisfies (NP), that is, I(1, y) = y for
all y ∈ [0, 1], and B a grey-level structuring element
such that B(0) = 1. Then it is satisfied that:

EI(A,B) ⊆ A ⊆ DT (A,B).

Therefore, as in the classical morphology, the dif-
ference between the fuzzy dilation and the fuzzy ero-
sion in a grey-level image, δT,I(A,B) = DT (A,B) \
EI(A,B), called the fuzzy morphological gradient,
where \ denotes the difference between two fuzzy
sets, can be used in edge detection.

3. Generalization of the Morphological
Gradient

In this section, the main goal will be to general-
ize the definitions of the fuzzy dilation and erosion
given in Definition 3.
Definition 4. Let Ŝ be a t-conorm and T̂ be a
t-norm. Let A and B be grey level images. For
every y ∈ dA, consider the finite set with cardinal
ny given by Ky = dA ∩ Ty(dB) = {x1, . . . , xny}.
The generalized fuzzy dilation D̂Ŝ,T (A,B) and the
generalized fuzzy erosion ÊT̂ ,I(A,B) of A by B are
the grey level images defined as:

D̂Ŝ,T (A,B)(y) =
ny

Ŝ
i=1

T (B(xi − y), A(xi)),

ÊT̂ ,I(A,B)(y) =
ny

T̂
i=1

I(B(xi − y), A(xi)).
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Table 1: Considered t-norms

Name Expression
Łukasiewicz TLK(x, y) = max{x+ y − 1, 0}
Minimum TM(x, y) = min{x, y}
Product TP(x, y) = xy

Nilpotent Minimum TnM(x, y) =
{

0 if x+ y ≤ 1,
min{x, y} otherwise.

Drastic TD(x, y) =
{

0 if x, y ∈ [0, 1),
min{x, y} otherwise.

Schweizer-Sklar T SS
λ (x, y) =


TM(x, y) if λ = −∞,
TP(x, y) if λ = 0,
TD(x, y) if λ = +∞,
(max{xλ + yλ − 1, 0}) 1

λ if λ ∈ R \ {0}.

Remark 1. Note that the previous definitions
generalize the classical fuzzy dilation and erosion
due to the fact that ÊTM,I(A,B) = EI(A,B) and
D̂SM,T (A,B) = DT (A,B).

The properties of t-conorms and t-norms allow us
to prove the next result straightforwardly.

Proposition 2. Let Ŝ be a t-conorm and T̂ be a
t-norm. Let T and I be a t-norm and a fuzzy im-
plication satisfying the conditions of Proposition 1.
Then the generalized fuzzy dilation and erosion of
an image A by a structuring element B satisfy:

ÊT̂ ,I(A,B) ⊆ EI(A,B) ⊆ A
⊆ DT (A,B) ⊆ D̂Ŝ,T (A,B).

Proof. Since the following inequalities hold T̂ ≤ TM
and SM ≤ Ŝ, we have that:

ÊT̂ ,I(A,B) ⊆ ÊTM,I(A,B) = EI(A,B),
DT (A,B) = D̂SM,T (A,B) ⊆ D̂Ŝ,T (A,B).

Using Proposition 1, we get:

ÊT̂ ,I(A,B) ⊆ EI(A,B) ⊆ A
⊆ DT (A,B) ⊆ D̂Ŝ,T (A,B).

Therefore, the definition of the generalized mor-
phological gradient can be derived directly from the
previous proposition:

δŜ,T̂ ,T,I(A,B) = D̂Ŝ,T (A,B) \ ÊT̂ ,I(A,B).

As it has been already said in the introduction,
the generalized morphological gradient extends the
usual morphological gradient being able to detect
more edges of the image.

Corollary 3. Let Ŝ be a t-conorm and T̂ be a t-
norm. Let T and I be a t-norm and a fuzzy im-
plication satisfying the conditions of Proposition 1.
Then the following inequality holds:

δT,I(A,B) ⊆ δŜ,T̂ ,T,I(A,B).

