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Abstract

An approach to construct a new classifier called an intu-
itionistic fuzzy decision tree is presented. Well known
benchmark data is used to analyze the performance of
the classifier. The results are compared to some other
popular classification algorithms. Finally, the classifier
behavior is verified while solving a real-world classifi-
cation problem.

Keywords: Classification, decision tree, fuzzy decision
tree, intuitionistic fuzzy decision tree

1. Introduction

One of the most popular classifiers with well known
advantages are decision trees recursively partitioning a
space of instances (observations). The ID3 algorithm
[22] proposed by Quinlan is a source of many other ap-
proaches which have been developed along that line (cf.
[27]).

Fuzzy decision trees (Janikow [17], Olaru et al. [21],
Yuan and Shaw [41], Marsala [19], [20]), which are a
generalization of classical (crisp) decision trees, turned
out to be more stable, and more effective methods help-
ing to extract knowledge while dealing with imperfect
classification problems.

The expression power of using fuzzy sets in this con-
text with respect to capturing and handling imprecision
can significantly be enhanced by using various exten-
sions of traditional concept of a fuzzy set. For instance,
which is important for our work, the use of Atanassov’s
intuitionistic fuzzy sets [1], [2], [3] (A-IFSs for short)
can provide an effective and efficient means for the rep-
resentation and handling of imprecision in the setting
of pro and con type statements and arguments, as well
as hesitation. Needless to say that this kind of infor-
mation and knowledge representation reflecting how hu-
mans proceed have been showed to be a powerful tool to
solve many problems under imprecise information ex-
emplified by machine learning and decision making, to
name a few.

In this paper we present an approach to construct a
new intuitionistic fuzzy decision tree classifier. The data
is expressed by means of A-IFSs. Also the measures
constructed for the A-IFSs are applied while making de-
cisions how to split a node while expanding the tree. The
intuitionistic fuzzy decision tree considered here is an
extension of the fuzzy ID3 algorithm [7].

Well known benchmark data, and real-world data con-
cerning an eye illness of premature born babies are ap-
plied to demonstrate the potential of the new algorithm.

The results are compared to other commonly used algo-
rithms.

2. A brief introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X

(Zadeh [42]) given by

A
′

= {< x, µA
′ (x) > |x ∈ X} (1)

where µA
′ (x) ∈ [0, 1] is the membership function of the

fuzzy set A
′

, is an A-IFS (Atanassov [1], [2], [3]) A is
given by

A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0<µA(x) + νA(x)<1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of member-
ship and a degree of non-membership of x ∈ A, respec-
tively. (An approach to the assigning memberships and
non-memberships for A-IFSs from data is proposed by
Szmidt and Baldwin [29]).

Obviously, each fuzzy set may be represented by the
following A-IFS:
A = {< x, µA

′ (x), 1 − µA
′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X , that is not
only an obvious result of (2) and (3) but which is also
relevant for applications, we will call (Atanasov [2])

πA(x) = 1 − µA(x) − νA(x) (4)

a hesitation marginof x ∈ A which expresses a lack
of knowledge of whether x belongs to A or not (cf.
Atanassov [2]). It is obvious that 0<πA(x)<1, for each
x ∈ X .

The hesitation margin turns out to be important while
considering the distances (Szmidt and Kacprzyk [30],
[31], [33], entropy (Szmidt and Kacprzyk [32], [34]),
similarity (Szmidt and Kacprzyk [35]) for the A-IFSs,
etc. i.e., the measures that play a crucial role in virtually
all information processing tasks (Szmidt [28]).

The hesitation margin turns out to be relevant for ap-
plications – in image processing (cf. Bustince et al. [15],
[14]), the classification of imbalanced and overlapping
classes (cf. Szmidt and Kukier [36], [37], [38]), group
decision making (e.g., [4]), genetic algorithms [24], ne-
gotiations, voting and other situations (cf. Szmidt and
Kacprzyk papers).
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3. Intuitionistic fuzzy decision tree

The intuitionistic fuzzy decision tree presented here was
inspired by the soft decision tree introduced by Baldwin
et al. [7] which, in turn, was an extension of the source
ID3 tree introduced by Quinlan [22]. The methods pre-
sented here make use of numeric attributes but they can
also be applied to the nominal attributes (the algorithm
is even simpler then). A-IFSs are used for data repre-
sentation. Next, the new idea of deriving A-IFSs in each
node was applied as potentially giving the most accurate
results.

