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Abstract

Paving is a method for constructing new operations
from a given one. We will show that this method
can be used to construct associative, commutative
and monotone operations from particular given op-
erations (from basic ‘paving stones’). We will dis-
cuss properties of the resulting operations by con-
sidering different cases of the ‘paving stones’ and
the starting position of paving. Finally, we will
discuss the case when the basic ‘paving stone’ is
a generated operation. We show that in this case
we get by paving also a generated operation, just
the generator is a two-place function. We show also
an example of a non-representable uninorm which
is strictly increasing in both variables on the open
unit square.

Keywords: T-norm, uninorm, associative opera-
tion, paving, generated t-norm

1. Introduction

Associative operations such as t-norms, t-conorms,
or uninorms as their common generalization, play
an important role in fuzzy logic, in decision mak-
ing, fuzzy control, and so on. Among these opera-
tions, those which are strictly increasing on ]0, 1[ 2,
play an important role becuase of their cancelativ-
ity. The aim of this paper is to present a new con-
struction possibility for associative operations. Sev-
eral construction methods are already known. We
show another method based on a so-called paving.
Moreover we show that, using paving, it is possible
to construct non-representable uninorms which are
strictly increasing on ]0, 1[ 2, see Example 1 at the
end of this paper.
The idea of paving is the following. We split the

unit interval into countably many disjoint subinter-
vals {Ii}i∈I (in such a way we split the unit square
into countably many disjoint sub-rectangles Ii×Ij).
Then we take an operation ∗ : [0, 1]2 → [0, 1], choose
transformations fi : Ii → [0, 1] and we ‘pave’ the

whole unit square (see Fig. 1 for a graphical schema
of paving) by

f
[−1]
i+j (fi(x) ∗ fj(y)),

where f [−1]
i+j is a kind of inverse (could be pseudo-

inverse or a quasi-inverse).
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Figure 1: Graphical schema of paving

2. Preliminaries

We recall some known facts and notions to make
the paper self-content.

A function N : [0, 1]→ [0, 1] is said to be a nega-
tion if N is decreasing and N(0) = 1, N(1) = 0.
A negation N is said to be strong if it is involutive,
i.e., if N(N(x)) = x for all x ∈ [0, 1].

Definition 1 (see, e.g., [3, 5]) A triangular norm
T : [0, 1]2 → [0, 1] (t-norm for short) is a com-
mutative, associative, increasing in both variables
binary operation fulfilling the boundary condition
T (x, 1) = x for all x ∈ [0, 1].
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Remark 1 Note that, for a strong negation N ,
the N -dual operation to a t-norm T defined by
S(x, y) = N (T (N(x), N(y))) is called a t-conorm.
For more information, see, e.g., [3].

We will denote TM (x, y) = min{x, y} and
SM (x, y) = max{x, y}.

An operation T̃ : [0, 1]2 → [0, 1] which is increas-
ing in both variables, associative, commutative and
T̃ ≤ TM , is called a t-sub-norm.
Dually, S̃ : [0, 1]2 → [0, 1] which is increasing in
both variables, associative, commutative and S̃ ≥
SM , is called a t-super-conorm.

T-sub-norms were introduced in [1] (see also [3]).
T-super-conorms were introduced in [4].

For t-norms and t-conorms we have the following
important inequalities.
Let T : [0, 1]2 → [0, 1] be a t-norm. Then T (x, y) ≤
min{x, y}.
Let S : [0, 1]2 → [0, 1] be a t-conorm. Then
S(x, y) ≥ max{x, y}.
Uninorms, as a generalization of triangular norms

and conorms, were introduced by Yager and Ry-
balov in [6].

Definition 2 An associative, commutative and in-
creasing operation U : [0, 1]2 → [0, 1] is called a
uninorm, if there exists e ∈ [0, 1], called the neutral
element of U, such that

U(x, e) = x for all x ∈ [0, 1].