3.1. Edge Detector

Fuzzy methods of edge detection, the framework
where morphological gradients belong to, generate
an image where the value of a pixel determines
the membership degree of that pixel to the set of
edges. This idea contradicts the restrictions given
by Canny in [14]. There, a representation of the
edge image as a binary image with edges of one pixel
width is recommended. Hence, the fuzzy edge image
must be thinned and binarized. Indeed, the fuzzy
edge image will contain large values where there is
a strong image gradient, but to identify edges the
broad regions present in areas where the slope is
large must be thinned so that only the magnitudes
at those points which are local maxima remain. Non
Maxima Supremum (NMS), an algorithm proposed
by Canny, performs this by suppressing all values
along the line of the gradient that are not peak val-
ues [14]. NMS has been performed using P. Kovesis’
implementation in MATLAB [18].

Finally, to binarize the image, we have im-
plemented an automatic non-supervised hysteresis
based on the determination of the instability zone
of the histogram to find the threshold values [15].
Hysteresis allows to choose which pixels are relevant
in order to be selected as edges, using their mem-
bership values. Two threshold values T1, T2 with
T1 ≤ T2 are used. All the pixels with a membership
value greater than T2 are considered as edges, while
those which are lower to T1 are discarded. Those
pixels whose membership value is between the two
values are selected if, and only if, they are connected
with other pixels above T2. The method needs some
initial set of candidates for the threshold values. In
this case, the set {0.01, . . . , 0.25} has been intro-
duced, the same one which is used in [15]. In Figure
1, we display the block diagram of the edge detector
algorithm proposed in this section and in Figure 2,
the intermediate images which are being obtained
in each step.
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Figure 1: Block diagram of the proposed edge de-
tector.

(a) Original (b) Fuzzy edge image

(c) NMS (d) Binary edge image

Figure 2: Sequence of the proposed edge detector.

3.2. Objective Comparison Method

Nowadays, it is well-established in the literature
that the visual inspection of the edge images ob-
tained by several edge detectors can not be the
unique criterion with the aim of proving the superi-
ority of one edge detector with respect to the others.
This is because each expert has different criteria and
preferences and consequently, the reviews given by
two experts can differ substantially. For this rea-
son, when we obtain the binary edge image with
edges of one pixel width (DE) corresponding to the
edges detected by the method, some objective per-
formance measure is needed. The use of objective
performance measures on edge detection is growing
in popularity to compare the results obtained by
different edge detection algorithms. There are sev-
eral measures of performance for edge detection in
the literature, see [19] and [20]. These measures re-
quire, in addition to the DE image obtained by the
edge detector we want to evaluate, a reference edge
image or ground truth edge image (GT) which is a
binary edge image with edges of one pixel width con-

taining the real edges of the original image. In this
work, we will use the following objective measures
to evaluate the similarity between DE and GT:

1. The measure proposed by Pratt [1], Pratt’s fig-
ure of merit, defined as FoM =

= 1
max{card{DE}, card{GT}} ·

∑
x∈DE

1
1 + ad2 ,

where card is the number of edge pixels of the
image, a is a scaling constant and d is the sepa-
ration distance between an obtained edge pixel
with respect to an ideal one (see [1] for further
details). In this paper, we will consider a = 1
and the Euclidean distance d.

2. The ρ-coefficient [12], given by

ρ = card(E)
card(E) + card(EFN ) + card(EFP ) ,

where E is the set of well detected edge pixels,
EFN is the set of edges of the GT which have
not been detected by the considered edge de-
tector and EFP is the set of edge pixels which
have been detected but without any correspon-
dence in the GT.

3. The F -measure [13] which is given by the
weighted harmonic mean of the precision PR
and recall RE, i.e.,

F = 2 · PR ·RE
PR+RE

,

where

PR = card(E)
card(E) + card(EFP )

and
RE = card(E)

card(E) + card(EFN ) .

Larger values of FoM, ρ and F (0 ≤ FoM, ρ, F ≤ 1)
are indicators of a better capability to detect edges.

4. Experimental Results and Analysis

In this section we will show some preliminary results
to show the potential of the generalized morpholog-
ical gradient, the edge detector generated from the
generalized morphological operators. The perfor-
mance of this approach will be objectively evaluated
and compared with one of the most usual morpho-
logical gradient databases, using some images of the
dataset of the University of South Florida1 ([21]).
Concretely, the first 15 images of the dataset and
their edge specifications have been used. In [21],
the details about the ground truth edge images and
their use for the comparison of edge detectors are
specified.