The process of a decision tree generation demands
to point out the best attributes for splitting the nodes.
Picking up the attributes influences accuracy of a de-
cision tree, and its interpretation properties. In the
tree presented here intuitionistic fuzzy entropy was used
(Szmidt and Kacprzyk [32]) as a counterpart of “infor-
mation gain” [22].

Below the most important components of the algo-
rithm are described.

Fuzzy partitions of the attribute values (granulation)
Replacing a continuous domain with a discrete one, i.e.,
the idea of a universe partition (granulation), has been
extended to fuzzy sets by Ruspini [25]. Here the idea
was used to partition a universe of each attribute by in-
troducing a set of triangular fuzzy sets such that for any
attribute value the sum of memberships of the partition-
ing fuzzy sets is 1. In other words, the membership
χj,k(oij) of the i-th observation (instance) oij in respect
to the j-th attribute to the triangular fuzzy sets k and
k + 1 (where k = 1, . . . , p) is:

χj,k(oij) + χj,k+1(oij) = 1, k = 1, . . . , p − 1, (5)

and for the j-th attribute Aj we have oij ∈ Aj , i =
1, . . . , n, j = 1, . . . , m.
It follows from (5) that the sum of the membership val-
ues for an observation oij is one (the sum results from
only two neighboring fuzzy sets).

Remark. Symbol χ is used for the membership val-
ues for the purpose of granulation so to make a differ-
ence between membership values resulting from the at-
tribute granulation (χ) and the membership values of the
A-IFSs µ.

The following types of granulation are used:
– symmetric granulation (symmetric fuzzy partitions)
with evenly spaced triangular fuzzy sets, and
– asymmetric granulation (asymmetric fuzzy partitions)
with unevenly spaced triangular fuzzy sets such that
each partition contains equal number of data points)
[5, 25].
An example of both fuzzy partitioning (symmetric and
asymmetric granulations) is shown in Fig. 1. The two
kinds of partitioning are illustrated on attribute 2 of the
“PIMA Diabetes” problem with 5 fuzzy sets (the “PIMA
Diabetes” data was used as one of the benchmarks to as-
sess intuitionistic fuzzy decision tree; summary results
are in Table 3). Fuzzy partitioning (triangular fuzzy sets)
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Figure 1: Example of symmetric fuzzy partitioning, and
asymmetric fuzzy partitioning (on attribute 2 “Plasma
glucose concentration” of benchmark “Pima Diabetes”
with 5 fuzzy sets)

points out how to assign nodes in a soft ID3 decision tree
- cf. Fig. 2.

Figure 2: Constructing nodes in a soft ID3 tree resulting
from a fuzzy partitioning

Now we will present a fuzzy generalization of ID3
algorithm [7].
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Fuzzy ID3 algorithm
Consider the following database

T = {oi =< oi,1, . . . , oi,m > | i = 1, . . . , n}, (6)

where oi,j is a value of the j-th attribute Aj , j =
1, . . . , m, for the i-th instance. We assume that oi,j are
crisp.

We assume that at the beginning the root contains all
the instances, i.e., we apply top down approach of gen-
erating a fuzzy ID3 decision tree from data. Each node
is split by partitioning its instances. A node becomes a
leaf if all the attributes are used in the path considered
or if all its instances are from a unique class.

The rules can represent splitting the nodes in a deci-
sion tree. Assume that Pj is a partition set of the at-
tribute space Ωj (j = 1, . . . , m), and that partition of
each attribute is via triangular fuzzy sets. Let Pχj,k

∈ Pj

be the k-th partitioning fuzzy set expressed by a trian-
gular membership function χj,k being a component of
the partition of the j-th attribute. The following rule
expresses conjunction of the fuzzy conditions along the
path from the root to a tree node

B ≡ Pχj1
∧ · · · ∧ PχjN

(7)

where Pχjr
are triangular fuzzy sets, and its set of in-

dices represented by the subsequence (jr) is in a con-
sidered rule a result of pointing up a pair: (1) a unique
attribute numbers j, and (2) one from the k triangular
fuzzy sets for each attribute partitioning. Formula (7)
expresses a conjunction of the conditions which are to
be fulfilled for an instance oi so that it were present in
a considered node. Database T = {oi, i = 1, . . . , n}
generates a supportfor B (7) given as:

w(B) =

n∑

i=1

∏

jr

P rob(Pχjr
|oi) (8)

where P rob(Pχjr
|oi) is a probability defined on the

fuzzy set Pχjr
provided the observation oi. It is easily

calculated using the membership function χjr(oi).
Consider {Cl, l = 1, . . . , h} a set of decision classes.