If U(1, 0) = 0 holds, U is called conjunctive. If
U(1, 0) = 1 holds, U is called disjunctive. Con-
junctive and disjunctive uninorms are dual to each
other. For an arbitrary disjunctive uninorm U and a
strong negation N its N -dual conjunctive uninorm
is given by

UdN (x, y) = N (U(N(x), N(y))) .

Uninorms whose neutral element is in ]0, 1[ will
be called proper (to distinguish them from t-norms
and/or t-conorms).

Definition 3 Let ∗ : [0, 1]2 → [0, 1] be a commu-
tative operation. Fix a value a ∈ [0, 1]. We say
that x ∈ [0, 1], x 6= a, is an a-divisor if there exists
y ∈ [0, 1], y 6= a such that

x ∗ y = a.

Further, for increasing functions f : [a, b]→ [c, d],
functions f∧ : [c, d] → [a, b] and f∨ : [c, d] → [a, b]
were introduced in [2] as follows

f∧(y) = sup{z ∈ [a, b]; f(z) < y}, (1)
f∨(y) = inf{z ∈ [a, b]; f(z) > y}, (2)

where sup ∅ = a, inf ∅ = b.

Definition 4 ([2]) Let f : [a, b] → [c, d] be an in-
creasing function. Arbitrary function f∗ : [c, d] →
[a, b] is called a quasi-inverse of f if it satisfies

f(f∗(z)) = z for z ∈ rng(f), (3)
f∧ ≤ f∗ ≤ f∨. (4)

Remark 2 Of course, f∧ coincides with the well-
known pseudo-inverse f (−1). If f is continuous with
rng(f) = [c, d], both f∧ as well as f∨, are special
cases of quasi-inverses of f .

In the next lemma we give some important prop-
erties of f∧ and f∨.

Lemma 1 Let f : [a, b] → [c, d] be a continuous
increasing function with rng(f) = [c, d]. Then:
(a) for all z ∈ [c, d] we have f(f∧(z)) = z and also
f(f∨(z)) = z,
(b) all x ∈ [a, b] yield f∧(f(x)) ≤ x and f∨(f(x)) ≥
x.

3. Paving as a construction method

Our intention is to construct an operation � :
[0, 1]2 → [0, 1] which is (not necessarily strictly) in-
creasing in both variables, commutative and asso-
ciative. We split the unit interval [0, 1] into count-
ably many sub-intervals by choosing a sequence of
their end-points. For a technical reason we will need
the set of indices to be closed under addition. For
this reason we will distiguish five possibilities. The
set of indices will be denoted by J . We set:

1. 0 = a0 < a1 < a2 < · · · < an < · · · < a∞ = 1,
2. 0 = a−1 < a0 < a1 < · · · < an < · · · < a∞ = 1,
3. 0 = a−∞ < · · · < a−n < a−n+1 < · · · < a−2 <
a−1 = 1,

4. 0 = a−∞ < · · · < a−n < a−n+1 < · · · < a−1 <
a0 = 1,

5. 0 = a−∞ < · · · < a−n < · · · < a−1 < a0 <
a0 < a1 < · · · < an < · · · < a∞ = 1.

For each interval Ii = [ai−1, ai] we will have a
monotone transformation fi : Ii → [0, 1]. We will
assume that fi(ai−1) = 0 and fi(ai) = 1. Moreover,
we will assume continuity of all functions fi.
Yet, ai belongs to two different intervals. This

would cause problems. For this reasons we will con-
sider semi-open intervals. We introduce the follow-
ing notation:

I<i = [ai−1, ai[,
I>i = ]ai−1, ai].