1This image dataset can be downloaded from ftp://figment.
csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
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The results included in this section have been ob-
tained using the following isotropic structuring ele-
ment

B =

 0.86 0.86 0.86
0.86 1 0.86
0.86 0.86 0.86

 .

This structuring element was already used in [5] and
it provides notable resultse. As internal operators T
and I into both the generalized and usual morpho-
logical operators, we have considered the nilpotent
minimum t-norm TnM and the Kleene-Dienes fuzzy
implication IKD(x, y) = max{1 − x, y}. Note that
the pair (TnM, IKD) is the best configuration of the
usual morphological gradient derived from t-norms
for edge detection purposes (see [11]). Finally, as
external operators, t-norm T̂ and t-conorm Ŝ, we
have considered the t-norms of Table 1 except the
drastic t-norm whose expression is not adequate to
detect edges and their dual t-conorms.
First of all, in Figure 3, we show the generalized

fuzzy dilation and erosion and the fuzzy edge im-
age obtained by the generalized morphological gra-
dient using the external t-norms and t-conorms enu-
merated above for some images. We can see how
the fuzzy edge images obtained using TP and spe-
cially, TLK contain high edge membership values in
regions where no significant edge is present. This
low performance is due to the behaviour of the gen-
eralized erosion and dilation with these operators.
On the other hand, the nilpotent minimum and the
Schweizer-Sklar t-norms obtain interesting results.
Furthermore, the Schweizer-Sklar family of t-norms
depends on the value of the parameter λ whose role
on the performance on the resulting edge detector
deserves to be studied.

Remark 2. Note that the use of external opera-
tors a t-norm T̂ 6= TM and a t-conorm Ŝ 6= SM
can imply that the fuzzy edge image contains pixels
with edge membership values greater than zero in
plain regions of the original image. Although this
is an undesired behaviour, these pixels usually have
the lowest edge membership values and the thinning
and hysteresis algorithms are capable of discarding
them as final edges in the binary edge image with
edges of one pixel width.

The bad behaviour of TLK observed in the first
experiment, which occurs also with the remaining
images, allows us to discard this t-norm in the
second experiment. At this point, let us check
the performance of the different t-norms T̂ and
t-conorms Ŝ to generate a generalized morpho-
logical gradient which improves the results of
the usual morphological gradient. Therefore,
we have computed the mean and the standard
deviation of the 15 values of the three considered
measures obtained by each configuration of the
generalized morphological gradient, applied to
the considered images of the dataset. In par-
ticular, in addition to TM (which generates the

(a) Original image

(b) Gen. Dilation (c) Gen. Erosion (d) Fuzzy edge
image

Figure 3: Generalized dilation, generalized dilation
and fuzzy edge image obtained using δŜ,T̂ ,TnM,IKD
considering as, from top to bottom, T̂ the t-norms
TLK, TM, TP, TnM and T SS

−10 and as t-conorms Ŝ,
the corresponding dual t-conorms.

usual morphological gradient), TP and TnM, we
have considered the t-norms T SS

λ taking λ ∈
{−1,−2,−3, . . . ,−15,−20,−25, . . . ,−195,−200}.
The considered λ values have been chosen according
to the following two remarks:

1. Since T SS
λ > T SS

0 = TP for λ > 0 and TP al-
ready provides questionable results, we have
only considered negative values of λ. In ad-
dition, since T SS

λ → TM when λ → −∞ and
the results of T SS

−200 are almost similar to the
ones obtained by TM, we have only reached this
value of λ.

2. From the results, we can observe that the best
ones are obtained when λ ∈ [−15,−1] and con-
sequently, we have refined the step of the values
in this range.