Formula (8) is also used for generating support for a
given decision class, e.g., Cx in a given node, namely

P rob(Cx|B) =
w(Cx ∧ B)

∑h

l=1 w(Cl ∧ B)
=

w(Cx ∧ B)

w(B)
.

(9)
To split a node (starting from a root) it is necessary to

evaluate the attributes’ abilities to generate a next level
with the child nodes. A potential possibility of an at-
tribute A for producing child nodes As, s = 1, . . . p is
tested by calculating its classical entropy:

I(As) = −

h∑

l=1

P rob(Cl|As) log(P rob(Cl|As)), s = 1, . . . p.,

(10)
The common entropy for an attribute A is the following
weighted mean value:

I(A) =

∑p
s=1 w(As) · I(As)∑p

s=1 w(As)
(11)

It is assumed in (10) and (11) that As represents a rule
from the root to the s-th child node.

The above formulas make it possible to generate the
nodes in a fuzzy ID3 tree [7].

Deriving A-IFSs from data
Making use of A-IFSs we will present now a generaliza-
tion of the previously described soft ID3 approach.

Assume that an attribute A, splitting a node into the
child nodes As, s = 1, . . . p, is tested. For simplicity we
assume only two decision classes C+ and C−. Support
for these classes in each node is

for class C+ : w(C+ ∧ A1), w(C+ ∧ A2), · · · ,

· · · , w(C+ ∧ Ap)
for class C− : w(C− ∧ A1), w(C− ∧ A2), · · · ,

· · · , w(C− ∧ Ap).
(12)

Independently for each class their frequencies for the
verified splitting are calculated (proportions between
support of a class in the child nodes and its cardinality
in the parent node)

p(C+|As) : w(C+
∧A1)

w(C+∧A) ,
w(C+

∧A2)
w(C+∧A) , · · · ,

w(C+
∧Ap)

w(C+∧A)

p(C−|As) : w(C−
∧A1)

w(C−∧A) ,
w(C−

∧A2)
w(C−∧A) , · · · ,

w(C−
∧Ap)

w(C−∧A) .

(13)
Knowing the relative frequencies p(C+|Ai) and
p(C−|Ai) (13) makes it possible to use the algorithm
given in [6, 7] to construct independently fuzzy sets rep-
resenting the classes C+, and C−. The fuzzy sets ob-
tained for C+, and C− are abbreviated P os+ and P os−,
respectively. In the fuzzy ID3 tree [7] the fuzzy sets
P os+(As) and P os−(As), s = 1, . . . , p are tested by a
classical entropy (10) - (11) to assess the attributes.

For the purpose of the algorithm proposed here we use
the fuzzy model (expressed by P os+ and P os−) to con-
struct intuitionistic fuzzy model (details are presented in
Szmidt and Baldwin [29]). Intuitionistic fuzzy model of
the data in the child nodes As, s = 1, . . . p (due to [29])
is expressed by the following intuitionistic fuzzy terms

π(As) = P os+(As) + P os−(As) − 1
µ(As) = P os+(As) − π(As)
ν(As) = P os−(As) − π(As).

(14)

This way each child node s is described by the following
A-IFS

< As, µ(As), ν(As), π(As) >, s = 1, . . . , p (15)

where µ expresses support for the class C+; ν expresses
support for the class C−; π describes lack of knowledge
concerning µ and ν.