The basic idea of paving is hidden in the follow-
ing two formulae which will be used alternatively.
We choose an operation ∗ : [0, 1]2 → [0, 1] which is
isotone in both variables, commutative and associa-
tive. Then, for i, j ∈ J , x ∈ I<i and y ∈ I<j (x ∈ I>i
and y ∈ I>j , alternatively) we define

x ∗∨ y = f∨i+j(fi(x) ∗ fj(y)) (5)
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and
x ∗∧ y = f∧i+j(fi(x) ∗ fj(y)). (6)

Formulae (5) and (6) directly imply that both op-
erations, ∗∨ and ∗∧, are isotone and commutative
(when properly defined on the border). Let us dis-
cuss the associativity of ∗∨ and ∗∧.

3.1. Associativity

We know already that, for continuous fi we have
fi(f∨i (x)) = x as well as fi(f∧i (x)) = x. This means
that if we use left-closed intervals, the operation ∗∨
is associative if

f∨i+j(fi(x) ∗ fj(y)) ∈ I<i+j
for all x ∈ I<i and y ∈ I<j , and the same condition
has to be fulfilled also for the operation ∗∧ (and
analogically we could treat the situation with right-
closed intervals). This gives the following proposi-
tions.

Proposition 1 Let the operation ∗∨ : [0, 1]2 →
[0, 1] be defined by (5) for x ∈ I<i and y ∈ I<j , where
i, j ∈ J . It is associative on the open unit square
]0, 1[2 if one of the following conditions is fulfilled.

1. For all fi : I<i → [0, 1] and all z ∈ ]ai−1, ai[ we
have fi(z) < 1, and ∗ has no 1-divisors.

2. For each fi there exists zi ∈ ]ai−1, ai[ such that
fi(zi) = 1.

Proposition 2 Let the operation ∗∨ : [0, 1]2 →
[0, 1] be defined by (5) for x ∈ I>i and y ∈ I>j ,
where i, j ∈ J . It is associative on the open unit
square ]0, 1[2 if the following conditions is fulfilled.

1. For all fi : I> → [0, 1] and all z ∈ ]ai−1, ai[ we
have fi(z) > 0,

2. ∗ has no 0-divisors.

Dually, we get the following.

Proposition 3 Let the operation ∗∧ : [0, 1]2 →
[0, 1] be defined by (6) for x ∈ I>i and y ∈ I>j , where
i, j ∈ J . It is associative on the open unit square
]0, 1[2 if one of the following conditions is fulfilled.

1. For all fi and all z ∈ ]ai−1, ai[ we have fi(z) >
0, and ∗ has no 0-divisors.

2. For each fi there exists zi ∈ ]ai−1, ai[ such that
fi(zi) = 0.

Proposition 4 Let the operation ∗∧ : [0, 1]2 →
[0, 1] be defined by (6) for x ∈ I<i and y ∈ I<j , where
i, j ∈ J . It is associative on the open unit square
]0, 1[ 2 if the following conditions are fulfilled.

1. For all fi and all z ∈ ]ai−1, ai[ we have fi(z) <
1,

2. ∗ has no 1-divisors.

A triple (operation, set of semi-open intervals, set
of functions), where the operation is either ∗∨ or
∗∧, will be called admissible if the corresponding
operation got by paving is associative.

3.2. Basic types of operations constructed
via paving

In this part we will show under which conditions
we can construct by paving a t-norm, t-sub-norm,
t-conorm, t-super-conorm, or proper uninorm. For-
mulae (5) and (6) immediately imply the following
comparison of constructed operations with TM and
SM .

Proposition 5 Let J be an index set and ∗̃ = ∗∧
or ∗̃ = ∗∨ be a binary operation defined by (5) or
(6), respectively, from a binary operation ∗ such that
(∗̃, {Ii}i∈J , {fi}i∈J ) is an admissible triple and in-
tervals Ii are either left- or right-open. Then for
x ∈ Ii and y ∈ Ij we have

x∗̃y


≥ SM (x, y) if i, j ≥ 1,
≤ TM (x, y) if i, j ≤ −1,
∈ [TM (x, y), SM (x, y)] if min{i, j} ≤ −1

and max{i, j} ≥ 1.