In Figure 4, the evolution of the means of the
values of each measure for each T SS is displayed.
From these figures, the best t-norm of this family is
T SS
−5 according to the three measures. Note that the

evolution of the measures depending on the values of
λ does not depend of the measure. In the figures, we
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(a) FoM

(b) ρ-coefficient

(c) F -measure

Figure 4: Evolution of the means of the values of
a measure obtained by T̂ = T SS depending on the
values of λ including also T SS

−∞ = TM and T SS
0 = TP.

have included the mean values obtained by TM and
TP as limiting cases of the family when λ ∈ (−∞, 0).
Some conclusions emerge from the previous fig-

ures. Note that the graphs of the mean values of
the measure seem to be smooth with respect to λ
and therefore, the curve approaches to the mean
values of TM and TP. These curves present a global
maximum with respect to the considered λ values at
λ = −5 which means that the pair T SS

−5 and its dual
t-conorm improve drastically the results obtained

using TM. Consequently, the generalized morpho-
logical gradient generated from this pair outper-
forms the usual morphological gradient. In Table 2,
the mean and standard deviation of the values of the
measures obtained by each configuration of the gen-
eralized morphological gradient are collected. As it
can be observed, the configuration δSSS−5,T

SS
−5,TnM,IKD

obtains a higher mean with a lower standard devia-
tion, providing a more robust edge detector than the
usual morphological gradient. On the other hand,
neither the configuration from TP nor the one from
TnM and their dual t-conorms improve the usual
morphological gradient.

To support the previous claim, we have per-
formed a Wilcoxon test and a t-test for the con-
figuration δSSS−5,T

SS
−5,TnM,IKD

over the configuration
δSM,TM,TnM,IKD . The results show that the first con-
figuration is statistically better than the usual mor-
phological gradient obtaining a significant p-value.
Although the configuration derived from T SS

−5 is the
one with a higher mean value from the Schweizer-
Sklar family of t-norms, the t-norms T SS

−6 and T SS
−7

are also statistically similar and they obtain also
notable results. In Fig. 5 we can observe some
of the results obtained by the best configuration
of the generalized morphological gradient and the
usual one. Note that the visual results agree with
the quantitative results.

5. Conclusions and Future Work

In this article, we have proposed a generalization of
the morphological operators in order to define a gen-
eralized morphological gradient capable of detecting
a greater number of edges of an image. This gener-
alization is based on considering a general t-conorm
and t-norm into the definitions of erosion and dila-
tion instead of the usual maximum and minimum.
The preliminary obtained results show the potential
of this generalization as long as the considered t-
norm and t-conorm are of the Schweizer-Sklar fami-
lies. In the experiments carried out in this paper, we
have proved that the configuration δSSS−5,T

SS
−5,TnM,IKD

outperforms severely the usual morphological gradi-
ent. Other operators of the family, such as the ones
with λ ∈ {6, 7} can be also used with great results.
As future work, we want to extend the compari-

son started in this work to all the images of the con-
sidered dataset. This comparison experiment will
provide further evidences of the superiority of the
generalized morphological gradient over the classi-
cal one. A comparison with other edge detectors
will be carried out as well as the computational
complexity of our method will be established. Fur-
thermore, note that the study made in this paper
uses as internal operators the best ones for the usual
morphological gradient. However, it is possible that
other internal operators could be more suitable for
the generalized morphological gradient and conse-
quently, the results could be further improved. In
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Conf. FoM ρ F
Mean Std. Mean Std. Mean Std.

δSM,TM,TnM,IKD 0.2381 0.0853 0.4358 0.1559 0.5911 0.1591
δSP,TP,TnM,IKD 0.1495 0.0475 0.2680 0.0834 0.4165 0.1023
δSnM,TnM,TnM,IKD 0.1877 0.0364 0.3570 0.0763 0.5217 0.0853
δSSS−5,T

SS
−5,TnM,IKD

0.3816 0.0617 0.6966 0.0986 0.8173 0.0720

Table 2: Mean and standard deviation of some configurations of the generalized morphological gradient
according to the considered objective measures.

(a) Original image (b) Ground truth (c) δSSS
−5,TSS

−5,TnM,IKD
(d) δSM,TM,TnM,IKD

Figure 5: Original image, ground truth edge image and the results obtained by the best configuration of the
generalized morphological gradient and the usual one for several images.

addition, it would be also worth to study other pos-
sible applications of these generalized operators in
image processing such as segmentation, contrast ad-
justment and noise removal.
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