Characteristic of an instance oi at node As can be ex-
pressed as well in terms of A-IFSs

χAs
(oi)· < µ(As), ν(As), π(As) >, i = 1, . . . , n,

where χAs
is a membership function at node As ex-

pressed by the product in (8). Having in mind the prop-
erty (5) we can obtain full information value of an in-
stance oi while partitioning A and obtaining in result
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the child nodes {As, s = 1, . . . , p} :

χAs
(oi)· < µ(As), ν(As), π(As) > +

χAs+1
(oi)· < µ(As+1), ν(As+1), π(As+1) > . (16)

For the purpose of assessing and choosing the attributes
while splitting the nodes in the intuitionistic fuzzy
decision tree, either (15) or (16) may be used.

Selection of an attribute to split a node
Splitting a node into children nodes is the crucial step
while expanding a tree – a crisp, fuzzy or intuitionistic
fuzzy tree. To split a node an attribute is selected on the
basis of its “information gain”. Different measures may
be used to assess “information gain”. We use here an
intuitionistic fuzzy entropy [32].

Intuitionistic fuzzy entropy E(x) of an intuitionistic
fuzzy element x ∈ A is [32]:

E(x) =
min{lIF S(x, M), lIF S(x, N)}

max{lIF S(x, M), lIF S(x, N)}
, (17)

where M, N are the intuitionistic fuzzy elements (<
µ, ν, π >) fully belonging (M ) or fully not belonging
(N ) to a set considered

M =< 1, 0, 0 >

N =< 0, 1, 0 >,

lIF S(·, ·) is the normalized Hamming distance [31, 33]:

lIF S(x, M) = 1
2 (|µx − 1| + |νx − 0| + |πx − 0|)

lIF S(x, N) = 1
2 (|µx − 0| + |νx − 1| + |πx − 0|).

Other intuitionistic fuzzy measures may be used to
evaluate the attributes (cf. [39], [40]), e.g.:

K(x) = 1 − 0.5(E(x) + πx), (18)

where πx = 1 − µx − νx – (hesitation margin, intu-
itionistic fuzzy index) stands for the lack of knowledge
concerning x ∈ A.

Intuitionistic fuzzy entropy E(X) of an A-IFS with n

elements: X = {x1, . . . , xn} is [32]:

E(X) =
1

n

n∑

i=1

E(xi). (19)

The same kind of calculations as (19) is performed also
for the measure K .

We make use of the intuitionistic fuzzy representa-
tions (12)–(15) of the possible child nodes derived while
testing attribute A to compute intuitionistic fuzzy en-
tropy E(As) (17) or the measure K(As) (18) in a child
node As, s = 1, . . . , p.

Total intuitionistic fuzzy entropy of an attribute A is
abbreviated E(A) whereas entropy of a child node –
E(As). Total intuitionistic fuzzy entropy of A is a sum
of the weighted intuitionistic fuzzy entropy measures of
all the child nodes As, s = 1, . . . , p, with the weights
reflecting supports (cardinalities) of the nodes:

E(A) =

∑p
s=1 w(As)E(As)∑p

s=1 w(As)
. (20)

Analogical formula is used for the total measure K .
An alternative way to (20) of calculating E(A) is (or

its counterpart K(A)) by applying a weighted intuition-
istic fuzzy representation of each instance oi (16) while
partitioning an attribute A. Next, using (19), a total intu-
itionistic fuzzy entropy (or a total value of the measure
K) is calculated for a chosen attribute. This method was
applied in the numerical experiments (cf. Section 4).

An attribute with a minimal total intuitionistic fuzzy
entropy (or a maximal value of the measure K) is se-
lected for splitting a node.

A process of generating intuitionistic fuzzy decision
tree is in Fig. 3.

Classification of the instances
Each leaf in a soft tree is described via a proportion of
the classes considered. As a single instance usually be-
longs to several leaves, we need aggregated information
about total degree of membership of a single observation
to each class.

To classify the instances we use here measure SUM
being a sum of the products of the instance member-
ship values at leafs and support for a class considered
in these leafs [7]. Total support of the observation
oi, i = 1, . . . , n, for a class C is:

supp(C|oi)SUM =

L∑

j=1

supp(C|Tj) · χ(Tj |oi), (21)

where: {Tj : j = 1, . . . , L} – a set of the leafs; L –
the number of the leafs; supp(C|Tj) – a support of the
classes considered in the j-th leaf; χ(Tj |oi) – a mem-
bership value of the observation oi (it is a result of the
partitioning of the universe attributes), different for each
leaf, fulfilling:

∑L

j=1 χ(Tj|oi) = 1.