3.2.1. Case when indices in J are non-negative

Because of Proposition 5 we distinguish two cases –
when 0 /∈ J and 0 ∈ J .

Theorem 1 Assume J = {1, 2, 3, . . . }. Let
∗∧1 and ∗∨2 be binary operations defined by (5)
or (6), respectively, from a binary operation
∗ such that (∗∧1 , {Ii}i∈J , {fi}i∈J ) as well as
(∗∨2 , {Ii}i∈J , {fi}i∈J ), are admissible triples for in-
tervals Ii being either left-open or right-open for
i ≥ 2 and I1 is closed or right-open, respectively.
Then

x ∗∧1 y =
{
f∧i+j(fi(x) ∗ fj(y)) if x ∈ Ii, y ∈ Ij,
1 if max{x, y} = 1,

and

x ∗∨2 y =
{
f∨i+j(fi(x) ∗ fj(y)) if x ∈ Ii, y ∈ Ij,
1 if max{x, y} = 1,

are t-super-conorms.

Theorem 2 Assume J = {0, 1, 2, . . . }. Let ∗∧3 be a
binary operation defined by (6) from an arbitrary t-
super-conorm ∗ such that (∗∧3 , {I>i }i∈J , {fi}i∈J ) is
an admissible triple, where I0 is a closed interval.
Then

x ∗∧3 y =


f∧i+j(fi(x) ∗ fj(y)) if x ∈ I>i , y ∈ I>j ,
1 if max{x, y} = 1,
f∧i+j(fi(x) ∗ fj(y)) if x ∈ I>i , y ∈ I>j ,

and min{x, y} = 0,

is a t-super-conorm. Moreover, if all functions fi :
[ai−1, ai]→ [0, 1] are bijections and ∗ is a t-conorm,
then ∗∧3 is a t-conorm.
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Theorem 3 Assume J = {0, 1, 2, . . . }. Let ∗∧4 be a
binary operation defined by (6) from a binary oper-
ation ∗. Further assume that ∗ is a t-super-conorm
without 1-divisors. Then (∗∧4 , {I<i }i∈J , {fi}i∈J ) is
an admissible triple and

x ∗∧4 y =
{
f∧i+j(fi(x) ∗ fj(y)) if x ∈ I<i , y ∈ I<j ,
1 if max{x, y} = 1,

is a t-super-conorm. Moreover, if ∗ is a t-conorm
without 1-divisors and all functions fi : [ai−1, ai]→
[0, 1] are bijections, ∗∧3 is a t-conorm.

Remark 3 (a) Because of Lemma 1(b), when J =
{0, 1, 2, . . . } we can use only the operation ∗∧,
i.e., defined by formula (6), to construct t-super-
conorms (or t-conorms as special cases).
(b) In Theorems 2 and 3, to make 0 the neutral
element of ∗∧3 and ∗∧4 , respectively, (in case ∗ is a
t-conorm) we need all functions fi to be bijective.

3.2.2. Case when indices in J are non-positive

This case is dual to the foregoing case with indices
J being non-negative. Just everywhere instead of
t-conorm (t-super-conorm) we must use t-norm (t-
sub-norm), instead of ∗∧ the operation ∗∨ (and vice-
versa) and instead of left-open intervals it is neces-
sary to take right-open intervals (and vice-versa).

3.2.3. The index-set J = Z

By Proposition 5 we get immediately that, for J =
Z, properties of arbitrary operation constructed by
paving depend only on the behaviour of that oper-
ation in the area when one of the variables is in the
interval I0.