4. Results

Behavior of the new intuitionistic fuzzy decision tree has
been compared with other well known classification al-
gorithms. The following measures were used in the pro-
cess of the comparison:
– total proper identification of the instances belonging
to the classes considered,
– the area under ROC curve [16].

Abilities of the intuitionistic fuzzy decision tree pre-
sented here were compared with the following classi-
fiers:

• J48 – implementation of the crisp tree proposed by
Quinlan C4.5([23]),

• LMT (Logistic Model Tree) – a hybrid tree with the
logistic models at the leaves ([18]),

• NBTree – hybrid decision tree with the Bayes clas-
sifiers at the leaves,

• RandomForest – here consisting of 10 decision
trees with nodes generated on the basis of a ran-
dom set of attributes ([11]),

• MultilayerPerceptron – neural network,
• Logistic – logistic regression,
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Figure 3: A flowchart representing a process of generating intuitionistic fuzzy tree
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Table 1: “Glass” benchmark data – comparison of the intuitionistic fuzzy decision tree and other classifiers
Classification accuracy (̄x ± σ) w %

Algorithm for all classes

RandomForest 77.05 ± 8.22
IFS tree (K, asym) 75.16 ± 6.21 (∗)

pruned IFS tree (K, asym)71.92 ± 6.30 (−)
SDT (refitting) 71.09 ± nd (nd)

NBT ree 70.95 ± 9.95 (−)
SDT (backfitting) 70.91 ± nd (nd)

LMT 68.17 ± 9.91 (−)
J48 (unpruned C4.5) 68.07 ± 9.54 (−)

J48 (pruned C4.5) 67.61 ± 9.26 (−)
MultilayerP erceptron 65.96 ± 9.11 (−−)

LogisticModelT ree 63.92 ± 8.81 (−−)

Table 2: “ROP” data – comparison of the intuitionistic fuzzy decision tree and other classifiers
Classification accuracy (̄x ± σ) w %

Algorithm accuracy of both classes AUC ROC

IFS tree (E, sym) 90.75 ± 2.52 (∗) 90.73 ± 5.60 (∗)
LMT 90.36 ± 2.53 90.16 ± 4.20

pruned IFS tree (E, sym) 91.50 ± 2.81 (+) 90.14 ± 4.72
MultilayerP erceptron 90.02 ± 3.10 86.82 ± 7.90 (−)

RandomForest 89.59 ± 3.08 (−) 86.48 ± 7.20 (−)
Logistic 90.68 ± 3.46 86.26 ± 9.02 (−)
NBT ree 88.91 ± 2.70 (−) 81.58 ± 9.77 (−−)

J48 (unpruned C4.5) 88.06 ± 3.14 (−) 74.12 ± 12.03 (−−)
J48 (pruned C4.5) 88.72 ± 2.93 (−) 70.23 ± 14.76 (−−)

Table 3: Ranking of the verified algorithms
Ranking of the results

Accuracy in respect to all classes AUC ROC
Algorithm x̄ ± σ median x̄ ± σ median

LMT 3.0 ± 1.9 2.5 2.2 ± 1.1 2.0
IFS tree 2.8 ± 1.0 3.0 2.4 ± 1.3 3.0

RandomForest 4.4 ± 2.6 4.0 3.2 ± 1.9 3.0
MultilayerP erceptron 3.8 ± 2.6 3.5 4.0 ± 1.0 4.0

Logistic 4.6 ± 3.7 3 4.2 ± 2.6 5.0
NBT ree 5.5 ± 1.6 5.0 5.2 ± 0.8 5.0

SDT (backfitting) 6.7 ± 1.2 6.5 nd nd

SDT (refitting) 6.5 ± 2.2 7.0 nd nd

J48 (C4.5) 6.9 ± 1.0 7.0 6.8 ± 0.4 7.0

• Soft Decision Trees (SDT) – proposed by Olaru
and Wehenkel [21].

WEKA (http://www.cs.waikato.ac.nz/ml/weka/) was
used to evaluate the above algorithms (excluding Soft
Decision Trees (SDT) which results are presented in
[21]).