Theorem 4 Let ∗∧5 be a binary operation defined
by (6) from an arbitrary t-conorm ∗ such that
(∗∧, {I>i }i∈Z, {fi}i∈Z) is an admissible triple. Then

x∗∧5 y =


f∧i+j(fi(x) ∗ fj(y)) if x ∈ I>i , y ∈ I>j ,
1 if max{x, y} = 1,
0 if min{x, y} = 0

and max{x, y} < 1,

is an associative and commutative operation such
that:
(S1) x ∗∧5 y ≥ SM (x, y) for (x, y) ∈ ]a−1, 1]2,
(S2) ∗∧5 � [0, a−1]2 is a t-sub-norm,
(S3) TM (x, y) ≤ x ∗∧5 y ≤ SM (x, y) for (x, y) ∈

[0, a−1]× ]a−1, 1]∪ ]a−1, 1]× [0, a−1].

Dually we can formulate the following assertion.

Theorem 5 Let ∗∨6 be a binary operation de-
fined by (5) from an arbitrary t-norm ∗ such that
(∗∨, {I<i }i∈Z, {fi}i∈Z) is an admissible triple. Then

x∗∨6 y =


f∨i+j(fi(x) ∗ fj(y)) if x ∈ I<i , y ∈ I<j ,
1 if max{x, y} = 1

and min{x, y} > 0,
0 if min{x, y} = 0,

is an associative and commutative operation such
that:

(C1) ∗∨6 � [a0, 1]2 is a t-super-conorm,
(C2) x ∗∨6 y ≤ TM (x, y) for (x, y) ∈ [0, a0[ 2,
(C3) TM (x, y) ≤ x ∗∨6 y ≤ SM (x, y) for (x, y) ∈

[0, a0[×[a0, 1] ∪ [a0, 1]× [0, a0[.

Operations with properties listed in Theorems 4
and 5 will be used in the next section to construct
uninorms.

Definition 5 An associative, commutative and
isotone operation � : [0, 1]2 → [0, 1] will be called
a sub-uninorm if there exists an element e ∈ [0, 1]
such that the following properties are fulfilled.

• x� y ≥ SM (x, y) for (x, y) ∈ ]e, 1]2,
• � � [0, e]2 is a t-sub-norm,
• TM (x, y) ≤ x � y ≤ SM (x, y) for (x, y) ∈

[0, e]× ]e, 1]∪ ]e, 1]× [0, e].

A sub-uninorm � is conjunctive (disjunctive) if 0�
1 = 0 (0 � 1 = 1). The element e will be called
splitting.

Definition 6 An associative, commutative and
isotone operation � : [0, 1]2 → [0, 1] will be called
a super-uninorm if there exists an element e ∈ [0, 1]
such that the following properties are fulfilled.

• � � [e, 1]2 is a t-super-conorm,
• x� y ≤ TM (x, y) for (x, y) ∈ [0, e[2,
• TM (x, y) ≤ x � y ≤ SM (x, y) for (x, y) ∈

[0, e[× [e, 1] ∪ [e, 1]× [0, e[.

A super-uninorm � is conjunctive (disjunctive) if
0� 1 = 0 (0� 1 = 1). The element e will be called
splitting.

A. Mesiarová-Zemánková in [4] introduced the no-
tion of a generalized uninorm G which has an ele-
ment e ∈ [0, 1] (called splitting). Generalized uni-
norms G are operations such that G � [0, e]2 is a
t-sub-norm and G � [e, 1]2 is a t-super-conorm. The
operation ∗∧5 � [a−1, 1]2 (S1)-(S3) from Theorem 4 is
not a t-super-conorm and the operation ∗∨6 � [0, a0]2
from Theorem 5 is not a t-sub-norm.

Theorem 6 Let ∗∧7 be a binary operation defined
by (6) from a binary operation ∗. Further assume
that ∗ is a t-conorm without 1-divisors and all func-
tions fi : [ai−1, ai] → [0, 1] are bijections. Then
(∗∧7 , {I<i }i∈Z, {fi}i∈Z) is an admissible triple and

x∗∧7 y =


f∧i+j(fi(x) ∗ fj(y)) if x ∈ I<i , y ∈ I<j ,
1 if max{x, y} = 1,
0 if min{x, y} = 0

and max{x, y} < 1,

is a proper disjunctive uninorm.
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Remark 4 (a) We could formulate a dual version
of Theorem 6 replacing t-conorm without 1-divisors
for a t-norm without 0-divisors and right-open in-
tervals for left-open. The result would be again a
proper uninorm.
(b) The operation ∗∧5 in Theorem 4 is a disjunctive
sub-uninorm and the operation ∗∧6 in Theorem 5 is
a conjunctive super-uninorm.

Theorems 4, 5, 6 are in fact reformulated results
from part 3.2.2. Another possibility is to use a uni-
norm for the operation ∗.

Theorem 7 Let ∗∧8 be a binary operation defined
by (6) from a proper uninorm ∗. Assume that
all functions fi : [ai−1, ai] → [0, 1] are bijec-
tions. If ∗ has no 1-divisors (no 0-divisors)
then (∗∧8 , {I<i }i∈Z, {fi}i∈Z) is an admissible triple
((∗∧8 , {I>i }i∈Z, {fi}i∈Z) is an admissible triple, re-
spectively) and

x∗∧8 y =


f∧i+j(fi(x) ∗ fj(y)) if x ∈ Ii, y ∈ Ij,
1 if max{x, y} = 1,
0 if min{x, y} = 0

and max{x, y} < 1,

where Ii = I<i or Ii = I>i , respectively, is a proper
disjunctive uninorm.

4. Modifications of paving

Section 3 was devoted to describing the paving
method as a method for construction of associative
commutative and monotone operations. Now, we
introduce some modifications of this method.

4.1. Using ‘halved paving stones’

Let us consider the operation ∗∧8 constructed in The-
orem 7. This is a uninorm, i.e., ∗∧8 � [0, e]2 is a
t-norm (dually, ∗∧8 � [e, 1]2 is a t-conorm). This
t-norm (t-conorm) is constructed also by paving,
just there is one difference. In an L-shaped area
near the neutral element we use only ‘halved’ paving
stones. Correctly expressed, f0 : [a−1, 1] → [0, e].
(f0 : [0, a0] → [e, 1] for the t-conorm). This gives
the following assertion which we formulate only for
the case of a t-norm.

Theorem 8 Set J = {0,−1,−2, . . . }. Let ∗∧9 be
a binary operation defined by (6) from a proper
uninorm ∗. Assume that, for i ≤ −1, all func-
tions fi : [ai−1, ai] → [0, 1] are bijections and
f0 : [a−1, 1] → [0, e] is also bijective. Further de-
note I<0 = [a−1, 1] and I>0 =]a−1, 1]. If ∗ has no 1-
divisors (no 0-divisors) then (∗∧9 , {I<i }i∈J , {fi}i∈J )
is an admissible triple ((∗∧9 , {I>i }i∈J , {fi}i∈J ) is an
admissible triple, respectively) and

x ∗∧9 y =
{
f∧i+j(fi(x) ∗ fj(y)) if x ∈ Ii, y ∈ Ij,
0 if min{x, y} = 0

where Ii = I<i or Ii = I>i , respectively, is a t-norm.

4.2. Combining paving with ordinal
sum-like construction

In [4] an ordinal sum construction for systems of
uninorms is described. We give here just the idea
of the construction from [4]. For simplicity rea-
sons we will consider only two proper uninorms
(〈Uk, ak, bk, ck, dk〉|k ∈ {1, 2}). Their ordinal sum is
sketched on Fig. 2. Of course, the ordinal sum con-
struction published in [4] is much more general. But
for our purposes it is enough to consider the ordi-
nal sum of two uninorms where values in rectangles
[ai, bi] × [ci, di] (and [ci, di] × [ai, bi]) are somehow
transformed to [ai, bi] ∪ [ci, di].

0 1

1

e

e

a1 b1a2 b2 c2 d2c1 d1

a1

b1
a2

b2

c2

d2
c1

d1

TU1

TU2

SU2

SU1

min

max

min

max

Figure 2: Ordinal sum of uninorms

Following the idea of the ordinal sum of uninorms
we get the following construction of a uninorm from
sub-uninorm (see Fig. 3).