To illustrate the results obtained by intuitionistic
fuzzy decision tree we analyze first the results obtained
for several benchmark data. Detailed results are given
for benchmark data set “Glass” (http://archive.ics.-
uci.edu/ml/datasets.html) containing 214 instances, 10
numerical attributes, 6 classes (4th class empty).
“Glass” is not an easy data to analyze as the classes
are imbalanced (e.g., class “building windows”contains

70 instances whereas “tableware” contains only 9 in-
stances).

Next, analysis of the results is given for the data set
“ROP” (retinopathy of prematurity) which is a real data
set containing clinical data collected in a Polish hospital.
ROP is a disease affecting eyes of the prematurely-born
babies. Sometimes the disease can be mild but when
not recognized early it may lead to blindness. It is the
reason why an early classification of the babies with the
disease is so important. Data set "ROP" contains 539 in-
stances, 14 nominal attributes (e.g., sex, a kind of birth,
different kinds of applied medical treatments like car-
diac massage etc.) and 14 numerical attributes (e.g.,
general evaluation of a prematurely born using APGAR
score, weight, gestational age, amount of given oxygen,
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etc.), 2 classes (with or without the disease).

Simple cross validation method is used with 10 ex-
periments of 10-fold cross validation (giving 100 trees).
For each experiment an average value of the accuracy
measures, and of their standard deviations is calculated.
t-Studenttest was used (Tables 1, 2) to compare an aver-
age accuracy of the new intuitionistic fuzzy decision tree
with other classifiers. One minus in Tables 1, 2 means
that the (worse) result was obtained by a classifier while
using classical t-Studenttest, two minuses mean using
corrected t-Studenttest (for cross validation). By “nd”
the cases are marked where no data is available.

Verifying the results for “Glass” benchmark data in
respect to their accuracy (Table 1) we may notice that
the intuitionistic fuzzy decision tree turned out a better
classifier than other crisp and soft decision trees, even
better than Multilayer Perceptronand Logistic Model
Tree. Intuitionistic fuzzy decision tree placed itself on
the second position being only a little worse than Ran-
dom Forest.

Results for real data “ROP” (Table 2) show that the
accuracy obtained by the intuitionistic fuzzy decision
tree is the highest compared to the other verified clas-
sifiers (e.g., better than Multilayer Perceptron, Random
Forest, Logistic Model Tree). It is also worth noticing
that the standard deviation of the results is the lowest for
the intuitionistic fuzzy decision tree which means that
the classifier is most stable.

Final ranking of the tested algorithms (Table 3)
in respect to all the examined data sets ( “PIMA”,
“Ionosphere”, “Sonar”, “Wine”, “Glass”, “Iris” –
http://archive.ics.uci.edu/ml/datasets.html, and two real
data sets describing incomes, and the children illness
“ROP”) was done taking into account the average val-
ues with standard deviations (x̄ ± σ), and the medians.

Table 3 presents results of the ranking in increasing
order due to the median of the measure AUC ROC, and
next, due to the median of the percentage of the proper
identification of the classes. The intuitionistic fuzzy de-
cision tree with its second position is only worse from a
very effective hybrid tree LMT. It is worth stressing that
a little worse than the intuitionistic fuzzy decision tree
turned out RandomForestand MutilayerPerceptron.

Assessing the results of the verified algorithms (Ta-
ble 3), besides the median, it is worth noticing as well
the mean values and standard deviations of the ranking.
Standard deviation for intuitionistic fuzzy tree is low in
respect of both measures considered (because for each
data set considered the tree did not obtained poor re-
sults). Again, it is worth emphasizing that the standard
deviation of the accuracy is lower for intuitionistic fuzzy
decision tree than for logistic regression (Logistic), ran-
dom forest (RandomForest), and neural network (Multi-
layerPerceptron).

Last but no least, in many applications when trans-
parency and comprehensibility to the human being is
relevant, the proposed classifier, as a tree type classifier,
can be a properer, if not the best choice.

5. Conclusions

We have presented and tested an extension of the fuzzy
ID3 decision tree algorithm, namely, a new intuition-
istic fuzzy decision tree. The new classifier was tested
on well known benchmark examples and real-world data
examples giving very encouraging results.
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