Proposition 6 Let ∗̂ : [0, 1]2 → [0, 1] be a sub-
uninorm with e ∈ ]0, 1[ as its splitting element.
Let us choose γ ∈ ]0, s[. Then, the operation � :
[0, 1]2 → [0, 1] defined by

x� y =



γ
e

(
x·e
γ ∗̂

y·e
γ

)
if (x, y) ∈ [0, γ]2,

TM (x, y) if (x, y) ∈ [0, e]2 \ [0, γ]2,
x∗̂y if (x, y) ∈ ]e, 1]2,
SM (x, y) if (x, y) ∈ ]γ, e]× ]e, 1]

or (x, y) ∈ ]e, 1]× ]γ, e],
x·e
γ ∗̂y if (x, y) ∈ [0, γ]× ]e, 1]

and x·e
γ ∗̂y > e,

γ
e

(
x·e
γ ∗̂y

)
if (x, y) ∈ [0, γ]× ]e, 1]
and x·e

γ ∗̂y ≤ e,
x∗̂y·eγ if (x, y) ∈ ]e, 1]× [0, γ]

and x∗̂y·eγ > e,
γ
e

(
x∗̂y·eγ

)
if (x, y) ∈ ]e, 1]× [0, γ]
and x∗̂y·eγ ≤ e,

is a proper uninorm whose neutral element is e.
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Figure 3: Ordinal sum-like construction of a uni-
norm from sub-uninorm

Dually, from a super-uninorm we can construct a
uninorm in the following way (see Fig. 4).

Proposition 7 Let ∗̂ : [0, 1]2 → [0, 1] be a super-
uninorm with e ∈ ]0, 1[ as its splitting element.
Let us choose γ ∈ ]e, 1[. Then, the operation � :
[0, 1]2 → [0, 1] defined by

x�y =



x�̂y if (x, y) ∈ [0, e[ 2,
h−1 (h(x)∗̂h(y)) if (x, y) ∈ ]γ, 1]2,
SM (x, y) if (x, y) ∈ [e, 1]2 \ [γ, 1]2,
TM (x, y) if (x, y) ∈ [0, e[×[e, γ[

or (x, y) ∈ [e, γ[×[0, e[,
x∗̂h(y) if (x, y) ∈ [0, e[×[γ, 1]

and x∗̂h(y) < e,
h−1 (x∗̂h(y)) if (x, y) ∈ [0, e[×[γ, 1]

and x∗̂h(y) ≥ e,
h(x)∗̂y if (x, y) ∈ [γ, 1]× [0, e[

and h(x)∗̂y < e,
h−1 (h(x)∗̂y) if (x, y) ∈ [γ, 1]× [0, e[

and h(x)∗̂y ≥ e,

is a proper uninorm whose neutral element is e, and
the transformation h : [γ, 1]→ [e, 1] is defined by

h(x) = (1− e)x− γ1− γ + e.

5. Generated operation ∗

Assume that the operation ∗ is generated and its ad-
ditive generator is a function g : [0, 1] → [−∞,∞].
Then we can write

x ∗ y = g(−1)(g(x) + g(y)),

where g is considered to be left-continuous and g(−1)

is the pseudo-inverse. Of course, we can use also

0 1

1

e

e

γ

γ
min

min

max

Figure 4: Ordinal sum-like construction of a uni-
norm from super-uninorm

right-continuous generator g, as well. Also if g is
a decreasing function, we can consider −g instead.
This means that the generator g can be always taken
as an increasing function which is left- or right-
continuous. Hence, we can write

x ∗ y =
{
g∨(g(x) + g(y)) if g is left-continuous,
g∧(g(x) + g(y)) if g is right-continuous.

Thus, assume that ∗ is a generated operation
with an additive generator g, and � is a binary
operation defined via paving from ∗ such that
(�, {Ii}i∈J , {fi}i∈J ) is an admissible triple. We ex-
tend J and the system of intervals {Ii}i∈J in such a
way that we add∞, −∞, or both values to the index
set, if the indices are non-negative, non-positive, or
J = Z, respectively. We set I∞ = {1}, I−∞ = {0}.
We define function Γ :

⋃
i∈J {i} × Ii → [−∞,∞] by

Γ(i, x) = g(fi(x))

which is an additive generator of �.

Example 1 Assume that ∗ = TP (i.e., ∗ is the
product t-norm).
(a)We can use TP to construct another t-norm (uti-
lizing a theorem dual to Theorem 3) using a system
of left-open intervals (for J = {0,−1,−2,−3, . . . }),
e.g., Ii = ]2i−1, 2i] and I−∞ = {0}. For a generator
g : [0, 1] → [−∞, 0] of TP we can take g(x) = ln x.
Yet, we need a system of bijections fi : Ii → ]0, 1]:

fi(x) =
{
x−2i−1

2i−2i−1 if x ∈ ]2i−1, 2i],
0 if x = 0, i.e. if i = −∞.

If we define ln 0 = −∞, we get the following genera-
tor of the operation ∗∨ constructed by paving from
TP :

Γ(i, x) = ln fi(x).
(b) We can use TP to construct a proper uninorm
(utilizing a theorem dual to Theorem 6) using a
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system of left-open intervals

Ii =



] 1
4 ,

3
4
]

for i = 0,] 1
2i−2 ,

1
2i−1

]
for i ≤ −1,]

2i+1−1
2i+1 , 2i+2−1

2i+2

]
for i ≥ 1,

1 for i =∞,
0 for i = −∞,

and a system of transformations fi:

fi(x) =


x−ai−1
ai−ai−1

for i ∈ Z,
1 for i =∞
0 for i = −∞,

where ai is the right end-point of Ii. Then a gener-
ator of the corresponding uninorm constructed via
paving is again

Γ(i, x) = ln fi(x).

In fact, we get two different uninorms in this way
a conjunctive and a disjunctive one depending on
the convention ∞−∞ = −∞ or ∞−∞ = ∞, re-
spectively. Moreover, since TP is strictly increasing
in both variables on ]0, 1]2, also the just constructed
uninorm is strictly increasing on ]0, 1[ 2 in both vari-
ables.
(c) We can copy the construction from case (b),
just taking right-open intervals instead of left-open
ones. In this case we get a super-conorm and then
the construction from Proposition 7 we get a uni-
norm.

Example 2 We can take a representable uninorm
as the operation ∗. Let h : [0, 1] → [−∞,∞] given
by

h(x) =
{

ln 2x for x ≤ 1
2 ,

− ln(2(1− x)) for x > 1
2 ,

and consider the same system of intervals Ii and
transformations fi as in Example 1 (b). Then we
get a uninorm (either conjunctive or disjunctive)
whose generator is

Γ(i, x) =
{

ln(2fi(x)) for x ≤ 1
2 and x ∈ Ii,

− ln(2(1− fi(x))) for x > 1
2 and x ∈ Ii.

Since uninorms are strictly increasing neither on
]0, 1]2 nor on [0, 1[ 2, the operation constructed via
paving from a uninorm ∗ cannot be strictly increas-
ing on ]0, 1[ 2.

6. Conclusions

In this paper we have introduced paving as a con-
struction method for associative commutative and
monotone operations if the basic ‘paving stone’ (op-
eration ∗) possesses these three properties. Un-
der some further conditions which were discussed
in this paper, the resulting operation may have

a neutral element. If ∗ is a generated operation,
then the resulting operation is also generated, but
the corresponding generator is a two-place func-
tion. In example 1 (b) we have constructed a non-
representable uninorm which is strictly increasing
on ]0, 1[ 2 in both variables.
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